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Radiation and Scattering from
Thin Toroidally Knotted Wires

Douglas H. Werner,Senior Member, IEEE

Abstract—The electromagnetic radiation and scattering prop-
erties of thin knotted wires are considered in this paper. A special
class of knots, called torus knots, are introduced for the purpose
of this investigation. The parameterizations available for torus
knots are used in conjunction with Maxwell’s equations to formu-
late useful mathematical representations for the fields radiated by
these knots. These representations are then used to derive simple
closed form far-field expressions for electrically small torus knots.
The derivation of a new electric field integral equation (EFIE)
suitable for analysis of toroidally knotted wires is also outlined
in this paper. Finally, it is demonstrated that the well-known
expressions for the electromagnetic fields radiated by a circular
loop antenna (canonical unknot) may be obtained as degenerate
forms of the more general torus knot field representations.

Index Terms—Dielectric materials, electromagnetic radiation,
electromagnetic scattering, inhomogeneous media, knot electro-
dynamics.

I. INTRODUCTION

OVER the past 100 years, the study of knots has been
primarily confined to the field of mathematics. Knot

theory is a subfield of an area of mathematics known as
topology, which deals with the properties of geometric objects
that are preserved under deformations. A knot is defined as a
closed curve in space that does not intersect itself anywhere
[1]. In knot theory, there is no distinction placed on the
original closed knotted curve and the deformations of that
curve through space that do not allow the curve to pass through
itself. All of these deformations are considered to be the same
knot. In other words, they are topologically equivalent. The
simplest of all possible knots is the unknotted circle or loop,
which is called the unknot or trivial knot. At first glance, a
tangled-up loop of string may appear to be knotted, but actually
it can be untangled without cutting and gluing. In this case,
the tangled-up loop of string degenerates into an unknot.

It has only been over the past few years that knots have
been gaining interest outside the field of mathematics in
various branches of science and engineering. For instance,
applications of knot theory are emerging in such diverse fields
as plasma physics, polymer science, and molecular biology.
Biochemists have recently discovered that knotting exists in
DNA molecules [2], [3]. Since then, synthetic chemists have
been studying ways to create knotted molecules in which the
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type of knot would determine the properties of the molecule
[1], [4]. Knots have also been considered in electrostatic and
magnetostatic field theory with applications to the study of
eruptive solar flares and magnetohydrostatics [5], [6].

The first application of knot theory to electrodynamics was
recently reported by Manuar and Jaggard [7]. The initial
investigations in [7] suggest that the handedness of knots and
the degree of knottedness may be deduced from the backscatter
signature of electromagnetic waves. The work reported in [7]
is based on results obtained for the backscatter differential
cross section of the threefold rotationally symmetric trefoil
knot and its associated unknot. The trefoil knot is the name
given to the simplest nontrivial knot. A trefoil knot can be
constructed by tieing a piece of string in a knot and gluing the
two ends of the string together. Trefoils were chosen in [7]
because they posses a low knottedness and it only takes one
crossing switch (cut and reattach) to transform the trefoil into
its corresponding unknot. Further discussions of the scattering
properties of trefoils and untrefoils may be found in [8] and [9].

One of the major drawbacks for application of knot theory
to electromagnetics has been the lack of available parameter-
izations that can be used to mathematically describe knotted
curves. This is because knots have traditionally been stud-
ied within a topological context where parameterizations for
the curves are not generally required. However, in order to
successfully characterize the electromagnetic radiation and
scattering properties of knots using Maxwell’s equations, it is
advantageous to develop parameterizations which can be used
to geometrically describe the curves of these knots. This paper
introduces such parameterizations for a family of knots known
as -torus knots. These knots reside on the surface of a
standard torus, thereby making it possible to readily obtain
useful parameterizations to describe them. The well-known
trefoil is one important example of a -torus knot.

The parametric representations for the -torus knots are
presented in Section II. These parameterizations are then used
in combination with Maxwell’s equations to derive the vector
potential and corresponding electric field expressions, which
describe radiation from a -torus knot. The derivation
of an electric field integral equation (EFIE) specifically for

-torus knots is also outlined in Section II. In Section III,
closed-form expressions are derived for the radiation integrals
associated with electrically small -torus knots. It is also
demonstrated in Section III that the well-known expressions
for the electromagnetic fields radiated by a circular loop an-
tenna (canonical unknot) may be obtained as degenerate forms
of the more general torus knot field representations derived
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(a)

(b)

Fig. 1. Geometry of the solid torusT. (a) The top view. (b) Side view.

in Section II. Several examples illustrating the radiation and
scattering properties of various -torus knots, including
the trefoil, are presented in Section IV. These results were
obtained by performing a method of moments analysis on thin
knotted wires, using the parameterizations introduced to define
the wire geometry.

II. THEORETICAL DEVELOPMENT

A. Background

Let denote the standard solid torus in , which is
depicted in Fig. 1. The coordinates that describe this
solid torus are given by

(1a)

(1b)

(1c)

where , , and . There are two types
of curves, known as meridian and longitude curves, which are
commonly associated with the torus. A meridian curve runs
once the short way around the torus, while a longitude curve
runs once around the torus the long way. An example of these
curves is illustrated in Fig. 2.

Fig. 2. Examples of meridian and longitude curves on the surface of a torus
T.

The so-called -torus knots represent a class of knots
which live on the surface of the solid torus. These knots
are classified by the integersand , which have the property
that they will always be relatively prime (i.e., their greatest
common divisor is 1) [1], [10]. The integer corresponds
to how many times the knot wraps around the torus in the
longitudinal direction while the integerindicates the number
of times it wraps around the torus in the meridional direction.
It can be shown that the curves described by

(2a)

(2b)

(2c)

represent the family of -torus knots, which reside on the
surface of provided [5]. Two views of the

-torus knot are shown in Fig. 3. It can be seen from
Fig. 3 that the -torus knot is a trefoil. The trefoil knot
traverses twice longitudinally and three times meridion-
ally. Likewise, Fig. 4 shows two views of the higher order

-torus knot.
Any knot that can be continuously deformed into a circular

loop (standard ring) is said to be an unknot or trivial knot.
For this reason, the circular loop is regarded as the canon-
ical unknot. Several variations of trivial knots or unknots
can be generated as special cases of the -torus knots.
For instance, the -torus knot which is shown in Fig. 5
represents a trivial knot. The toroidal helix formed by the

-torus knot shown in Fig. 6 is also an interesting example
of a trivial knot. Finally, we note that the canonical unknot
itself may be obtained as a special limiting case of a torus
knot. This fact may be demonstrated by setting and

in (2a)–(2c).
Another important property of knots is chirality. A knot is

considered chiral if it is topologically distinct from its mirror
image [1], [11]. This means that no matter how the knot is
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(a)

(b)

Fig. 3. Two views of a(2; 3)-torus knot (a trefoil).

deformed, it cannot be superimposed on its mirror image. On
the other hand, a knot that can be deformed into its mirror
image is called an achiral knot. As pointed out in [7], there
is a subtle distinction between the usual geometrical notion of
chirality and the topological notion of chirality associated with
knots. An object possesses geometrical chirality if it cannot be
superimposed on its mirror image through a series of spatial
translations and rotations. This definition of chirality is used
in relation to inclusion geometries, such as helixes, which
have been considered for chiral materials [12]. Knots which
are topologically chiral, however, have the property that they
cannot be superimposed on their mirror image through any
kind of a continuous deformation (i.e., without breaking or
cutting the knot). There are some knots, such as the figure-
eight knot [11], that are geometrically chiral but topologically
achiral. The -torus knot and the -torus knot shown
in Figs. 5 and 6, respectively, are also examples of this kind
of knot. The trefoil belongs to the class of knots which have
both geometrical and topological chirality. In other words, the
trefoil is distinct from its mirror image in the geometrical sense
as well as the topological sense. This suggests that there are
actually two distinct types of trefoil knots rather than just one;
namely, a right-hand and a left-hand trefoil, as shown in Fig. 7.
This property is also shared by the -torus knot shown in
Fig. 4.

2. Electromagnetic Fields of a Torus Knot

The various properties of the -torus knots discussed
above make them interesting not only from a topological point

(a)

(b)

Fig. 4. Two views of a(3; 4)-torus knot.

of view, but also from an electromagnetics point of view.
The remainder of this section will be devoted to developing
a theoretical foundation for characterizing the electromagnetic
radiation and scattering properties of -torus knots. We
begin this analysis by considering the vector potential for an
arbitrarily shaped wire with an electric current, which may
be expressed in the general form [13]

(3a)

where

(3b)

Vector potential expressions which are specialized for the class
of -torus knots may be derived form (3) by making use of
the parameterizations introduced in (2). By representing these
parameterizations in terms of the source coordinates, we have

(4a)

(4b)

(4c)



1354 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 47, NO. 8, AUGUST 1999

(a)

(b)

Fig. 5. Two views of a(1; 2)-torus knot (a trivial knot).

It may be shown using (4) that the incremental element of
length for a -torus knot is

(5a)

which, when integrated over the knot, leads to the following
useful formula for arclength :

(5b)

Substituting (5a) into (3a) results in an expression for the
vector potential of a -torus knot which is given by

(6)

Furthermore, the knot currenthas the general form of

(7)

which implies that (6) may be separated into the following
three scalar components:

(8a)

(a)

(b)

Fig. 6. Two views of a(1; 4)-torus knot (a toroidal helix).

(8b)

(8c)

Now suppose that represents the current distribution on
the surface of a particular thin knotted wire. Then it can be
shown that

(9a)

(9b)

(9c)

where (10a)–(10c), shown at the bottom of the next page, are
the and components of the unit vector tangent to the
curve of the knot. Substituting (9a)–(9c) and (10a)–(10c) into
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(a)

(b)

Fig. 7. Two types of trefoil knots. (a) A left-hand trefoil. (b) A right-hand
trefoil.

(8a)–(8c), respectively, yields

(11a)

(11b)

(11c)

Transforming (11a)–(11c) to spherical coordinates leads to

(12a)

(12b)

(12c)

(10a)

(10b)

(10c)
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Finally, general electromagnetic field expressions for the class
of -torus knots may be obtained directly from the vec-
tor potential components given in (12a)–(12c) by using the
following identities:

(13a)

(13b)

We next turn our attention to the derivation of appropriate
far-zone representations for the electromagnetic fields pro-
duced by a -torus knot. It is well known that in the
far-zone, simplified relationships exist between the resultant
electromagnetic fields and their associated vector potential.
These relationships for the fields are given below in component
form [13]:

(14a)

(14b)

(14c)

(14d)

(14e)

(14f)

Hence, in order to complete the derivation, it is only neces-
sary to find far-zone approximations for the vector potential
components and given in (12b) and (12c) respectively.
In the far-zone, it can be shown that

(15a)

where

(15b)

At this point in the development, the knot parameterizations
introduced in (4a), (4b), and (4c) may be used to transform
(15a) into

(16a)

where

(16b)

Substituting (16) into (12b) and (12c) leads to the required
far-zone representations for and , which are given by

(17a)

(17b)

C. The Torus Knot EFIE

The derivation of an EFIE for perfectly conducting knotted
wires is outlined in this section. This derivation is specifically
tailored to the development of an EFIE suitable for analyzing
closed loops of thin wire bent in the shape of -torus
knots. A convenient place to start this development is with
the general form of the EFIE for an arbitrarily curved wire
[14], [15]

(18)

where represents the incident or impressed electric field
and

(19)

is the free-space Green’s function. Now suppose we define the
source-point coordinates of any -torus knot to be

(20a)

(20b)

(20c)

with the corresponding field-point coordinates defined as

(21a)

(21b)

(21c)

The set of knot parameterizations given in (20) and (21)
may be used to obtain expressions for the unit vectors, which
are tangent to the curve of these knots. A useful form of these
expressions was found to be

(22a)

(22b)

where

(22c)

(22d)
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(22e)

(22f)

(22g)

(22h)

(22i)

(22j)

(22k)

(22l)

Equations (20) and (21) may also be used to prove that the
following relationship holds for -torus knots:

(23a)

where

(23b)

(23c)

(23d)

(23e)

(23f)

(23g)

(23h)

(23i)

Substituting (22a)–(22b) and (23a)–(23c) into (18) results
in an EFIE of the form

(24a)

where represents the current distribution on the surface
of a particular -torus knot and

(24b)

is the kernel of the integral equation. It is possible to further
simplify the EFIE given in (24) by evaluating the derivatives
which appear in the expression for the kernel (24b). This leads
to the result

(25a)

where

(25b)

is a dimensionless form of the kernel in which

(25c)

and

(25d)

The dependence upon the knot parameters of (25c) and (25d) is
implicit. However, explicit representations of these equations
may also be found which are given by

(26a)
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(26b)

Finally, by using (23e) together with (20a)–(20c) and
(21a)–(21c), the remarkable fact that

(27)

can easily be shown. This suggests that the knotted wire
kernel (25b) will be nonsingular provided . A useful
interpretation of the quantity found in (27) is that it
represents the radius of the wire used to construct the knotted
antenna or scatterer. Therefore, numerical solution of the EFIE
given in (25a) should yield accurate results for thin wire torus
knots which satisfy the condition .

The availability of the EFIE derived here is important for
several reasons including the fact that it provides the basis for
the development of accurate computational electromagnetics
modeling techniques for knotted wires. Conventional method
of moments (MoM) techniques generally approximate curved
wires by a series of piecewise-linear wires, which can lead
to inaccuracies in the modeling results, especially for wires
which are highly looped or knotted. This new EFIE provides
an alternative to the traditional approaches by allowing a MoM
formulation to be developed, which is specifically tailored to
the analysis of knotted wires. More accurate results could be
obtained, for instance, by solving the knotted wire EFIE using
either an entire domain or a curved basis function subdomain
MoM formulation.

III. SPECIAL CASES

A. Small Knot Approximation

Simple closed-form expressions are derived in this section
for the far-zone electromagnetic fields of electrically small
torus knots. Suppose we let where , then
we may write (16b) as

(28)

For sufficiently small values of, (28) may be approximated
by

(29)

Fig. 8. The radiation resistance versus radius for an electrically small trefoil
knot antenna.

The current distribution on an electrically small torus knot may
be assumed to be uniform, i.e. where is con-
stant. Hence, under these conditions, the far-zone expressions
for and given in (17a) and (17b), respectively, reduce to

(30a)

(30b)

Next, by substituting (29) into (30) and performing the re-
quired integration, we arrive at the following closed-form
small-knot approximations:

(31a)

(31b)

which are valid provided and . We note here
that for the electrically small knot, does not depend on the
parameter . However, if higher order terms are considered in
the expansion for then the vector potential expressions
that result will be valid for knots of larger size and, under
these conditions, will depend on bothand . Finally, the
far-field representations for small knots associated with (31)
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(a)

(b)

(c)

Fig. 9. (a) Top and (b), (c) side views of a thin wire model for the trefoil
knot shown in Fig. 3.

may be obtained directly from (14). The resulting closed-form
expressions are

(32a)

(32b)

(32c)

Fig. 10. Backscatter cross section versus frequency for the trefoil knot
illustrated in Fig. 9(a). A linearly polarized plane wave is assumed to be
incident on the knot traveling in the positivez direction with the electric
field parallel to thex axis or they axis. The backscatter cross section versus
frequency for a circular loop in thex-y plane is also shown for comparison
purposes.

Fig. 11. Backscatter cross section versus frequency for the trefoil knot
illustrated in Fig. 9(b). A linearly polarized plane wave is assumed to be
incident on the knot traveling in the positivey direction with the electric field
parallel to thex axis. The backscattering cross section versus frequency for
a circular loop in thex-y plane is also shown for comparison purposes.

(32d)

(32e)

(32f)

where and . It is interesting to note that
(32a)–(32f) are equivalent to the far-fields, which would be
produced by an electrically small circular loop (canonical
unknot) with an effective radius and turns ratio given by

(33a)

(33b)
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Fig. 12. Backscatter cross section versus frequency for the trefoil knot
illustrated in Fig. 9(c). A linearly polarized plane wave is assumed to be
incident on the knot traveling in the positivey direction with the electric field
parallel to thez axis.

This also suggests that the radiation resistance for a small
torus knot will have the form

(34)

B. The Canonical Unknot

It was pointed out in Section II-A that the canonical unknot
may be considered as a special limiting case of a torus knot.
In particular, the canonical unknot is obtained as a degenerate
form of a torus knot when and . Hence, for this
special case, the general vector potential expressions for the

-torus knots derived in (12a)–(12c) will reduce to

(35a)

(35b)

(35c)

where

(35d)

These are, as expected, the well-known results for a circular
loop antenna of radius [16].

IV. RESULTS

A plot of the radiation resistance as a function of radius for
an electrically small trefoil knot antenna is shown in Fig. 8.
This plot is based on (34) for the special case where
and . Under these conditions, (34) reduces to the
following simple formula:

(36)

(a)

(b)

(c)

Fig. 13. (a) Top and (b), (c) side views of a thin wire model for the
(1; 2)-torus knot shown in Fig. 5.

Fig. 8 demonstrates that a small trefoil antenna would have a
relatively low value of radiation resistance. However, (33b)
suggests that the radiation resistance may be increased by
considering antennas, which possess a higher degree of knot-
tedness or, more generally, a larger value of.

Next, we turn our attention to an investigation of the
scattering properties of knots. Top and side views of the trefoil
shown in Fig. 3 have been included for visualization purposes
in Fig. 9. The trefoil is assumed to be constructed from
perfectly conducting wire with an arc length of 41.416 mm
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(a) (b)

(c) (d)

(e) (f)

Fig. 14. Backscatter cross section versus frequency for the(1; 2)-torus knot illustrated in Figs. 5 and 13. A linearly polarized plane wave is assumed to be
incident on the knot traveling in the: (a) positivez direction with the electric field parallel to thex-axis; (b) positivez direction with the electric field parallel
to the y axis; (c) positivex-direction with the electric field parallel to they-axis; (d) positivex direction with the electric field parallel to thez axis; (e)
positivey direction with the electric field parallel to thex axis; and (f) positivey direction with the electric field parallel to thez axis.

and a radius of 5.528 10 mm. The scattering cross section
of the knot may be calculated from

(37)

where and represent the incident and scattered electric
fields, respectively [17]. A linearly polarized plane wave
with an intensity of 1 V/m is assumed to be incident on
the knot. The corresponding scattered field is determined
using a numerical analysis procedure based on the method
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of moments. This approach is followed in order to calculate
the backscatter cross section as a function of frequency for a
particular knot using (37).

Fig. 10 shows a plot of the backscatter cross section versus
frequency for the trefoil knot illustrated in Figs. 3 and 9. The
frequency range chosen for this example is between 5 GHz and
25 GHz. The curves of backscattering cross section shown
in Fig. 10 were produced by an incident linearly polarized
plane wave propagating along the positivedirection with
the electric field parallel to the axis [see Fig. 9(a)]. We note
that for the trefoil an identical backscattering signature would
be obtained if the electric field was parallel to theaxis rather
than the axis. The solid curve shown in Fig. 10 represents
the total backscatter cross section which is denoted by .
The dotted and dashed curves, on the other hand, represent
the copolarized backscatter cross section and the cross-
polarized backscatter cross section respectively. For
the case considered in Fig. 10, the total backscatter cross
section is essentially the same as the copolarized backscatter
cross section.

The resonance frequencies for a -torus knot may be
estimated by using the approximate formula

for (38)

where represents the arc length of the knot as defined in
(5b). Note that these are the same resonances that would
be associated with a circular loop (canonical unknot) having
a circumference equal to . The trefoil knot considered
in Figs. 3 and 9 has an arc length of 41.416 mm, which
corresponds to one wavelength at 7.24 GHz. This fact is
substantiated by (38) which suggests that the first resonance
should occur at a frequency of approximately GHz.
Fig. 10 demonstrates that a sharp resonance is indeed present
at this frequency. However, it is interesting to note that in
this case, all higher order resonances are suppressed. The
backscatter cross section for a circular loop in the– plane
with a 41.416-mm circumference ( GHz) is also
shown in Fig. 10 for comparison purposes. From this we see
that the trefoil knot has a much sharper first resonance than
does its circular loop counterpart.

Next, suppose we consider a linearly polarized plane wave,
which is incident on the trefoil knot along the positive
direction with the electric field parallel to the axis [see
Fig. 9(b)]. A plot of the backscatter cross section as a function
of frequency for this case is shown in Fig. 11. The backscatter
cross section that would result from a circular loop of equiv-
alent arclength contained in the– plane is also shown in
Fig. 11. Again, we find that the first resonance of the trefoil
is relatively sharp in contrast to the loop. There are also some
noticeable differences in the behavior of the higher order
resonance.

The last case that will be examined for the trefoil involves
its response to an incident linearly polarized plane wave
propagating along thedirection with the electric field parallel
to the axis [see Fig. 9(c)]. Curves of the backscatter cross
section for this case are shown in Fig. 12. It is important to
point out that under these circumstances, the incident field

would not couple to a circular loop lying in the– plane.
On the other hand, Fig. 12 shows evidence of significant field
coupling to the trefoil. This leads to the conclusion that the
trefoil knot experiences a strong field coupling for all possible
polarizations and angles of incidence, whereas the circular loop
does not.

A three-dimensional view of a -torus knot is shown
in Fig. 5. The geometry for this particular knot can be gen-
erated by pinching and twisting a circular loop. Therefore,
by definition, the -torus knot is an example of a trivial
knot. The top and side views of this knot are shown in
Fig. 13. The various curves contained in Fig. 14 document
how the backscatter cross section of the -torus knot
depends on frequency, polarization and angle of incidence.
The backscattering results shown in Fig. 14 were produced
by a -torus knot with a wire arc length and radius of
41.416 mm and 5.528 10 mm, respectively.

V. CONCLUSION

Knot electrodynamics is an emerging area of research that
seeks to combine aspects of knot theory with Maxwell’s theory
of electromagnetism. The primary purpose of this paper has
been to establish a rigorous mathematical foundation from
which analysis techniques may be developed and applied
toward the study of knot electrodynamics problems. This
paper focuses on the particular class of knots, known as
torus knots, which have interesting topological as well as
electromagnetic properties. These knots derive their name
from the fact that they reside on the surface of a solid
torus and, consequently, useful parametric representations for
them may be found. A new knotted wire EFIE was derived
based on the available parameterizations for -torus knots.
These parameterizations were also used to derive expressions
for the electromagnetic fields radiated by -torus knots;
including simple closed-form representations for the far-fields
of electrically small knots. Finally, several examples were
presented and discussed which illustrate the unique radiation
and scattering properties associated with various -torus
knots.
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