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On Iterative Approaches for Electromagnetic
Rough-Surface Scattering Problems
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Abstract—Iterative techniques developed for solving general
systems of linear equations have been applied to systems re-
sulting from electromagnetic rough-surface scattering problems.
Recently used iterative procedures that model the multiple scat-
tering of the electromagnetic energy are shown to be mathe-
matically equivalent to the application of stationary iterative
procedures to the system of equations resulting from the standard
moment method. Convergence difficulties that are sometimes
observed with these approaches are due to the inherent limitations
of the stationary techniques. The performances of the station-
ary approaches are compared with that of several conjugate-
direction-based nonstationary iterative procedures through the
application to a series of scattering surfaces that yield rapidly
changing conditioning of the moment-method interaction matrix.
The stationary algorithms give the quickest convergence when
applied to the systems with the best conditioning, but the non-
stationary techniques prove much more robust in other more
ill-conditioned situations.

Index Terms—Convergence of numerical methods, electromag-
netic scattering by rough surface.

I. INTRODUCTION

T HE primary factor limiting the use of the moment method
in the calculation of electromagnetic scattering from

rough surfaces is that a linear system of equations must
be solved to yield the currents induced on the scatterer.
Direct solution methods such as LU decomposition are
operations, where is the number of unknowns in the
discretized representation of the the surface current. As the
size of the scatterer increases the computational expense of
these operations becomes prohibitive. This has led to the
development of iterative schemes that solve for the surface
current in steps.

Two different general approaches have recently been fol-
lowed. In the first the surface current is initially approximated
by the Kirchhoff (or physical optics) approximation applied
to the incident field [1]–[3]. The current is then updated by
applying the surface boundary conditions to the scattered field
associated with the previous iteration’s current. Using the
“extended Kirchhoff approximation” approach of Liszka and
McCoy [4], Ericson and Lyzenga [3] update all the current
values from the previous iteration simultaneously. Kapp and
Brown [1] and Holliday et al. [2] use the updated current
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values as they become available, choosing the ordering of the
updates to follow the multiple scattering paths on the surface.
This led to Kapp and Brown and Hollidayet al. terming the
functionally identical approaches the method of ordered multi-
ple interactions (MOMI) and the forward–backward technique,
respectively. These approaches have proven very effective in
solving the systems that result from magnetic field integral
equation (MFIE) treatments of scattering from perfectly elec-
trically conducting (PEC) surfaces that are single valued and
rough in one dimension. However, Tran [5] applied MOMI to
scattering from a two-dimensionally rough surface and found
that the convergence of the iterative process depended strongly
on the order in which the current elements were updated (with
some orderings leading to divergence), and observed a failure
to converge in one case even when optimal ordering was used.
Torrungrueng and Newman [6] introduced a technique that
is similar to MOMI, termed the multiple sweep method of
moments (MSMM), and found that it yields rapid convergence
when applied to scattering from a resistively loaded flat plate
but diverges when applied to a PEC closed cylinder. Adams
and Brown [7] then applied MOMI to a circular cylindrical
scatterer and showed that it diverges independent of the
interaction ordering used when a straight MFIE formulation is
used and the cylinder is more than a few tenths of a wavelength
in radius.

The second class of iterative approaches used to solve
moment method systems of linear equations are nonstation-
ary techniques. These are extensions of the standard conju-
gate gradient method that were developed to solve general
asymmetric/non-Hermitian systems of equations [8] and there-
fore do not attempt to model the physical multiple scatterings
of the electromagnetic energy directly. Examples of this are
given by Smithet al. [9], who used the biconjugate gradient
(BICG) method, Cao and Macaskill [10], who used a general-
ized conjugate gradient (GCG) method, Donohueet al. [11],
who used a preconditioned multigrid generalized conjugate
residual (GCR) approach, and Chen [12], who used the quasi-
minimum residual method (QMR).

In this paper, the performance of iterative techniques in
solving moment-method systems of linear equations under
various conditions is examined. We first show that the ex-
tended Kirchoff approximation and MOMI algorithms are
mathematically equivalent to well-known stationary iteration
methods applied to the moment-method linear system of
equations. The performance of these approaches and that of
several state-of-the-art nonstationary iteration algorithms that
have been developed in the last several years for general
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complex systems is examined through the application to a
series of surface profiles that approximate breaking water
waves. Considerations for the choice of an iterative routine
for general scattering problems are then discussed.

II. I TERATIVE TECHNIQUES

Iterative solution techniques are applied to systems of the
form

(1)

For electromagnetic scattering problems is the
interaction matrix and is the -length source vector, both
of which result from the discretization of an appropriate field
integral equation. When an MFIE is used for rough surface
scattering, is equal to the physical optics (or Kirchhoff
approximation) current without correction for shadowing.
is a length vector that represents the unknown (discretized)
current to be found. For simplicity we will assume that the
diagonal elements of are unity. This is naturally occurring
in many formulations where the MFIE is applied to a perfectly
conducting scattering surfaces [1], [3] and any system of the
type in (1) can be cast into this form using point-Jacobi
preconditioning, where the rows of and the corresponding
entries of are normalized to the value of the diagonal entry
in that row [8].

A. Stationary Algorithms

Stationary iterative schemes to solve (1) can be written in
the form [13]

(2)

where

(3)

(4)

is the identity matrix, is the “splitting” matrix, and is
the “iteration” matrix. Different definitions of define the dif-
ferent stationary iteration techniques. Recursively substituting
for the terms in (2) gives the iteration scheme

(5)

Stationary iterative algorithms have received considerable
attention the literature [14]–[17]. They were formulated pri-
marily under the assumption that the iteration matrixis
symmetric (in the real case) or Hermitian (in the complex case)
[18]. Equation (2) results from the Neumann series expansion

(6)

so a necessary and sufficient condition for the convergence of
stationary iterative procedures is that the eigenvalues of the
iteration matrix lie within the unit circle on the complex
plane [14]. Following are two definitions of that lead to
iterative schemes used in the literature recently.

1) Jacobi Iteration: The most straightforward iteration
scheme is Jacobi iteration given by [13]

(7)

where is a diagonal matrix of the same diagonal elements
as . ( for the preconditioned system considered here.)
Substituting into (2) therefore gives

(8)

Letting the initial guess and using gives

(9)

Equation (9) is the iterative scheme given in (4) of Liszka and
McCoy [3]. The extended Kirchhoff approximation approach
is therefore mathematically equivalent to Jacobi iteration of the
moment-method system using a zero vector as the initial guess.
Tran [5] has shown conditions under which this approach does
not converge.

2) SSOR Iteration:Symmetric successive over-relaxation
(SSOR) iteration is obtained by setting [13]

(10)

where is the “relaxation factor” and and
are lower and upper triangular matrices, respectively, found
from . Setting , again using ,
and substituting into (5) yields

(11)

Letting the initial guess simplifies this to

(12)

Following Kapp and Brown [1] we now use

(13)

Substituting (13) into (12) gives

(14)

This is the iteration scheme given in (17) of Kapp and Brown
[1]. MOMI (and, hence, forward–backward) is therefore math-
ematically equivalent to SSOR with a relaxation factor of

and a zero initial guess vector.
Note that changing the order that the surface interactions

incorporated in the interaction matrix ultimately changes
the eigenvalues of the iteration matrix. The convergence
of the SSOR is therefore strongly affected by ordering used,
as demonstrated by Tran [5]. Modification of the relaxation
factor has similar effects.
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B. Nonstationary Algorithms

Nonstationary iterative procedures are those that gener-
ate a new iteration matrix for each iteration. Here
we consider four nonstationary algorithms that are mem-
bers of the general conjugate direction class of algorithms
developed for asymmetric/non-Hermitian matrices: biconju-
gate gradient–stable (BICGSTAB), quasi-minimum residual
(QMR), general minimal residual (GMRES), and conjugate
gradient–normal equation (CGNR). Discussion of the theory
behind these algorithms is beyond the scope of this paper,
but overviews of each are included in Barrettet al. [18].
BICGSTAB and QMR address numerical instability and nu-
merical breakdown limitations of the original biconjugate
gradient algorithm, respectively, but neither guarantee con-
vergence in exact arithmetic for general matrices. GMRES is
an orthogonalizing Krylov-subspace algorithm that guarantees
convergence in iterations for general systems. However,
the increasing memory requirements and computational over-
head with each iteration require that GMRES be periodically
restarted, so convergence may never be achieved. CGNR is
the application of the standard conjugate gradient approach to
the system

(15)

where the superscript implies the Hermitian transpose,
and was one of the first nonstationary algorithms applied to
general electromagnetic scattering problems [19]. Since
is always Hermitian positive definite CGNR is guaranteed to
converge after iterations in exact arithmetic. However, the
convergence can be quite slow and roundoff errors may lead
to instabilities and even divergence.

The BICGSTAB routine used in this work was written by
the authors from the complex form of the algorithm given
by Gutknecht [20]. QMR iteration was performed using the
routine ZUCPL from the QMRPACK numerical library [21].
The GMRES implementation of [22] was used. The CGNR
routine was also written by the authors [23].

III. T ESTS

The iterative algorithms were tested and compared through
the application to linear systems resulting from the discretiza-
tion of the MFIE when applied to scatterers that are uniform in
one dimension. These tests were limited to perfectly conduct-
ing scatterers, corresponding to the original implementation of
the stationary algorithms to surface scattering problems. Issues
concerning the discretization of the integral equations appro-
priate for finite-conductivity scatterers are briefly discussed in
[24] and will be addressed in greater depth in a subsequent
paper.

A. Convergence History

The convergence history of the algorithms was determined
by examining the normalized residual of the solution given by

(16)

where is the residual vector. This bounds the
“backward error” of the system and corresponds to “Stopping

Criterion 2” of Barrettet al. [8] and “Stopping Test (10)” of
Oppeet al. [18]. It is a desirable stopping criterion since the
solution errors are tied directly to the accuracy of the elements
in the interaction matrix and source vector . That is, if
the elements are accurate tosignificant figures, the iteration
should be stopped when as any further iterations
will not improve the overall solution of the original integral
equation [8], [22]. Also, the residual can always be directly
calculated to insure that cumulative roundoff errors are not
affecting any quantities propagated by the iteration algorithms
[17], [22], [25].

A zero vector was used as the starting guess for each
algorithm, both to match the implementations of the stationary
techniques as described in Section II-A and also to eliminate
the overhead of calculating the initial residuals in the nonsta-
tionary techniques. As described above, point-Jacobi precondi-
tioning was used to normalize the systems to unity diagonals in
all cases. Of the more sophisticated preconditioning algorithms
available [8], [18], incomplete factorization is designed for
use with sparse matrices. SSOR preconditioning is intended
for symmetric matrices and can lead to worse performance if
the optimal relaxation factor is not used (which is generally
difficult to find). It also makes interpretation of the residuals
errors less straightforward and is not well suited to parallel
implementation. The banded preconditioner used by Donohue
et al. [11] was introduced for use with single-valued surfaces
where strong interactions between surface points occur only
over limited ranges and is also poorly suited to parallel
processing. We therefore rely on point-Jacobi preconditioning.
This actually has very little effect on the convergence of the
techniques since the diagonals are already very nearly equal
in the discretized MFIE formulations used here.

A fair comparison of the algorithms requires that each iter-
ation plotted require approximately the same work. With the
dense matrices that result from the moment method the most
time consuming step is a matrix-vector multiply. BICGSTAB,
QMR, and CGNR each require two matrix-vector multiplies
per iteration to find both the updated solution vector and the
residuals needed to perform the stopping test. We use this as
the baseline for an iteration in the performance comparison.
Jacobi iteration requires a single matrix-vector multiply to
yield the updated solution and the residual for the previous iter-
ation can then be found with only an additional vector–vector
multiply (a computationally inexpensive step compared to a
matrix–vector multiply with dense matrices). Also, the initial
Jacobi iteration requires no work since the the starting vector is
set to zero [as shown in (9)], offsetting the fact that the residual
lags the solution by one iteration. Two Jacobi iterations are
therefore presented as a single baseline iteration in the figures
that follow. GMRES also requires one matrix–vector multiply
per iteration, but the number of vector–vector operations
and the overall storage needed to form the Krylov subspace
increases with the iteration number and can actually become
overwhelming if too large a restart is used. Freund and
Nachtigal [26] state that the work and storage required for two
iterations of GMRES is similar to that of one iteration of QMR
if GMRES is restarted every 20 iterations. We therefore use
that restart and count two iterations of GMRES as one iteration
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of the other nonstationary techniques. (Note that the restart of
20 refers to single iterations, so in the plotted data that follows
the restart occurs after every tenth baseline iteration.)

Comparison of SSOR with the other techniques is more
problematic since it is not formulated in terms of matrix–vector
multiplies. The MOMI implementation of SSOR allows the
solution vector to be updated each iteration by two back-
substitution operations that give the same number of scalar
floating-point multiplies as a single matrix–vector multiply
[1] However, since back-substitution requires that the results
of the previous steps be used immediately it can take much
longer to evaluate than a matrix–vector multiply in vector or
parallel processing environments [8], [27], [28]. Moreover,
SSOR/MOMI does not directly yield the residuals needed to
perform the stopping test. Calculating the residuals requires
an additional back-substitution operation [35]. Work can be
avoided in some problems by not performing a stopping test
on every iteration [27], but this results in extra iterations being
unnecessarily performed in others. In the plots that follow,
we count one iteration of SSOR/MOMI as being equal to
one baseline iteration and point out that the actual time spent
per iteration might be more or less than the other techniques,
depending upon the specific algorithmic implementation, com-
putational environment, and problem being solved.

Stationary techniques have sometimes been stopped based
on the the norm of the iterative update vector [2], [5], [7]

(17)

This does not make an acceptable stopping test for general
scattering problems. Hageman and Young [16] term the
pseudoresidual vector and show that the error in the solution
is related to the pseudoresidual by

(18)

For general problems, one cannot predict the value of
a priori. Calculating it directly is an opera-

tion and methods to estimate the value from the iteration
history that are valid for symmetric/Hermitian positive defi-
nite interaction matrices fail for general asymmetric matrices
[16]. (Even with symmetric positive definite matrices these
techniques require that the relaxation factorbe adaptively
modified, which is not permitted by MOMI, and no test may
be made for several iterations until initial transients have
died out.) Quite small pseudoresiduals can be associated with
large solution errors. Higham [17] bases stopping of stationary
algorithms on the true residuals of (16) while acknowledging
that it may require additional work each iteration to compute
them directly and Oppeet al. [18] state that this is the safest
stopping test for general asymmetric problems, so that is what
we use here.

B. Wave Surfaces

The iterative algorithms were tested using the linear systems
derived from the application of the MFIE to the surface profiles
shown in Fig. 1. These profiles were generated by the LONG-
TANK numerical code [29] and represent the time evolution
of a breaking water wave. The first 16 of these profiles were

(a)

(b)

(c)

Fig. 1. Breaking wave profiles generated by the LONGTANK algorithm. (a)
Full wave profiles. (b) Expanded view of crests. (c) Weighted wave including
infinite extension (dashed).

previously treated in [30]. The MFIE was discretized using
the hybrid MM/GTD approach described in [31] and [32];
details of that procedure are not repeated here. A raised-cosine
weighting was applied to each surface from 50 to 100 cm
behind the maximum displacement and from 100 to 150 cm
in front of the maximum displacement to smoothly taper
the displacement to zero. Infinite planar extensions sloping
downward at 20 to horizontal were then connected to the
front and back ends to allow the application of the MM/GTD
technique. The connection was made using curved surface
sections with radii of 30 cm that yielded a continuous slope,
thereby limiting diffraction. The final surface corresponding
to wave 7 is shown in Fig. 1(c).

The tests were performed using an electromagnetic fre-
quency of 10 GHz with illumination from the right at a
grazing angle (from horizontal) of 5. Moment-method pulse
basis functions of 0.05 in length, where is the elec-
tromagnetic wavelength, were needed to find the low cross
sections resulting from the earliest waves and at the deepest
multipath interference nulls of the later waves [32] to within
0.5 dB, giving approximately 2000 unknowns for each surface.
Also, the same accuracy required that the matrix elements
representing the interactions of the GTD basis functions on the
infinite extensions with the other surface points be numerically
integrated to a normalized tolerance of 10. We therefore also
use that for the convergence value for the normalized residual
as explained in Section III-A. All results are presented for
vertically polarized illumination. Similar results were obtained
at horizontal polarization with an MFIE formulation.

The convergence histories of the iterative algorithms for
five of the wave profiles are plotted in Fig. 2. Examining
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(a) (b)

(c) (d)

(e) (f)

Fig. 2. Convergence history of iterative techniques applied to surface profiles of Fig. 1. Every other iteration of Jacobi and GMRES are plotted and counted
to give per-iteration workloads approximately equal to those of the other stationary techniques. (a) Wave 7. (b) Wave 13. (c) Wave 15. (d) Wave 16.
(e) Wave 17. (f) Legend. See text for SSOR/MOMI workload.

wave 7 in Fig. 2(a), SSOR/MOMI gives extremely rapid
convergence, reaching after only two iterations.
GMRES and Jacobi both require five baseline iterations to
reach the same convergence level, and BICGSTAB needs
seven. QMR is significantly slower, not reaching a suitable
residual until after 11 iterations, and CGNR is slower still,
needing 32 iterations. This performance is typical for waves
1–8. However, for waves beyond 8 the number of iterations
required by the stationary techniques increases continuously.
By wave 13 [shown in Fig. 2(b)], SSOR/MOMI has lost
much of its advantage, reaching 10after six iterations and

Jacobi iteration now needs 14 iterations. The nonstationary
approaches converge only slightly more slowly than with the
earlier waves. With wave 15 SSOR/MOMI needs 16 iterations
and Jacobi diverges. At wave 16 the SSOR/MOMI residuals
oscillate but eventually converge to the desired level after
24 iterations. When applied to wave 17 SSOR/MOMI gives
reducing residuals for the first three iterations, but it then
diverges. Both SSOR/MOMI and Jacobi also diverge with
wave 18 (not shown). The nonstationary algorithms are much
less affected by the changing wave profile, with GMRES,
BICGSTAB, QMR, and CGNR requiring 7, 10, 15, and 41
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TABLE I
BASELINE ITERATIONS REQUIRED TO REACH A NORMALIZED RESIDUAL OF 10�4.
A DASH INDICATES THAT THE ALGORITHMS DIVERGED (SS= SSOR/MOMI, GM
= GMRES, JA= Jacobi, BI= BICGSTAB, QM= QMR, CG= CGNR)

iterations respectively required to reach the desired normalized
residuals with wave 17. Table I gives the number of iterations
required to reach for each algorithm applied to
all of the wave profiles.

As an additional test, the scattering from a radius,
infinitely long, perfectly conducting circular cylinder was
considered. This, of course, is not a rough-surface scattering
problem, nor is the MFIE formulation optimal [7], but it does
allow the performance of the algorithms to be benchmarked
under extremely difficult conditions. The radius was chosen
to be away from internal resonances so the discretized MFIE
leads to the correct currents. (A combined electric/magnetic
field integral equation (CFIE) formulation would eliminate
the effects of these resonances [33].) Basis functions of

in length were found to be sufficient in this case,
yielding a system of 1257 unknowns. The iteration histories are
shown in Fig. 3. Here, both SSOR/MOMI and Jacobi iteration
diverge immediately. BICGSTAB, QMR, CGNR, and GMRES
iteration all give slow convergence over the first 50 or so
iterations, but the residuals for the first three rapidly drop after
that. BICGSTAB gives the most unstable convergence at two
points giving increasing residuals for 5–10 iterations before
suddenly dropping back to its earlier level. GMRES continues
its slow convergence beyond beyond 50 baseline iterations,
reaching a normalized residual of 10 after 100 iterations
(the maximum we allowed).

IV. DISCUSSION AND RECOMMENDATIONS

The results demonstrate both the strengths and weaknesses
of stationary iterative procedures. SSOR/MOMI is clearly
well suited to MFIE formulations of scattering from one-
dimensionally rough conducting surfaces that are single valued
and and perfectly conducting, requiring less than half the
number of iterations needed by any other technique. This
results because the MFIE is a second-type integral equation,
giving large diagonal elements in the interaction matrix and
the one-dimensional single-valued roughness of the surface
minimizes the coupling between spatially separated points
yielding small off-diagonal elements. Stationary procedures
are particularly well suited to this type of system (and,

Fig. 3. Normalized residuals for conducting cylinder scattering at vertical
polarization. Every other iteration of Jacobi and GMRES are plotted and
counted to give per-iteration workloads approximately equal to those of the
other stationary techniques. The legend is given in Fig. 2.

in fact, a sufficient (although not necessary) condition for
the convergence of Jacobi and SSOR is a diagonally dom-
inant matrix [14]. However, stationary iterative procedures
are inherently not robust, which can lead to convergence
problems when the scattering geometry leads to less than
ideally conditioned interaction matrices. This is demonstrated
by the later breaking-wave profiles of Fig. 1. The stationary
techniques quickly lose their rapid convergence characteris-
tics when the wave becomes multivalued, resulting because
strong interactions between nearby elements lead to large off-
diagonal terms and eventually diverge with waves 17 and
18. The results of Tran [5] show that an MFIE treatment
of two-dimensionally rough single-valued surfaces can also
lead to less than optimally conditioned interaction matrices,
as evidenced by the dependence of convergence on the order
in which the interactions are mapped and the failure of
SSOR/MOMI to converge for any ordering in one case. Due to
the relatively slow convergence in the best conditioned cases
and divergence under conditions where all other techniques
converge the use of Jacobi iteration is not recommended for
scattering problems.

Based on these results we recommend that nonstationary
iterative procedures be considered for use with general scat-
tering problems. The inherent robustness of these techniques
allow their convergence speeds to slow only a small amount
through geometry changes that transitioned the stationary
techniques from very rapid convergence to divergence. They
also have the added advantage that, unlike SSOR, their con-
vergence properties are independent of the ordering used
when forming the interaction matrix. Also, since they depend
upon matrix–vector multiplies rather than back-substitution to
perform the iterations they are well suited to parallel process-
ing. The nonstationary techniques presented here have been
implemented using the message-passing interface (MPI) [34]
to distribute the matrix–vector multiply operation across five
workstations with no interprocessor communication except to
distribute the initial and final vector elements. This yields
nearly optimal improvement in speed despite the fact that the
workstations are connected by a standard 10-Mb/s EtherNet
link. The primary disadvantage of the nonstationary techniques
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is, of course, that they require more iterations to converge in
the best conditioned cases. This can be of significant concern
in some cases, such as if the interaction matrix does not fit
within available memory and the individual elements must be
recalculated each time they are used. (The MM/GTD approach
used here is relatively memory efficient since single basis
functions are used on surface sections that extend to infinity,
so the cost of matrix–vector multiplies are typically small
compared to the initial time needed to fill the interaction
matrix.) The relative merits of more rapid convergence under
good conditioning versus the need for robustness in more
difficult situations must be carefully weighed when an iterative
technique is chosen.

In examining Fig. 2, it would appear that GMRES is the
most suitable nonstationary algorithm for surface scattering
calculations. It provided the most rapid convergence of the
nonstationary techniques for every breaking-wave case and the
convergence properties are quite stable. However, the cylinder
case in Fig. 3 shows that GMRES can perform very poorly in
particularly difficult cases if too short a restart period is used.
In rerunning this case with the restart increased to 50 baseline
iterations the GMRES residuals dropped rapidly after about 30
iterations (similar to that of the other nonstationary techniques
at 60 iterations), giving by far the quickest convergence in this
case. Unfortunately, increasing the restart requires both more
storage and more work per iteration, so it is difficult to predict
the optimal restarta priori. A better choice for a general
nonstationary iterative scheme then might be BICGSTAB. Its
convergence was typically only a little slower than GMRES
for the same number of matrix–vector multiplies, but it is
not limited by a restart in the particularly difficult situations.
Despite its name, BICGSTAB appears to give somewhat
unstable convergence for some of these problems (particularly
the cylinder), and it must be stressed that BICGSTAB is not
guaranteed to converge (although we have not encountered
a situation where it does not converge). Although QMR
converges at approximately 50% the speed of BICGSTAB
for these problems, it is formulated to avoid the breakdowns
to which BICGSTAB is susceptible so might be considered
in cases where robustness over greatly varying conditions
is of primary importance and additional operations can be
tolerated. As CGNR converges very slowly, we suggest that
it should only be considered in cases where the other routines
fail and the guaranteed convergence (in exact arithmetic) is
needed.

Finally, we note that Pinoet al. [35] have recently in-
troduced a generalized self-interaction matrix to the original
forward–backward implementation of SSOR that allows it to
converge with reentrant surfaces of the type of waves 17 and
18. However, this approach requiresa priori knowledge of the
surface so that the self-interaction matrix can be tailored to
the specific reentrant section and introduces additional work
per iteration that can become overwhelming is the reentrant
section is too large. It cannot be used effectively with closed-
body problems of the type considered in Fig. 3. Also, Adams
and Brown [7] have shown that use of a combined integral
equation formulation can lead to very rapid convergence
with SSOR/MOMI for certain two-dimensional closed-body

problems if the relative weightings of the magnetic and electric
field kernels are properly chosen. This approach is not as
effective for the wave surfaces of Fig. 1. The rapid conver-
gence depends upon the two kernel contributions canceling
over many off-diagonal terms to improve the conditioning of
the interaction matrix. This is achievable for fairly uniform
scatterers where many off-diagonals are similar, but with the
wave profiles a weighting that cancels the strong interactions
of elements near the crest leads to large off-diagonals in other
regions. A nonlinear multivariate optimization routine was
used to find a complex weighting that allowed SSOR/MOMI
to converge to 10 in 15 iterations for the CFIE applied
to horizontally polarized scattering from wave 18. However,
many hundreds of iterations were needed to identify this best
weighting. (The best purely imaginary weighting found only
allowed convergence to the same level after 61 iterations.)
The resulting interaction matrix actually had an average of all
off-diagonal values (normalized with respect to the magnitude
of the diagonals) that was more than an of order magnitude
larger than that of the original MFIE formulation, so the
weighting could not be found by simply minimizing the off-
diagonals. GMRES and BICGSTAB converged in 8 and 11
iterations, respectively, when applied to the original MFIE in
this case.

V. CONCLUSIONS

The performance of several stationary and nonstationary
iterative techniques in the solving of the system of linear
equations that result in electromagnetic scattering problems
has been examined. Recently used iterative techniques that
model the multiple scattering of the incident electromagnetic
energy using the Kirchhoff approximation reduce mathemat-
ically to the application of stationary iterative techniques
to the discretized integral equation describing the surface
current. Convergence problems sometimes associated with
these approaches are due to inherent limitations of the sta-
tionary techniques. Nonstationary conjugate-direction-based
iteration techniques offer a more robust alternative that can
converge reasonably rapidly to the correct solution in ill-
conditioned situations where the stationary approaches either
converge slowly or diverge. However, stationary techniques
give quickest convergence with the best conditioned systems.
The choice of iteration schemes to be used depends upon the
need for more rapid convergence in the well-conditioned cases
versus robustness in more difficult situations.
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