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Radiation and Scattering from
Thin Toroidally Knotted Wires

Douglas H. WernerSenior Member, IEEE

Abstract—The electromagnetic radiation and scattering prop- type of knot would determine the properties of the molecule
erties of thin knotted wires are considered in this paper. A special [1], [4]. Knots have also been considered in electrostatic and
class of knots, called torus knots, are introduced for the purpose magnetostatic field theory with applications to the study of

of this investigation. The parameterizations available for torus fi lar fi d tohvdrostati 51 16
knots are used in conjunction with Maxwell's equations to formu-  €ruptive solar flares and magnetohydrostatics [S], [6].

late useful mathematical representations for the fields radiated by ~ The first application of knot theory to electrodynamics was
these knots. These representations are then used to derive simplerecently reported by Manuar and Jaggard [7]. The initial
closed form far-field expressions for electrically small torus knots.  jnvestigations in [7] suggest that the handedness of knots and
The derivation of a new electric field integral equation (EFIE) e degree of knottedness may be deduced from the backscatter
suitable for analysis of toroidally knotted wires is also outlined . . .

in this paper. Finally, it is demonstrated that the well-known Signature of electromagnetic waves. The work reported in [7]
expressions for the electromagnetic fields radiated by a circular 1S based on results obtained for the backscatter differential
loop antenna (canonical unknot) may be obtained as degenerate cross section of the threefold rotationally symmetric trefoil
forms of the more general torus knot field representations. knot and its associated unknot. The trefoil knot is the name

Index Terms—Dielectric materials, electromagnetic radiation, given to the simplest nontrivial knot. A trefoil knot can be
electromagnetic scattering, inhomogeneous media, knot electro- constructed by tieing a piece of string in a knot and gluing the
dynamics. two ends of the string together. Trefoils were chosen in [7]

because they posses a low knottedness and it only takes one
crossing switch (cut and reattach) to transform the trefoil into
. INTRODUCTION its corresponding unknot. Further discussions of the scattering
VER the past 100 years, the study of knots has befoperties of trefoils and untrefoils may be found in [8] and [9].
Oprimarily confined to the field of mathematics. Knot One of the major drawbacks for application of knot theory
theory is a subfield of an area of mathematics known & electromagnetics has been the lack of available parameter-
topology, which deals with the properties of geometric objeciations that can be used to mathematically describe knotted
that are preserved under deformations. A knot is defined a§ves. This is because knots have traditionally been stud-
closed curve in space that does not intersect itself anywhég€ within a topological context where parameterizations for
[1]. In knot theory, there is no distinction placed on théhe curves are not generally required. However, in order to
original closed knotted curve and the deformations of thaticcessfully characterize the electromagnetic radiation and
curve through space that do not allow the curve to pass throwggtttering properties of knots using Maxwell’'s equations, it is
itself. All of these deformations are considered to be the sar@dvantageous to develop parameterizations which can be used
knot. In other words, they are topologically equivalent. Th#® geometrically describe the curves of these knots. This paper
simplest of all possible knots is the unknotted circle or loopjtroduces such parameterizations for a family of knots known
which is called the unknot or trivial knot. At first glance, &S (p; ¢)-torus knots. These knots reside on the surface of a
tangled-up loop of string may appear to be knotted, but actuafifandard torus, thereby making it possible to readily obtain
it can be untangled without cutting and gluing. In this casgseful parameterizations to describe them. The well-known
the tangled-up loop of string degenerates into an unknot. trefoil is one important example of @, ¢)-torus knot.

It has only been over the past few years that knots haveThe parametric representations for {peq)-torus knots are
been gaining interest outside the field of mathematics Riesented in Section Il. These parameterizations are then used
various branches of science and engineering. For instanigegombination with Maxwell's equations to derive the vector
applications of knot theory are emerging in such diverse fiel@otential and corresponding electric field expressions, which
as plasma physics, polymer science, and molecular biologigscribe radiation from &p, ¢)-torus knot. The derivation
Biochemists have recently discovered that knotting exists @ an electric field integral equation (EFIE) specifically for
DNA molecules [2], [3]. Since then, synthetic chemists hav@, ¢)-torus knots is also outlined in Section II. In Section I,
been studying ways to create knotted molecules in which tA@sed-form expressions are derived for the radiation integrals

associated with electrically smdlp, ¢)-torus knots. It is also
demonstrated in Section Il that the well-known expressions
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Meridian Curve

Longitude Curve

Fig. 2. Examples of meridian and longitude curves on the surface of a torus
T.

z The so-called(p, ¢)-torus knots represent a class of knots

which live on the surface of the solid tords. These knots

are classified by the integepsand ¢, which have the property

b that they will always be relatively prime (i.e., their greatest

common divisor is 1) [1], [10]. The integes corresponds

\ / to how many times the knot wraps around the torus in the
longitudinal direction while the integerindicates the number
of times it wraps around the torus in the meridional direction.
It can be shown that the curves described by

(b)

Fig. 1. Geometry of the solid toru. (a) The top view. (b) Side view. x = (a+ bcos(¢p + ¢s)) cos(ps) (29)

y = (a + beos(y) + gs)) sin(ps) (2b)
in Section Il. Several examples illustrating the radiation and z = bsin(y + ¢s) (2¢)
scattering properties of variou3, ¢)-torus knots, including
the trefoil, are presented in Section IV. These results wefgpresent the family ofp, ¢)-torus knots, which reside on the
obtained by performing a method of moments analysis on thiirface of T provided0 < s < 27 [5]. Two views of the
knotted wires, using the parameterizations introduced to defif¥ 3)-torus knot are shown in Fig. 3. It can be seen from

the wire geometry. Fig. 3 that the(2,3)-torus knot is a trefoil. The trefoil knot
traversesT twice longitudinally and three times meridion-
[I. THEORETICAL DEVELOPMENT ally. Likewise, Fig. 4 shows two views of the higher order
(3,4)-torus knot.
A. Background Any knot that can be continuously deformed into a circular

Let T denote the standard solid torus i®. which is loop (standard ring) is said to be an unknot or trivial knot.
depicted in Fig. 1. Théz,y, =) coordinates that describe thisFor this reason, the circular loop is regarded as the canon-

solid torusT are given by ical unknot. Several variations of trivial knots or unknots
can be generated as special cases of(fhg)-torus knots.
z=(a+bcosyp)cosy (1a) For instance, thé1,2)-torus knot which is shown in Fig. 5

y = (a+bcosyp)sinp (1b) represents a trivial knot. The toroidal helix formed by the

(1c) (1, 4)-torus knot shown in Fig. 6 is also an interesting example
of a trivial knot. Finally, we note that the canonical unknot
where0 < 9, ¢ < 27, and0 < b < a/2. There are two types itself may be obtained as a special limiting case of a torus
of curves, known as meridian and longitude curves, which akeot. This fact may be demonstrated by setting= 0 and
commonly associated with the torlls A meridian curve runs p = 1 in (2a)—(2c).
once the short way around the torus, while a longitude curveAnother important property of knots is chirality. A knot is
runs once around the torus the long way. An example of thesansidered chiral if it is topologically distinct from its mirror
curves is illustrated in Fig. 2. image [1], [11]. This means that no matter how the knot is

z =bsiny
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Fig. 3. Two views of &2, 3)-torus knot (a trefoil).

deformed, it cannot be superimposed on its mirror image. On
the other hand, a knot that can be deformed into its mirror
image is called an achiral knot. As pointed out in [7], there ()

is a subtle distinction between the usual geometrical notion /6§. 4. Two views of a(3,4)-torus knot.
chirality and the topological notion of chirality associated with

knots._ An object possesses geometrical chirality h_c it cannot 18)? view, but also from an electromagnetics point of view.
superimposed on its mirror image through a series of spatigle o yainder of this section will be devoted to developing

Franslat!ons aqd rota}tlons. This Qeflmtlon of ch|ra_I|ty IS US€L theoretical foundation for characterizing the electromagnetic
in relation to |nc_:lu5|on geometries, su_ch as helixes, Wh!(} diation and scattering properties @f, ¢)-torus knots. We
have been considered for chiral materials [12]. Knots whi gin this analysis by considering the vector potential for an

t b . d their mi . th h ea}fbitrarily shaped wire with an electric curreftwhich may
cannot be superimposed on their mirror image through a expressed in the general form [13]

kind of a continuous deformation (i.e., without breaking or
cutting the knot). There are some knots, such as the figure- . _jAR
eight knot [11], that are geometrically chiral but topologically Az, y,2) = ﬁ/ Iy, S
achiral. The(1, 2)-torus knot and thé€1, 4)-torus knot shown am Je R
in Figs. 5 and 6, respectively, are also examples of this kinq1

of knot. The trefoil belongs to the class of knots which hav¥ €€
both geometrical and topological chirality. In other words, the
trefoil is distinct from its mirror image in the geometrical sense

as well as the topological sense. This suggests that there are
actually two distinct types of trefoil knots rather than just oné/ector potential expressions which are specialized for the class
namely, a right-hand and a left-hand trefoil, as shown in Fig. @f (, ¢)-torus knots may be derived form (3) by making use of
This property is also shared by i, 4)-torus knot shown in the parameterizations introduced in (2). By representing these

¢ (3a)

R=\a—aP+W—vP+(z—7%  (3b)

Fig. 4. parameterizations in terms of the source coordinates, we have
2. Electromagnetic Fields of a Torus Knot &' = (a+beos(y + gs')) cos(ps') (4a)
The various properties of thép, q)-torus knots discussed ¥ = (a+bcos(y +q5')) sin(ps’) (4b)

above make them interesting not only from a topological point 7 = bsin(y) + qs'). (4c)
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Fig. 5. Two views of a1, 2)-torus knot (a trivial knot).

It may be shown using (4) that the incremental element of
length for a(p, g)-torus knot is

(b)

Fig. 6. Two views of &1, 4)-torus knot (a toroidal helix).

dl' = \/(qb)? + p*(a+beos(y +¢s')2ds’ (5a)

. . . Ay (z,y,2)
which, when integrated over the knot, leads to the following o
useful formula for arclengtldi: = 4ﬁ L,(s)V/(gb)? + p*(a+ beos(¢h + gs'))?
T Jo
T c—JBR
L= 2/ \/(qb)2 + p?(a+ beosu)? du. (5b) X 7 ds’ (8b)
0
Substituting (5a) into (3a) results in an expression for the A2y, 2)
vector potential of &p, ¢)-torus knot which is given by A,
) . Y N o e e T ey
Awpn) = 4 | V@ + 12+ beos(h o+ 4)? i
0
oioR X 7 ds'. (8c)
X ds’. (6)
R Now suppose thai,(s') represents the current distribution on
Furthermore, the knot curredthas the general form of the surface of a particular thin knotted wire. Then it can be
shown that
I(s') = L(s)é + L,(s)§ + I.(s')2 7
(S ) (S )‘T + y(s )y + ~(S )7 ( ) Igc(S/) — IS(S/)TQU(S/) (ga)
which implies that (6) may be separated into the following
three scalar components: I(s") = I,(s)T,(s") (9b)
Am ('Tv y7 Z) / ! !
w7 1(s") = I,(s"T.(s") (9¢)
=L L) V(@) + p(a+ beos(y + g5))?
4 0 where (10a)—(10c), shown at the bottom of the next page, are
N ¢ IPR s’ (8a) the z, ¥y and z components of the unit vectdr tangent to the
R curve of the knot. Substituting (9a)—(9c) and (10a)—(10c) into
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Ay (]}, Y, Z)
27
— 20 [ L@t beosty + )
47 0
o—iBR
x cos(ps’) ds'
" 27 o—JBR
- —qb/ I, (s") sin(e) + ¢s’) sin(ps’) ds’
47 0
(11b)
2m —j8R
A )= foab [ LG eos(u + a5
47 0
(11¢)

Transforming (11a)—(11c) to spherical coordinates leads to

(@ A (7,0, 0)

. 2w
1 [T L) e beos( 4 a)

—jAR
e
ds’

x sin(¢ — ps’)

27 ij,BR
— qb/ I, (s") sin(yp + q5) cos(p — ps) 7 ds’}
0

i 27 —jB8R
4 Beos {qb/ Is(s’)cos(z/)—i—qs’)e 7 ds’}
0

A7
(12a)
AH(Tv 97 d))
pocos 6 m p p
=" 7, I(s")(a+ beos(yp + g57))
o—ifR
X sin(¢p — ps’) ds’
) - b/%l (") sin(p 4 ¢s") cos(¢p — s’)e_wR ds’}
Fig. 7. Two types of trefoil knots. (a) A left-hand trefoil. (b) A right-hand 1 0 ? 1 P R
trefoil. jesin 0 27 e—IBR
- {qb/ I,(s") cos(vp + gs') 7 ds’}
(8a)—(8c), respectively, yields d 0 (12b)
Az(z,y,2) Ay(r,0,9)
27 27
——4op [ L)a+beos(w +5) — 20 [ L)+ beos(i o+ 0)
0 0
c—JiBR c—JiBR
x sin(ps’) ds’ x cos(¢p — ps’) ds’
L 27 C_j’BR L 27 e—j,@R
- Eqb/ I,(s")sin(1) + gs') cos(ps’) 7 ds’ + Eqb/ I,(s') sin(e) + ¢qs') sin(¢p — ps’) 7 ds'.
0 . 0 .
(11a) (12¢c)
_ ! : AN : ! !
T.(s) = pla + beos(yp + gs')) sin(ps’) — gbsin(y + gs’) cos(ps’) (10a)
V(gb)? +p?(a +beos(y) + gs'))?
£ (o1 = P beos(U + 0) cos(ps') = gbsing + g3 sin(p' (105)
! V(@b)? + p?(a +beos(y) + ¢s'))?

- V/(ab)? + p*(a+ beos(y + gs))?
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Finally, general electromagnetic field expressions for the class,(r, 8, ¢)

of (p, ¢)-torus knots may be obtained directly from the vec- poeinr 27 / /
tor potential components given in (12a)—(12c) by using the =~ ;—— p/o L(s")(a+ beos(yp + ¢5'))
following identities: 1 x cos(h — ps\I(s')
E= V(V-A)+ 324 1 A .
jwﬂs [V(V )+/ ] ( 3a) + %6 . qb/ IS(S/) Sln(”(/} + qsl)
O 0
H= ;[V x Al. (13b) x sin(¢p — ps)['(s')ds’. (17b)

We next turn our attention to the derivation of appropriate
far-zone representations for the electromagnetic fields pr%‘- The Torus Knot EFIE
duced by a(p, q)-torus knot. It is well known that in the The derivation of an EFIE for perfectly conducting knotted
far-zone, simplified relationships exist between the resultanmires is outlined in this section. This derivation is specifically
electromagnetic fields and their associated vector potentigilored to the development of an EFIE suitable for analyzing
These relationships for the fields are given below in componerivsed loops of thin wire bent in the shape (@f, ¢)-torus

form [13]: knots. A convenient place to start this development is with
E. ~0 (14a) the general form of the EFIE for an arbitrarily curved wire
[14], [15]
Ey =~ —jwAe (14b)
. 2 ~ ~
Ey = —jwAy (14c) / I(Z’)[ azaa 5 G, Oy = BTG dr
H,~0 (14d) ¢ L
E =jwel - E'(0), LeC 18
Hym joA, =——2 (14e) @ (18)
77w ];7 whereE'(¢) represents the incident or impressed electric field
Hym —j—Ay=—2. (14f) and
n n
Hence, in order to complete the derivation, it is only neces- , e~ BIF=7']
sary to find far-zone approximations for the vector potential G l) = =7 (19)

componentsdy and A, given in (12b) and (12c) respectively.
In the far-zone, it can be shown that is the free-space Green'’s function. Now suppose we define the
e IPR omifr source-point coordinates of arfy, ¢)-torus knot to be

~
~

R (I8l sinbcos gty sin@siné+2" cos6](154)
. 7)

where ' = (a+ ¥ cos(yp + q5')) cos(ps’) (20a)
/ / / : !

y = (a+b cos(yp + qs')) sin(ps’) (20b)

r = \/,’]}'2 + y2 + 2’2, (15b) Z/ _ b/ Sin(”(/} + qS/) (200)

At this point in the development, the knot parameterizations.

introduced in (4a), (4b), and (4c) may be used to transfor\%‘th the corresponding field-point coordinates defined as

(15a) into . o x = (a + bcos(p + ¢s)) cos(ps) (21a)
L (16a) y = (a+beos(y) + gs)) sin(ps) (21b)
R T z = bsin(y + ¢s). (21c)

where

The set of knot parameterizations given in (20) and (21)
may be used to obtain expressions for the unit vectors, which
(16b) are tangent to the curve of these knots. A useful form of these

Substituting (16) into (12b) and (12c) leads to the requiré@kpressions was found to be
far-zone representations fety and A, which are given by

F(Sl) _ Cj,@[(a+b cos(y+qs’)) cos(¢—ps’) sin 8+b sin(vy+qs’) cos 8] .

SV
Ag(%’ 9’ ¢) =T = ﬁ (22a)
__ pcost e=ifr 2 , , iy
~ Ax r {p/o 19(8 )(CL + bCOS(”(/} +gs )) Y- T/ _ “;/ (22b)
x sin(¢ — ps['(s') ds vl
o where
— qb/ I, (") sin(¢p + ¢qs’) cos(¢p — ps"T'(s) ds’}
0 5 dP A o
sinf ¢ 997 2 V="=V2+V,5+V.2 (22¢)
e [T L costy + s n
0 V=l SV VIV (22d)

(17a) ds’
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@
T ds
= —p(a + beos(yp + ¢s)) sin(ps)
— gbsin(y) + ¢s) cos(ps) (22e)
_
v, =2t
= p(a + beos(y) + ¢s)) cos(ps) — qbsin(y) + ¢s) sin(ps)
(22f)
dz
V., = T = gbcos(y) + gs) (22g)
,_ar
Vo= ds'
= —pla + b cos(p + ¢s')) sin(ps’)
— gV’ sin(y) + qs’) cos(ps’) (22h)
daf/
= p(a + V' cos(¢p + ¢s')) cos(ps)
— gV’ sin(y) + ¢qs’) sin(ps’) (22i)
!
V! =9 = g cos(th + ) (22)
¥ drr 21 2 2
V== = V)2 +p*(a+beos(y + gs)) (22K)
- di
V] = |55 | = V@ P + 9 a4V cos(i+a5). (22)

Equations (20) and (21) may also be used to prove that the

following relationship holds fo(p, ¢)-torus knots:

9 9 9508 0 O ,
atar = iar s oy ) (B3
where
s 1 1
ot VI V(@b + p*(a+beos(y +gs))?
(23b)
a5 1 1
o V| gh)? +pPat ¥ eos(y +gs))?
(23c¢)
L emifR
G(s,s') = R (23d)
= |R| = |7 -7 |
—Jw—x —y)2+(—-2)  (23€)
R=R.?+ R,i+R.2 (23f)
R, = (a+bcos(yp + ¢s)) cos(ps)
— (a+V cos(y) + qs’)) cos(ps’) (239)

1357
R, = (a+ bcos(¢ + gs)) sin(ps)
— (a+ ¥ cos(yp + ¢s')) sin(ps’) (23h)
R. = bsin(y) + qs) — V' sin(z) + q5'). (23i)

Substituting (22a)-(22b) and (23a)—(23c) into (18) results
in an EFIE of the form

s € [0,2m]
(24a)

227
/0 L(YK(s,s')ds' = jweV(s)- E(s),

where,(s') represents the current distribution on the surface
of a particular(p, ¢)-torus knot and

a —
K / _ | == _ 2 1y / 24
(s,s") {8 By, Jéi V() V(s G(s,8") (24b)

is the kernel of the integral equation. It is possible to further
simplify the EFIE given in (24) by evaluating the derivatives
which appear in the expression for the kernel (24b). This leads
to the result

27

| 1)k s)as =10 B
0

(8), € [0, 27|

(25a)

J
n

where
. AN 1 /
K(S,S) - BK(“;?S)
= {(BR’[(1 +jBR) —
— [B(L+3BR) — (BR)*1Fa(s, ')}

(BR)*|Fa(s, ")

e—iBR

4n(BR)?
(25h)

is a dimensionless form of the kernel in which

Fy(s,s') = B2V - V' = B2V, V, + V, V] + V.V!}  (250)
and
Fy(s,s') = (B°R-V)(B*R-V')
= [B{R.Ve + RV, + RV}
x [BH{R.V) + R,V, + R.V/}]. (25d)

The dependence upon the knot parameters of (25¢) and (25d) is
implicit. However, explicit representations of these equations
may also be found which are given by

Fi(s,8") = ¢?(Bb)(BY) cos(tp + ¢s) cos(vp + ¢5)
p*[(Ba) + (Bb) cos(t) + gs)]

 [(Ba) + (80 cos(ep + ') coslp(s — )]
£ pa(81){(Ba) + (3) cos(i + gs)]
x sin(1p + gs’) sin[p(s — §)]
— pa(Bb)[(Ba) + (BY') cos(t) + g5')]
x sin(y) + gs) sin[p(s — s')]

+ ¢ (Bb)(BY) sin(y + gs)

x sin(1) + gs') cos[p(s — §')] (26a)
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F(s, ) = {pl(a) + (9b) cos(sp + g5)]
 [(a) + (31 cos(i + )] sinfp(s — )
— (A [(Pa) + (Bb) cos(t + )]
x sin(1) + gs’) cos[p(s — §')]
+ q(Ba)(BV) sin(y + ¢s') + a(BL)(BY) 0r
x sin(y + gs) cos(yp + gs')}
« {pl(Ba) + (9b) cos(v + 43)]
x [(Ba) + (BY) cos(¥ + ¢s")] sin[p(s — )]
+ g(BV)(Ba) + (B cos(ap + )]
x sin(yp + gs) cos[p(s — ']
~ g(Ba) () sin(v + 45) — a(BH)(BV)
x cos(t) + gs) sin(tp + gs')}. (26b) o

R; (Ohms)

n ! L L

.
0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

L L

Finally, by using (23e) together with (20a)—(20c) and ik

(21a)—(21c), the remarkable fact that Fig. 8. The radiation resistance versus radius for an electrically small trefoil
knot antenna.

Rlomy = [b— V] 27)

can easily be shown. This suggests that the knotted wiFbe current distribution on an electrically small torus knot may
kernel (25b) will be nonsingular providell # #’. A useful be assumed to be uniform, i.&,(s") = Iy wherely is con-
interpretation of the quantityp — #’| found in (27) is that it stant. Hence, under these conditions, the far-zone expressions
represents the radius of the wire used to construct the knotfed Ay and A, given in (17a) and (17b), respectively, reduce to
antenna or scatterer. Therefore, numerical solution of the EFIE

given in (25a) should yield accurate results for thin wire toru§49 (r,6,9)

knots which satisfy the conditiojp — &| < 0.01\. _palgcosfeiPr o /
The availability of the EFIE dﬂ(;rived| here is important for - 4 r {p/o (1+ accos(y +g5))
several reasons including the fact that it provides the basis for  x sin(¢ — ps")[(s') ds’
the development of accurate computational electromagnetics 27
modeling techniques for knotted wires. Conventional method — — qa/ sin(yp + gs') cos(¢p — ps ) I'(s") ds’}
of moments (MoM) techniques generally approximate curved o . )
wires by a series of piecewise-linear wires, which can lead _ #afosin b9 {qa/ Wcos(z/)—i—qs/)l_‘(s/)is/}
to inaccuracies in the modeling results, especially for wires 4r r 0
which are highly looped or knotted. This new EFIE provides (30a)

an alternative to the traditional approaches by allowing a MoMy (., , ¢)
formulation to be developed, which is specifically tailored to o
the analysis of knotted wires. More accurate results could be = p/ (1+ acos(tp + gs”))
obtained, for instance, by solving the knotted wire EFIE using o oo
either an entire domain or a curved basis function subdomain % €0s(¢ — ps)I'(s") ds

. I —j8r 27
MoM formulation. + —NZWO c " qa/ sin(1p+qs’) sin(¢p—ps )['(s') ds’.
0

ll. SPECIAL CASES (30b)

paly e=357

Next, by substituting (29) into (30) and performing the re-

quired integration, we arrive at the following closed-form
Simple closed-form expressions are derived in this sectigmall-knot approximations:

for the far-zone electromagnetic fields of electrically small

torus knots. Suppose we let= «va where0 < « < % then

we may write (16b) as

A. Small Knot Approximation

Ay~ 0 (31a)

K I . 2 _j,@,,,

ind 0811191{@2 4 b_} e (31b)
,

Aqg ~ 4 5
F(S/) _ ej,@a[(l-l—oz cos(w+qs’)) cos(¢—ps’) sin 6+a sin(w+qs’) cos 01'
(28) which are valid provided) # ¢ and p # 2¢. We note here
that for the electrically small knot4,, does not depend on the
For sufficiently small values of, (28) may be approximated parametey. However, if higher order terms are considered in
by the expansion fof'(s") then the vector potential expressions
that result will be valid for knots of larger size and, under
[(s") = 1+ jBa(l + acos(yh + gs')) cos(¢ — ps) sin 6 these conditions, will depend on bothand g. Finally, the
+ jBaasin(tp + ps’) cos . (29) far-field representations for small knots associated with (31)
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Fig. 10. Backscatter cross section versus frequency for the trefoil knot
illustrated in Fig. 9(a). A linearly polarized plane wave is assumed to be
incident on the knot traveling in the positive direction with the electric
field parallel to ther axis or they axis. The backscatter cross section versus
frequency for a circular loop in the-y plane is also shown for comparison
purposes.

O o Of trefoil

-10 + .
..... ... O, of refoil

______ o of trefoil

AZO - Cross
_________ O oat of loop

(b)

6 (dB * m?)
&
o

-100 . . L 1
5 10 15 20 25

Frequency (GHz)

Fig. 11. Backscatter cross section versus frequency for the trefoil knot
illustrated in Fig. 9(b). A linearly polarized plane wave is assumed to be
y incident on the knot traveling in the positigedirection with the electric field

parallel to ther axis. The backscattering cross section versus frequency for
a circular loop in ther-y plane is also shown for comparison purposes.

H,~0 (32d)
(c) /32] in@ p27 e—iBr
o sin e
Fig. 9. (a) Top and (b), (c) side views of a thin wire model for the trefoil Hy ~ 4 P {Cﬁ + 5} (32e)
knot shown in Fig. 3.
H,~0 (320)

may be obtained directly from (14). The resulting closed-forf{here p # ¢ and p # 2q. It is interesting to note that
expressions are (32a)—(32f) are equivalent to the far-fields, which would be

produced by an electrically small circular loop (canonical
E.~0 (32a) unknot) with an effective radius. and turns ratiaV given by

Ey =0 (32b) \/ﬁ \/7
2]y si 27 g8 e = + - =a\/1+— 33a
By~ 13?1 sin ep{cf N b_} e (320) 7 a 5 =0 5 (33a)
N =p.

- 4 2] 7 (33b)
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Fig. 12. Backscatter cross section versus frequency for the trefoil knot
illustrated in Fig. 9(c). A linearly polarized plane wave is assumed to be
incident on the knot traveling in the positigedirection with the electric field
parallel to thez axis.

This also suggests that the radiation resistance for a sma
torus knot will have the form X

2
R, = 207%p? [([3@)2 + @} Q. (34)

B. The Canonical Unknot (b)

It was pointed out in Section II-A that the canonical unknot z
may be considered as a special limiting case of a torus knot.
In particular, the canonical unknot is obtained as a degenerate
form of a torus knot whed = 0 andp = 1. Hence, for this
special case, the general vector potential expressions for the
(p, g)-torus knots derived in (12a)—(12c) will reduce to
27 c—IBR
| 1@t - )" av
o R
(35a)
277] . ) e—j,@Rd )
| 1@tysing - o) s ,
(35b)

pasin @
4

An(r,0,0) =

Ja cos 6

AO(T’ 9’ d)) =

v

efj,BR

27
Ag(r0.) =52 [ (&) eon( = ) Gt (350)

where (©)

_ 2 2 _ o Y, Fig. 13. (a) Top and (b), (c) side views of a thin wire model for the
R= \/7 Ta Zar sinf cos(¢ — ¢') (35d) (1, 2)-torus knot shown in Fig. 5.

These are, as expected, the well-known results for a circular

loop antenna of radiua [16]. Fig. 8 demonstrates that a small trefoil antenna would have a
relatively low value of radiation resistance. However, (33b)
IV. RESULTS suggests that the radiation resistance may be increased by

A plot of the radiation resistance as a function of radius fgzron&denng antennas, which possess a higher degree of knot-

X ) . - edness or, more generally, a larger valuepof
an electrically small trefoil knot antenna is shown in Fig. 9 y 9 @

This plot is based on (34) for the specil case where 2 (ot 8 LS R OO 8 B e o
and b = a/2. Under these conditions, (34) reduces to th g prop - 1op

following simole formula: Shown in Fig. 3 have been included for visualization purposes
9 P ' in Fig. 9. The trefoil is assumed to be constructed from
R, ~ 1000(Ba)*Q. (36) perfectly conducting wire with an arc length of 41.416 mm
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Fig. 14. Backscatter cross section versus frequency fof th2)-torus knot illustrated in Figs. 5 and 13. A linearly polarized plane wave is assumed to be

incident on the knot traveling in the: (a) positivedirection with the electric field parallel to theaxis; (b) positivez direction with the electric field parallel
to the y axis; (c) positivez-direction with the electric field parallel to the-axis; (d) positivex direction with the electric field parallel to the axis; (e)
positive y direction with the electric field parallel to the axis; and (f) positivey direction with the electric field parallel to the axis.

and a radius of 5.52& 10-2 mm. The scattering cross sectiorwhere £¢ and E* represent the incident and scattered electric
of the knot may be calculated from fields, respectively [17]. A linearly polarized plane wave
with an intensity of 1 V/m is assumed to be incident on
the knot. The corresponding scattered field is determined
using a numerical analysis procedure based on the method

2| B
|2

o =A4nr

37)
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of moments. This approach is followed in order to calculat®ould not couple to a circular loop lying in the— plane.
the backscatter cross section as a function of frequency fo©a the other hand, Fig. 12 shows evidence of significant field
particular knot using (37). coupling to the trefoil. This leads to the conclusion that the
Fig. 10 shows a plot of the backscatter cross section vergrefoil knot experiences a strong field coupling for all possible
frequency for the trefoil knot illustrated in Figs. 3 and 9. Theolarizations and angles of incidence, whereas the circular loop
frequency range chosen for this example is between 5 GHz ataks not.
25 GHz. The curves of backscattering cross section shownA three-dimensional view of &1,2)-torus knot is shown
in Fig. 10 were produced by an incident linearly polarizeth Fig. 5. The geometry for this particular knot can be gen-
plane wave propagating along the positivedirection with erated by pinching and twisting a circular loop. Therefore,
the electric field parallel to the axis [see Fig. 9(a)]. We note by definition, the(1, 2)-torus knot is an example of a trivial
that for the trefoil an identical backscattering signature woulkhot. The top and side views of this knot are shown in
be obtained if the electric field was parallel to thexis rather Fig. 13. The various curves contained in Fig. 14 document
than thex axis. The solid curve shown in Fig. 10 representsow the backscatter cross section of thie 2)-torus knot
the total backscatter cross section which is denoted:by;. depends on frequency, polarization and angle of incidence.
The dotted and dashed curves, on the other hand, repreSére backscattering results shown in Fig. 14 were produced
the copolarized backscatter cross section,) and the cross- by a (1,2)-torus knot with a wire arc length and radius of
polarized backscatter cross sectign...ss) respectively. For 41.416 mm and 5.52& 10=2 mm, respectively.
the case considered in Fig. 10, the total backscatter cross
section is essentially the same as the copolarized backscatter
cross section.
The resonance frequencies for(a ¢)-torus knot may be  Knot electrodynamics is an emerging area of research that

V. CONCLUSION

estimated by using the approximate formula seeks to combine aspects of knot theory with Maxwell's theory
of electromagnetism. The primary purpose of this paper has
fn= n(%) forn=1,2,--- (38) been to establish a rigorous mathematical foundation from

which analysis techniques may be developed and applied

where L represents the arc length of the knot as defined fgward the study of knot electrodynamics problems. This
(5b). Note that these are the same resonances that wdifper focuses on the particular class of knots, known as
be associated with a circular loop (canonical unknot) haviﬁ%ruS knots, which have interesting topological as well as
a circumference equal td. The trefoil knot considered electromagnetic properties. These knots derive their name
in Figs. 3 and 9 has an arc length of 41.416 mm whidom the fact that they reside on the surface of a solid
corresponds to one wavelength at 7.24 GHz. This fact {@us and, consequently, useful parametric representations for
substantiated by (38) which suggests that the first resonafe@m may be found. A new knotted wire EFIE was derived
should occur at a frequency of approximatgly= 7.24 GHz. Pased on the available parameterizationgfor)-torus knots.
Fig. 10 demonstrates that a sharp resonance is indeed pred8§€ parameterizations were also used to derive expressions
at this frequency. However, it is interesting to note that ifPr the electromagnetic fields radiated by, g)-torus knots;
this case, all higher order resonances are suppressed. rﬂqgjdlng_ simple closed-form r.epresentauons for the far-fields
backscatter cross section for a circular loop in ihe plane Of electrically small knots. Finally, several examples were
with a 41.416-mm circumferencef,( = 7.24 GHz) is also Presented and discussed which illustrate the unique radiation
shown in Fig. 10 for comparison purposes. From this we s@Bd scattering properties associated with varigusy)-torus
that the trefoil knot has a much sharper first resonance tHERPLS:
does its circular loop counterpart.

Next, suppose we consider a linearly polarized plane wave, ACKNOWLEDGMENT
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direction with the electric field parallel to the axis [see .,cerning the backscattering properties of knots. He would
Fig. 9(b)]. A plot of the backscatter cross section asafunctlgﬂso like to thank T. W. Colegrove for the assistance he
of frequency for this case is shown in Fig. 11. The backscat ovided during the course of this work.

cross section that would result from a circular loop of equiv-
alent arclength contained in the-y plane is also shown in
Fig. 11. Again, we find that the first resonance of the trefoil
is relatively sharp in contrast to the loop. There are also som&] C. C. Adams, The Knot Book: An Elementary Introduction to the

i i i i i Mathematical Theory of Knots New York: Freeman, 1994.
noticeable differences in the behavior of the hlgher OrdefZ] S. Wasserman, J. Dungan, and N. Cozzarelli, “Discovery of a predicted

resonance. DNA knot substantiates a model for site-specific recombinati&uj,
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propagating along theg direction with the electric field parallel 1992,
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