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On lterative Approaches for Electromagnetic
Rough-Surface Scattering Problems

James C. Westylember, IEEE and J. Michael Sturmylember, IEEE

Abstract—lterative techniques developed for solving general values as they become available, choosing the ordering of the
systems of linear equations have been applied to systems re-ypdates to follow the multiple scattering paths on the surface.
sulting from electromagnetic rough-surface scattering problems. This led to Kapp and Brown and Hollidast al. terming the
Recently used iterative procedures that model the multiple scat- f . Il identical h h hod -f dered i
tering of the electromagnetic energy are shown to be mathe- un(?t'ona Y' entical approaches the methoa of ordere mu ti-
matically equivalent to the application of stationary iterative Ple interactions (MOMI) and the forward-backward technique,
procedures to the system of equations resulting from the standard respectively. These approaches have proven very effective in
moment method. Convergence difficulties that are sometimes solving the systems that result from magnetic field integral

observed with these approaches are due to the inherent limitations ; : }
of the stationary techniques. The performances of the station- equation (MFIE) treatments of scattering from perfectly elec

ary approaches are compared with that of several conjugate- trically conducting (PEC) surfaces that are single valued and
direction-based nonstationary iterative procedures through the rough in one dimension. However, Tran [5] applied MOMI to
application to a series of scattering surfaces that yield rapidly scattering from a two-dimensionally rough surface and found
_?_rr]]angin? conditic:ningthof the_mortlp]ent-melt(ho? interaction mat”ﬁ(- that the convergence of the iterative process depended strongly
e e e o et e o, O the oder n which the current elements were updated (it
stationary techniques prove much more robust in other more SOMe orderings leading to divergence), and observed a failure
ill-conditioned situations. to converge in one case even when optimal ordering was used.

Index Terms—Convergence of numerical methods, electromag- ?I'orr.un.grueng and Newman [6] |ntr0duced a technique that
netic scattering by rough surface. is similar to MOMI, termed the multiple sweep method of
moments (MSMM), and found that it yields rapid convergence
when applied to scattering from a resistively loaded flat plate
but diverges when applied to a PEC closed cylinder. Adams

HE primary factor limiting the use of the moment metho@nd Brown [7] then applied MOMI to a circular cylindrical
in the calculation of electromagnetic scattering fromscatterer and showed that it diverges independent of the

rough surfaces is that a linear system of equations musteraction ordering used when a straight MFIE formulation is
be solved to yield the currents induced on the scattereised and the cylinder is more than a few tenths of a wavelength
Direct solution methods such as LU decomposition@{&/®) in radius.
operations, whereN is the number of unknowns in the The second class of iterative approaches used to solve
discretized representation of the the surface current. As tim@ment method systems of linear equations are nonstation-
size of the scatterer increases the computational expenseagf techniques. These are extensions of the standard conju-
these operations becomes prohibitive. This has led to thete gradient method that were developed to solve general
development of iterative schemes that solve for the surfagsgsymmetric/non-Hermitian systems of equations [8] and there-
current in O(N?) steps. fore do not attempt to model the physical multiple scatterings

Two different general approaches have recently been fof the electromagnetic energy directly. Examples of this are
lowed. In the first the surface current is initially approximategiven by Smithet al. [9], who used the biconjugate gradient
by the Kirchhoff (or physical optics) approximation appliedBICG) method, Cao and Macaskill [10], who used a general-
to the incident field [1]-[3]. The current is then updated biged conjugate gradient (GCG) method, Donotetieal. [11],
applying the surface boundary conditions to the scattered figltho used a preconditioned multigrid generalized conjugate
associated with the previous iteration’s current. Using thesidual (GCR) approach, and Chen [12], who used the quasi-
“extended Kirchhoff approximation” approach of Liszka anghinimum residual method (QMR).
McCoy [4], Ericson and Lyzenga [3] update all the current |n this paper, the performance of iterative techniques in
values from the previous iteration simultaneously. Kapp ar@lving moment-method systems of linear equations under
Brown [1] and Hollidayet al. [2] use the updated currentyarious conditions is examined. We first show that the ex-

_ _ _ _ tended Kirchoff approximation and MOMI algorithms are
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complex systems is examined through the application to al) Jacobi Iteration: The most straightforward iteration
series of surface profiles that approximate breaking watstheme is Jacobi iteration given by [13]

waves. Considerations for the choice of an iterative routine _

¢ ; : Q=D 7)

or general scattering problems are then discussed.

where D is a diagonal matrix of the same diagonal elements
asZ. (D = I for the preconditioned system considered here.)

) _ ] ) Substituting into (2) therefore gives
Iterative solution techniques are applied to systems of the

Il. ITERATIVE TECHNIQUES

form FY =T - 2)i" + 5. (8)
o Letting the initial guesg‘® = 0 and usingA = I — Z gives
Zj = j*. (1) g guesg . ga g
v =j
For electromagnetic scattering problem#sis the N x N j<"1) :Aj<"> 4 )

interaction matrix ang?* is the N-length source vector, both

of which result from the discretization of an appropriate fielEquation (9) is the iterative scheme given in (4) of Liszka and
integral equation. When an MFIE is used for rough surfaddcCoy [3]. The extended Kirchhoff approximation approach
scattering,j* is equal to the physical optics (or Kirchhoffis therefore mathematically equivalent to Jacobi iteration of the
approximation) current without correction for shadowing. moment-method system using a zero vector as the initial guess.
is a lengthV vector that represents the unknown (discretizedyan [5] has shown conditions under which this approach does
current to be found. For simplicity we will assume that theot converge.

diagonal elements ao¥ are unity. This is naturally occurring 2) SSOR lIteration:Symmetric successive over-relaxation
in many formulations where the MFIE is applied to a perfectl{fSSOR) iteration is obtained by setting [13]

conducting scattering surfaces [1], [3] and any system of the w 1 1
<—D - L) D™ <—D - U)
w

type in (1) can be cast into this form using point-Jacobi Q= 7w

(10)
preconditioning, where the rows d&f and the corresponding “

entries ofj¢ are normalized to the value of the diagonal entijyNerew is the “relaxation factor’(0 <w <2) and L and U
in that row [8]. are lower and upper triangular matrices, respectively, found

from Z = D — L — U. Settingw = 1, again usingD = I,
and substituting into (5) yields

O = (1= (1= Uy - 7O

A. Stationary Algorithms

Stationary iterative schemes to solve (1) can be written in

n—1
the form [13] n Z - (I-U)'(I-L)'Z]"

j("+1) — GJ(") +k (2) m=0 )
(I -U)HI - L) (12)
where
Letting the initial guesg(® = 0 simplifies this to
G=I-Q 'z ®3) et
k=Q 5" @) =Y - -0)T - L))"
m=0
I is the identity matrix,Q is the “splitting” matrix, andG is x (I —U)™YI - L) 5" (12)

the “iteration” matrix. Different definitions of? define the dif- )
ferent stationary iteration techniques. Recursively substitutifi@!lowing Kapp and Brown [1] we now use

for the 7™ terms in (2) gives the iteration scheme Z=1-L-U=({I-L)Y(I-U)-LU. (13)
n-l Substituting (13) into (12) gives
j(TL+1) — GTLJ'(O) + Z G"E. (5) o
m=0 j(n—l—l) —_ Z [(I _ U)—I(I _ L)—ILU]’rn
Stationary iterative algorithms have received considerable m=0 )
attention the literature [14]-[17]. They were formulated pri- x (I -U)"YI-L) 5. (14)

marily under the assumption that the iteration mat#xis .I_His is the iteration scheme given in (17) of Kapp and Brown

symmetric (ln the real case) or Hermitian (in the c.omplex ca§§l . MOMI (and, hence, forward—-backward) is therefore math-
[18]. Equation (2) results from the Neumann series expansi . . ) .
ematically equivalent to SSOR with a relaxation factor of

I-G)*r=I+G+G+G*+--. (6) w = 1and a zero initial guess vector.

Note that changing the order that the surface interactions
so a necessary and sufficient condition for the convergenceirforporated in the interaction matri¥ ultimately changes
stationary iterative procedures is that the eigenvalues of tte eigenvalues of the iteration mat®. The convergence
iteration matrixG lie within the unit circle on the complex of the SSOR is therefore strongly affected by ordering used,
plane [14]. Following are two definitions af that lead to as demonstrated by Tran [5]. Modification of the relaxation
iterative schemes used in the literature recently. factor w has similar effects.
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B. Nonstationary Algorithms Criterion 2" of Barrettet al. [8] and “Stopping Test (10)” of

Nonstationary iterative procedures are those that gen&lePeetal. [18]. Itis a desirable stopping criterion since the
ate a new iteration matrix@™ for each iteration. Here solution errors are tied directly to the accuracy of the elements

we consider four nonstationary algorithms that are merft the interaction matrixz and source vecto*. That is, if
bers of the general conjugate direction class of algorithrf2€ €léments are accuratestcsignificant figures, the iteration
developed for asymmetric/non-Hermitian matrices: biconj§ould be stopped whefiy <107 as any further iterations
gate gradient—stable (BICGSTAB), quasi-minimum residuiill ngt improve the overall solupon of the original mtt_agral
(QMR), general minimal residual (GMRES), and conjugat%q“at'on [8], [22]. Also, the residual can always be directly
gradient-normal equation (CGNR). Discussion of the theop}alculated to insure that cumulative roundoff errors are not
behind these algorithms is beyond the scope of this papgp‘ecting any quantities propagated by the iteration algorithms
but overviews of each are included in Barrett al. [18]. [17], [22], [25]. ,

BICGSTAB and QMR address numerical instability and nu- A Z€ro vector was used as the starting guess for each
merical breakdown limitations of the original biconjugaté!gorithm, both to match the implementations of the stationary
gradient algorithm, respectively, but neither guarantee cd§chniques as described in Section II-A and also to eliminate
vergence in exact arithmetic for general matrices. GMRESs tlae overhead of calculating the initial residuals in the nonsta-
an orthogonalizing Krylov-subspace algorithm that guarante#@nary techniques. As described above, point-Jacobi precondi-
convergence inV iterations for general systems. Howevertioning was used to normalize the systems to unity diagonals in
the increasing memory requirements and computational ovéf-cases. Of the more sophisticated preconditioning algorithms
head with each iteration require that GMRES be periodicalfj¥@ilable [8], [18], incomplete factorization is designed for
restarted, so convergence may never be achieved. CGNRI§§ With sparse matrices. SSOR preconditioning is intended

the application of the standard conjugate gradient approacH® Symmetric matrices and can lead to worse performance if
the system the optimal relaxation factor is not used (which is generally

Hope  oH difficult to find). It also makes interpretation of the residuals
Z72j=2"] (15) errors less straightforward and is not well suited to parallel
where the superscriptf implies the Hermitian transpose,implementation. The banded preconditioner used by Donohue
and was one of the first nonstationary algorithms applied & al. [11] was introduced for use with single-valued surfaces
general electromagnetic scattering problems [19]. Siite%  where strong interactions between surface points occur only
is always Hermitian positive definite CGNR is guaranteed tover limited ranges and is also poorly suited to parallel
converge afterV iterations in exact arithmetic. However, theprocessing. We therefore rely on point-Jacobi preconditioning.
convergence can be quite slow and roundoff errors may leditlis actually has very little effect on the convergence of the
to instabilities and even divergence. techniques since the diagonals are already very nearly equal
The BICGSTAB routine used in this work was written byin the discretized MFIE formulations used here.
the authors from the complex form of the algorithm given A fair comparison of the algorithms requires that each iter-
by Gutknecht [20]. QMR iteration was performed using thation plotted require approximately the same work. With the
routine ZUCPL from the QMRPACK numerical library [21]. dense matrices that result from the moment method the most
The GMRES implementation of [22] was used. The CGNBme consuming step is a matrix-vector multiply. BICGSTAB,

routine was also written by the authors [23]. QMR, and CGNR each require two matrix-vector multiplies
per iteration to find both the updated solution vector and the
. TESTS residuals needed to perform the stopping test. We use this as

The iterative algorithms were tested and compared throufile baseline for an iteration in the performance comparison.
the application to linear systems resulting from the discretizdacobi iteration requires a single matrix-vector multiply to
tion of the MFIE when applied to scatterers that are uniform ¥ield the updated solution and the residual for the previous iter-
one dimension. These tests were limited to perfectly condu@tion can then be found with only an additional vector—vector
ing scatterers, corresponding to the original implementation @ultiply (a computationally inexpensive step compared to a
the stationary algorithms to surface scattering problems. Issifeatrix—vector multiply with dense matrices). Also, the initial
concerning the discretization of the integral equations appracobi iteration requires no work since the the starting vector is
priate for finite-conductivity scatterers are briefly discussed fi¢t to zero [as shown in (9)], offsetting the fact that the residual
[24] and will be addressed in greater depth in a subsequét@s the solution by one iteration. Two Jacobi iterations are

paper. therefore presented as a single baseline iteration in the figures
that follow. GMRES also requires one matrix—vector multiply
A. Convergence History per iteration, but the number of vector-vector operations

The convergence history of the algorithms was determin@dd the overall storage needed to form the Krylov subspace

by examining the normalized residual of the solution given Hfjcreéases with the iteration number and can actually become
7] overwhelming if too large a restart is used. Freund and

Ry = — (16) Nachtigal [26] state that the work and storage required for two

1%l iterations of GMRES is similar to that of one iteration of QMR
wherer = j* — Zj is the residual vector. This bounds théf GMRES is restarted every 20 iterations. We therefore use
“backward error” of the system and corresponds to “Stoppirgat restart and count two iterations of GMRES as one iteration
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of the other nonstationary techniques. (Note that the restart of 40
20 refers to single iterations, so in the plotted data that follows
the restart occurs after every tenth baseline iteration.) £ 20
Comparison of SSOR with the other techniques is moreﬁ
problematic since it is not formulated in terms of matrix—vector
multiplies. The MOMI implementation of SSOR allows the _5g . ‘ s ‘
solution vector to be updated each iteration by two back- 100 -80 -60 -40 -20 0 20 40 60 80 100
substitution operations that give the same number of scalar
floating-point multiplies as a single matrix—vector multiply
[1] However, since back-substitution requires that the results 20
of the previous steps be used immediately it can take much
longer to evaluate than a matrix—vector multiply in vector or __
parallel processing environments [8], [27], [28]. Moreover, E 10
SSOR/MOMI does not directly yield the residuals needed to >
perform the stopping test. Calculating the residuals requires
an additional back-substitution operation [35]. Work can be oL

avoided in some problems by not performing a stopping test 30 20 10 X(cm‘; 10 20
on every iteration [27], but this results in extra iterations being
unnecessarily performed in others. In the plots that follow, (b)

we count one iteration of SSOR/MOMI as being equal to
one baseline iteration and point out that the actual time spent \_/\__/——\
per iteration might be more or less than the other techniques, ©

depending upon the specific algorithmic implementation, com-

putational environment. and problem being solved Fig. 1. Breaking wave profiles generated by the LONGTANK algorithm. (a)
. . ’ . ) Full wave profiles. (b) Expanded view of crests. (c) Weighted wave including
Stationary techniques have sometimes been stopped basgfte extension (dashed).

on the the norm of the iterative update vector [2], [5], [7]

160V = []7"FY — 5@ (17) previously treated in [30]. The MFIE was discretized using
) . the hybrid MM/GTD approach described in [31] and [32];
This does not make an acceptable stopping test for gen&jalyiis of that procedure are not repeated here. A raised-cosine
scattering problems. Hageman and Young [16] téfm the weighting was applied to each surface from 50 to 100 cm

pseudoresidual vector and §h0w that the error in the squtiBthnd the maximum displacement and from 100 to 150 cm
is related to the pseudoresidual by in front of the maximum displacement to smoothly taper
||e(")|| = ||j _j(n)” <|(G-n= ||5(n)||. (18) the displacement to zero. Infinite planar extensions sloping
downward at 20 to horizontal were then connected to the
For general problems, one cannot predict the valug@® front and back ends to allow the application of the MM/GTD
I)~!| a priori. Calculating it directly is anO(/N?®) opera- technique. The connection was made using curved surface
tion and methods to estimate the value from the iteratigections with radii of 30 cm that yielded a continuous slope,
history that are valid for symmetric/Hermitian positive defithereby limiting diffraction. The final surface corresponding
nite interaction matrices fail for general asymmetric matrices wave 7 is shown in Fig. 1(c).
[16] (Even with symmetric pOSitiVE definite matrices these The tests were performed using an e|ectromagnetic fre-
techniques require that the relaxation factoibe adaptively quency of 10 GHz with illumination from the right at a
modified, which is not permitted by MOMI, and no test mayjrazing angle (from horizontal) of°5 Moment-method pulse
be made for several iterations until initial transients havgysis functions of 0.05\ in length, where is the elec-
died out.) Quite small pseudoresiduals can be associated Wiﬁ}nagnetic wavelength, were needed to find the low cross
large solution errors. Higham [17] bases stopping of stationagéctions resulting from the earliest waves and at the deepest
algorithms on the true residuals of (16) while acknowledgingyitipath interference nulls of the later waves [32] to within
that it may require additional work each iteration to compufg g dB, giving approximately 2000 unknowns for each surface.
them directly and Oppet al. [18] state that this is the safestNSo' the same accuracy required that the matrix elements

stopping test for general asymmetric problems, so that is Whahresenting the interactions of the GTD basis functions on the
we use here. infinite extensions with the other surface points be numerically

integrated to a normalized tolerance of *0We therefore also
B. Wave Surfaces use that for the convergence value for the normalized residual
The iterative algorithms were tested using the linear syste@s explained in Section IlI-A. All results are presented for
derived from the application of the MFIE to the surface profilegertically polarized illumination. Similar results were obtained
shown in Fig. 1. These profiles were generated by the LON@t horizontal polarization with an MFIE formulation.
TANK numerical code [29] and represent the time evolution The convergence histories of the iterative algorithms for
of a breaking water wave. The first 16 of these profiles wefee of the wave profiles are plotted in Fig. 2. Examining
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Fig. 2. Convergence history of iterative techniques applied to surface profiles of Fig. 1. Every other iteration of Jacobi and GMRES are plotteigténd cou
to give per-iteration workloads approximately equal to those of the other stationary techniques. (a) Wave 7. (b) Wave 13. (c) Wave 15. (d) Wave 16.

(e) Wave 17. (f) Legend. See text for SSOR/MOMI workload.

wave 7 in Fig. 2(a), SSOR/MOMI gives extremely rapidlacobi iteration now needs 14 iterations. The nonstationary
convergence, reachin§ < 10~* after only two iterations. approaches converge only slightly more slowly than with the
GMRES and Jacobi both require five baseline iterations ¢arlier waves. With wave 15 SSOR/MOMI needs 16 iterations
reach the same convergence level, and BICGSTAB neetsd Jacobi diverges. At wave 16 the SSOR/MOMI residuals
seven. QMR is significantly slower, not reaching a suitablescillate but eventually converge to the desired level after
residual until after 11 iterations, and CGNR is slower stilR4 iterations. When applied to wave 17 SSOR/MOMI gives

needing 32 iterations. This performance is typical for wavesducing residuals for the first three iterations, but it then
1-8. However, for waves beyond 8 the number of iteratiomtiverges. Both SSOR/MOMI and Jacobi also diverge with

required by the stationary techniques increases continuousiyave 18 (not shown). The nonstationary algorithms are much
By wave 13 [shown in Fig. 2(b)], SSOR/MOMI has lostess affected by the changing wave profile, with GMRES,
much of its advantage, reaching 10after six iterations and BICGSTAB, QMR, and CGNR requiring 7, 10, 15, and 41
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TABLE | 1
BASELINE I TERATIONS REQUIRED TO REACH A NORMALIZED RESIDUAL OF 10~ 4. R
A DASH INDICATES THAT THE ALGORITHMS DIVERGED (SS= SSOR/MOMI, GM
= GMRES, JA= Jacobi, Bl= BICGSTAB, QM = QMR, CG = CGNR)
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12 gg Fig. 3. Normalized residuals for conducting cylinder scattering at vertical

15 41 polarization. Every other iteration of Jacobi and GMRES are plotted and
16 44 counted to give per-iteration workloads approximately equal to those of the
other stationary techniques. The legend is given in Fig. 2.
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iterations respectively required to reach the desired normalizadfact, a sufficient (although not necessary) condition for
residuals with wave 17. Table | gives the number of iteratione convergence of Jacobi and SSOR is a diagonally dom-
required to reactRy = 10~* for each algorithm applied t0 inant matrix [14]. However, stationary iterative procedures
all of the wave profiles. are inherently not robust, which can lead to convergence
As an additional test, the scattering from18\ radius, problems when the scattering geometry leads to less than
infinitely long, perfectly conducting circular cylinder wasdeally conditioned interaction matrices. This is demonstrated
considered. This, of course, is not a rough-surface scatter'b”&g the later breaking-wave profiles of Fig. 1. The stationary
problem, nor is the MFIE formulation optimal [7], but it doesechniques quickly lose their rapid convergence characteris-
allow the performance of the algorithms to be benchmarkegs when the wave becomes multivalued, resulting because
under extremely difficult conditions. The radius was chos&ﬂrong interactions between nearby elements lead to large off-
to be away from internal resonances so the discretized MFé%gonal terms and eventually diverge with waves 17 and
leads to the correct currents. (A combined electric/magnetg The results of Tran [5] show that an MFIE treatment
field integral equation (CFIE) formulation would eliminateyf two-dimensionally rough single-valued surfaces can also
the effects of these resonances [33]) Basis functions |@hq to less than optimally conditioned interaction matrices,
0.05A in length were found to be sufficient in this caseas evidenced by the dependence of convergence on the order
yielding a system of 1257 unknowns. The iteration histories ag¢ \which the interactions are mapped and the failure of

shown in Fig. 3. Here, both SSOR/MOMI and Jacobi iteratio§soRr/MOMI to converge for any ordering in one case. Due to
diverge immediately. BICGSTAB, QMR, CGNR, and GMRESpe rejatively slow convergence in the best conditioned cases
iteration all give slow convergence over the first 50 or sgnq divergence under conditions where all other techniques
iterations, but the r.e5|duals for the first three rapidly drop aft@f)nverge the use of Jacobi iteration is not recommended for
tha_lt. BIQQSTAB gives the most unstable convergence at “@Eattering problems.
points giving increasing regdualsl for 5-10 iterations bgfore Based on these results we recommend that nonstationary
suddenly dropping back to its earlier level. GMRES continugg,rative procedures be considered for use with general scat-
its slow convergence beyond beyond 50 baseline iteratiofg,ing problems. The inherent robustness of these techniques
reaching a normalized residual of 1D after 100 iterations allow their convergence speeds to slow only a small amount
(the maximum we allowed). through geometry changes that transitioned the stationary
techniques from very rapid convergence to divergence. They
IV. DISCUSSION AND RECOMMENDATIONS also have the added advantage that, unlike SSOR, their con-
The results demonstrate both the strengths and weaknessggence properties are independent of the ordering used
of stationary iterative procedures. SSOR/MOMI is clearlwhen forming the interaction matrix. Also, since they depend
well suited to MFIE formulations of scattering from oneupon matrix—vector multiplies rather than back-substitution to
dimensionally rough conducting surfaces that are single valugerform the iterations they are well suited to parallel process-
and and perfectly conducting, requiring less than half theg. The nonstationary techniques presented here have been
number of iterations needed by any other technique. Thisplemented using the message-passing interface (MPI) [34]
results because the MFIE is a second-type integral equatitm distribute the matrix—vector multiply operation across five
giving large diagonal elements in the interaction matrix anslorkstations with no interprocessor communication except to
the one-dimensional single-valued roughness of the surfaiistribute the initial and final vector elements. This yields
minimizes the coupling between spatially separated pointsarly optimal improvement in speed despite the fact that the
yielding small off-diagonal elements. Stationary proceduregorkstations are connected by a standard 10-Mb/s EtherNet
are particularly well suited to this type of system (andink. The primary disadvantage of the nonstationary techniques
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is, of course, that they require more iterations to converge noblems if the relative weightings of the magnetic and electric
the best conditioned cases. This can be of significant concéield kernels are properly chosen. This approach is not as
in some cases, such as if the interaction matrix does notdifective for the wave surfaces of Fig. 1. The rapid conver-
within available memory and the individual elements must lence depends upon the two kernel contributions canceling
recalculated each time they are used. (The MM/GTD approagter many off-diagonal terms to improve the conditioning of
used here is relatively memory efficient since single badise interaction matrix. This is achievable for fairly uniform
functions are used on surface sections that extend to infinisgatterers where many off-diagonals are similar, but with the
so the cost of matrix—vector multiplies are typically smalvave profiles a weighting that cancels the strong interactions
compared to the initial time needed to fill the interactionf elements near the crest leads to large off-diagonals in other
matrix.) The relative merits of more rapid convergence undezgions. A nonlinear multivariate optimization routine was
good conditioning versus the need for robustness in mareed to find a complex weighting that allowed SSOR/MOMI
difficult situations must be carefully weighed when an iterativ® converge to 10* in 15 iterations for the CFIE applied
technique is chosen. to horizontally polarized scattering from wave 18. However,
In examining Fig. 2, it would appear that GMRES is thenany hundreds of iterations were needed to identify this best
most suitable nonstationary algorithm for surface scatterimgeighting. (The best purely imaginary weighting found only
calculations. It provided the most rapid convergence of tledlowed convergence to the same level after 61 iterations.)
nonstationary techniques for every breaking-wave case and T resulting interaction matrix actually had an average of alll
convergence properties are quite stable. However, the cylinéfrdiagonal values (normalized with respect to the magnitude
case in Fig. 3 shows that GMRES can perform very poorly #f the diagonals) that was more than an of order magnitude
particularly difficult cases if too short a restart period is usethrger than that of the original MFIE formulation, so the
In rerunning this case with the restart increased to 50 baselimeighting could not be found by simply minimizing the off-
iterations the GMRES residuals dropped rapidly after about 8¢agonals. GMRES and BICGSTAB converged in 8 and 11
iterations (similar to that of the other nonstationary techniquésrations, respectively, when applied to the original MFIE in
at 60 iterations), giving by far the quickest convergence in thibis case.
case. Unfortunately, increasing the restart requires both more
storage and more work per iteration, so it is difficult to predict
the optimal restarta priori. A better choice for a general ] )
nonstationary iterative scheme then might be BICGSTAB. Its The performance of several stationary and nonstationary

convergence was typically only a little slower than GMRE#erative techniques in the solving of the system of linear
for the same number of matrix—vector multiplies, but it jgquations that result in electromagnetic scattering problems

not limited by a restart in the particularly difficult situationsh@s been examined. Recently used iterative techniques that

Despite its name, BICGSTAB appears to give somewh&todel the multiple scattering of the incident electromagnetic
unstable convergence for some of these problems (particuldf§e"dy using the Kirchhoff approximation reduce mathemat-
the cylinder), and it must be stressed that BICGSTAB is nidlly to the application of stationary iterative techniques

guaranteed to converge (although we have not encountef@gthe discretized integral equation describing the surface
a situation where it does not converge). Although QMﬁurrent. Convergence problems sometimes associated with
converges at approximately 50% the speed of BICGSTAt[ﬁese approa_ches are due t_o inherent_limitatio_ns qf the sta-
for these problems, it is formulated to avoid the breakdowi@nary techniques. Nonstationary conjugate-direction-based

to which BICGSTAB is susceptible so might be considerdieration techniques offer a more robust alternative that can

in cases where robustness over greatly varying conditiofi@Verge reasonably rapidly to the correct solution in ill-

is of primary importance and additional operations can onditioned situations where the stationary approaches either

tolerated. As CGNR converges very slowly, we suggest tHe@nverge slowly or diverge. _However, statioqa}ry techniques
it should only be considered in cases where the other routirfi¥e auickest convergence with the best conditioned systems.
fail and the guaranteed convergence (in exact arithmetic)TiLge choice of |tergt|on schemes tp be used depe_r_1ds upon the
needed need for more rapid convergence in the well-conditioned cases
Finally, we note that Pincet al. [35] have recently in- versus robustness in more difficult situations.
troduced a generalized self-interaction matrix to the original
forward—backward implementation of SSOR that allows it to
converge with r?entrant Surfaces_ of the_type of waves 17 angh p. A. kapp and G. S. Brown, “A new numerical-method for rough-
18. However, this approach requira@priori knowledge of the surface scattering calculationdEEE Trans. Antennas Propagatol.
surface so that the self-interaction matrix can be tailored t% #'H%Fl)l'id?alylf 22, May 1990, & 3 St.Cyr, “Forward—backward: A
the specific reentrant section and introduces additional Work™ new method for computing low-grazing angle scatterin§EE Trans.
per iteration that can become overwhelming is the reentrar[lé] énfngas PrOpagaé.vg. 34, pp. 7§g—zf29, May 1296- cal iterati
. . . . [ . A. Ercson an . R. Lyzenga, errormance or a numerical Iterative

section is too large. It cannot be. used ?ﬁegtlvely with closed solution of the surface current integral equation for surfaces containing
body problems of the type considered in Fig. 3. Also, Adams  small radii of curvature,Radio Sci. vol. 33, no. 2, pp. 205-217, Mar.
and Brown [7] have shown that use of a combined integral 1998. . .
equation formulation can lead to very rapid convergenc M E G Liszka and J. J. McCoy, "Scatiering at a rough bound-

q ) . y : p g ary—extensions of the kirchhoff approximatiord,” Acoust. Soc. Amer.
with SSOR/MOMI for certain two-dimensional closed-body  vol. 71, no. 5, pp. 1093-1100, May 1982.

V. CONCLUSIONS

REFERENCES



1288

(3]

(6]

(7]

(8]

(9]

[10]

(1]

[12]

(13]

[14]
[15]
[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 47, NO. 8, AUGUST 1999

P. Tran, “Calculation of the scattering electromagnetic waves froff25] G. E. Forsythe, “Solving linear algebraic equations can be interesting,”
a two-dimensional perfectly conducting surface using the method of  Bull. Amer. Math. Sog¢.vol. 59, pp. 299-329, 1953.

ordered multiple interactionsWWaves Random Mediaol. 7, no. 3, pp. [26] R. W. Freund and N. M. Nachtigal, “QMR: A quasiminimal residual
295-302, July 1997. method for non-Hermitian linear systemsyumer. Math. vol. 60, no.

D. Torrungrueng and E. H. Newman, “The multiple sweep method of 3, pp. 315-339, 1991.

moments (MSMM) analysis of electrically large bodiet2EE Trans. [27] V. Kumar, A. Grama, A. Gupta, and G. Karyplsfroduction to Parallel
Antennas Propagatvol. 45, pp. 1252-1259, Aug. 1997. Computing: Design and Analysis of AlgorithmsRedwood City, CA:

R. J. Adams and G. S. Brown, “A combined field approach to scattering  Benjamin/Cummings, 1994.

from infinite elliptical cylinders using the method of ordered multiple[28] D. R. Kincaid and E. W. CheneyNumerical Analysis: Mathematics of

interactions,”|EEE Trans. Antennas Propagatol. 47, pp. 364-375, Scientific Computing Pacific Grove, CA: Brooks/Cole, 1991.

Feb. 1999. [29] P. Wang, Y. Yao, and M. P. Tulin, “An efficient numerical tank for
R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, nonlinear water waves, based on the multisubdomain approach with
V. Eijkhout, R. Poza, C. Romine, and H. Ban der Vdfégmplates for BEM,” Int. J. Num. Meth. Fluidsvol. 20, no. 12, pp. 1315-1336, June
the Solution of Linear Systems: Building Blocks for Iterative Methods 1995.

Philadelphia, PA: SIAM, 1994, [30] D. Holliday, L. L. DeRaad, and G. J. St-Cyr, “Sea spike backscatter
C. F. Smith, A. F. Peterson, and R. Mittra, “The biconjugate gra-  from a steepening wave|EEE Trans. Antennas Propagat.ol. 46, no.
dient method for electromagnetic scatteringEEE Trans. Antennas 1, pp. 108-113, Jan. 1998.

Propagat, vol. 38, pp. 938-940, June 1990. [31] J. C. West, “Effect of shadowing on electromagnetic scattering from
P. Cao and C. Macaskill, “Iterative techniques for rough surface  rough ocean-wave-like surfaces at small grazing angk=EE Trans.
scattering problems,Wave Motion vol. 21, pp. 209-229, 1995. Geosci. Remote Sensol. 35, no. 2, pp. 293-301, Mar. 1997.

D. J. Donohue, H.-C. Ku, and D. R. Thompson, “Application of iterativd32] J. C. West and M. A. Sletten, “Multipath EM scattering from breaking
moment-method solutions to ocean surface radar scatterifEE ocean waves at grazing incidenceRadio Sci. vol. 32, no. 4, pp.
Trans. Antennas Propagatvol. 46, pp. 121-132, Jan. 1998. 1455-1467, July 1997.

F. Chen, “The numerical calculation of two-dimensional rough surfad®3] J. R. Mautz and R. F. Harrington, “H-field, e-field, and combined-
scattering by the conjugate gradient metholhf. J. Remote Sensing field solutions for conducting bodies of revolution&rch. Elecktron.
vol. 17, no. 4, pp. 801-808, 1996. Ubertragungstechvol. 32, no. 4, pp. 157-164, 1978.

D. M. Young and T.-Z. Mai, “The search for omega,” lterative [34] W. Gropp, E. Lusk, and A. Skjellumsing MPL Cambridge, MA:
Methods for Large Linear SystenB. R. Kincaid and L. J. Hayes, Eds. MIT Press, 1994.

New York: Academic, 1990, pp. 293-311. [35] M. R. Pino, L. Landesa, J. L. Roduez, F. Obelleiro, and R. J.
R. S. VargaMatrix Iterative Analysis Englewood Cliffs, NJ: Prentice- Burholder, “The generalized forward-backward method for analyzing
Hall, 1962. the scattering from targets on ocean-like rough surfad&£E Trans.

D. M. Young, Iterative Solution of Large Linear SystemsNew York: Antennas Propagatto be published.

Academic, 1971.

L. A. Hageman and D. M. YoungApplied Iterative Methods New

York: Academic, 1981.

N. J. Higham, “Stationary iterative methods,” Atcuracy and Stability . . .

of Numerical Algorithms~ Philadelphia, PA: SIAM, 1996, ch. 16, pp. James C. West(S'81-M'82) received the B.S. degree from the University
325-343. of Oklahoma, Norman, in 1982, and the M.S. and Ph.D. degrees from the
T. C. Oppe, W. D. Joubert, and D. R. Kincaid, “NSPCG user&niversity of Kansas, Lawrence, in 1986 and 1989, respectively, all in

guide, version 1.0, a package for solving large sparse lineglectrical engineering. _ -
systems by various iterative methods,” Tech. Rep. CNA-216, From 1982 to 1984 he worked for Boeing, Wichita, KS, as an Antenna and

Center Numerical Analysis, Univ. Texas at Austin, 1988; availablEropagation Engineer and was a Graduate Research Assistant at the University
http:/Avww.netlib.orgfitpack/usernsp.tex. of Kansas Radar Systems and Remote Sensing Laboratory from 1985 to 1989.
A. F. Peterson and R. Mittra, “Iterative-based computational methodtt joined the School of Electrical and Computer Engineering, Oklahoma State
for electromagnetic scattering from individual or periodic structuresniversity, Stillwater, in 1989, and was named Associate Professor in 1993.
IEEE J. Ocean. Engvol. OE-12, pp. 458—465, Apr. 1987. He was a Visiting Scientist at the Naval Research Laboratory in Washington,
M. H. Gutknecht, “Variants of BICGSTAB for matrices with complexDC, from August 1998 through July 1999. His current research interests
spectrum,”SIAM J. Sci. Stat. Compvol. 14, no. 5, pp. 1020-1033, include computational electromagnetics applied to rough surface scattering
Sept. 1993. and synthetic aperture radar imaging of the sea surface.

R. W. Freund and N. M. Nachtigal, “QMRPACK: A package of QMR

algorithms,” ACM Trans. Math. Softwarevol. 22, no. 1, pp. 46-77,

Mar. 1996.

V. Frays®€, L. Giraud, and H. Kharraz-Aroussi, “On the influ-

ence of the orthogonalization scheme on the parallel performandeMichael Sturm (S’91-M'96) received the B.S., M.S., and Ph.D. degrees
of GMRES,” Tech. Rep. TR/PA/9807, CERFACS, 42 av. Gasin electrical engineering, all from Oklahoma State University, Stillwater, in
pard Coriolis, 31057 Toulouse Cedex 1, France, 1998; availabl®91, 1993, and 1996, respectively.

http://www.cerfacs.fr/algor/Softs/. From 1992 to 1996, he researched rough-surface scattering in his position
J. M. Sturm, “Iterative methods for solving large linear systems in thas a Graduate Research Assistant in the School of Electrical and Computer
moment method analysis of electromagnetic scattering,” Master’s thedig)gineering at Oklahoma State University. In 1995 he participated in the
Oklahoma State Univ., School Elect. Comput. Eng., Stillwater, OKAir Force Office of Scientific Research (AFOSR) Graduate Student Summer
1993. Research Program at Rome Laboratory in Bedford, MA. Since 1996, he
J. C. West, “Integral equation formulation for iterative calculation ohas been employed as a Project Engineer with Pulse Communications, Inc.
scattering from lossy rough surfaces,” froc. IEEE AP-S Int. Symp. (formerly Seiscor Technologies), Tulsa, OK.

Orlando, FL, July 1999, pp. 526-529. Dr. Sturm is a member of Tau Beta Pi and Eta Kappa Nu.



