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Development and Numerical Solution of
Integral Equations for Electromagnetic
Scattering from a Trough in a Ground Plane

William D. Wood, Jr., and Aihua W. Wood

Abstract—We develop a set of scalar integral equations that
govern the electromagnetic scattering from a two-dimensional
(2-D) trough in an infinite perfectly conducting ground plane. 2 h
We obtain accurate and efficient numerical solution to these
equations via the method of moments (MoM). Our numerical
implementation compares favorably to popular methods such as
the finite element/boundary integral (FE/BI) method, generalized
network formulation (GNF), and electric field integral equation
(EFIE) techniques.

) ) Fig. 1. The geometry of a cavity-backed aperture. The figure shows a 2-D
Index Terms—Electromagnetic scattering, ground plane. cross-sectional view, with regions and surfaces definednd o lie in the
xy-plane, and free-space comprises the half-space 0.

I. INTRODUCTION . . . .
that show these integral equations are immune to spurious

I NTEGRAL equations have been used in a variety of waygsonances.

to formulate the scattering from an indentation in a perfectly \ye organize the paper as follows. In Section I, we in-

conducting ground plane. The first and most widely used teGlpguce the geometry and define the basic quantities. In
nique, the generalized network formulation (GNF) proposed Ryction 111, we derive the scalar integral equations. Finally,

Harrington and Mautz [1], is based on the surface equivalengesections IV and V, we present our numerical implementa-
principle, in turn based on the vector Green's theorem [2]. Thg, and results and compare them to those of hybrid finite

GNF is relatively simple to derive and implement, but it SUﬁerélement/boundary integral (FE/BI), GNF, and electric field
from the problem of spurious resonances at the eigenfrequm-egrm equation (EFIE) techniques.

cies of the indentation. This phenomenon has been noted
by several authors [3]-[5]. Hansen and Yaghjian [6] stud- I
ied low-frequency scattering from a two-dimensional (2-D) _ o )
trough in a ground plane, but their results are not applicable tol "€ geometry is shown in Fig. 1. The aperture it's
resonant-sized and larger troughs. For large cavities, ray-baSegplement in thecy-plane o, the cavity surfaces, and
methods have been employed [7], [8], but are not valid féhe cavity volumeD are defined as in [11]. The subscript
resonant-sized and smaller geometries. Finally, field-iterati@@ @ quantity denotes its image across the ground plane. The
methods [9], [10] have been pursued for large cavity scatteriH§Per half-space is filled with free-space whikeis filled with
problems, but their accuracy is questionable for resonant-siZBgtérial characterized by constant scalar permittivityand
geometries. permeabll!ty/jbl. . N L

Asvestas and Kleinman [11] developed a set of coupledKnown incident fieldsk™ and H™ Impinge on theﬁopen
vector integral equations for a three-dimensional (3-D) ugavity, giving rise to the scattered fields and H=
filled cavity-backed aperture in a perfectly conducting grourghd the reflected field&™" and H™' (the fields scattered
plane. They claimed, but did not prove that these integay an unbroken ground plane). The scattered fields represent
equations are uniguely solvable at all frequencies. Recenty perturbation due to the presence of the cavity. The fields
this approach was generalized to handle cavities filled withsatisfy the same boundary and radiation conditions as in [11].
homogeneous material [12]. In this paper, we derive a relatédaddition, we note that the tangential field components are
set of coupled scalar integral equations for a material-filled 2-g®ntinuous across.
trough in a ground plane. We also present numerical resultdVe employ the half-space 3-D scalar Green's functions
defined in [11], altered for thexp(swt) time convention.
That is, Gp = G(F7) — G(#,7,) and Gy = G(F7) +
HF 7)), with G(F,7) = exp(—jkR)/(47R), and R =
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andi = zz + 4. We note that these equations are valid in

two dimensions if we make use of the identity (‘“flf[)i7g?f&@ﬁf?fffﬁ)ﬁfyh%ﬁ)

&%) e Ik R (2) B (2D) o,
PR =4—H (klg—7N)=G=2(p,0) @)

4
(y7, 27, 47) s (yss 25, 5)

where HS) is the Hankel function of the second kind and

o I (6, 25, %6)
g =7 1.

Fig. 2. A discretized trough geometry. The aperture(dashed line) is
partitioned into Ny line segments, while the trough surfase(solid line)
lll. THEORY AND APPLICATIONS is partitioned intoN2 line segments. In this figuréy; = 3 and N2 = 4.
In this section, we present our main theorems.
Theorem 1:Let V' be a cylinder parallel ta& with cross Theorem 3:Let D and A be as in Theorem 1. Then the
sectionD C R?. Assume thabD is piecewise smooth. L&t following identity holds:
be the outward unit normal vector ahD and G = GZD),

If A = A(y,2) satisfies the homogeneous wave equation  lim 7 x A"y TG #) de”
v # € D, then 77 jkDD
— = — = — 4 A g ol A =/ B = = 7 4
/@ i [Ax (VxD)+(VxA) x T dt T AR +ax | AT T, 7) de" ()
D
PIAv 1;1’(7—_»/) 7eD where the upper sign is taken#f — # from the exterior of
= {0 7¢D (2) D and the lower sign from the interior.

Proof- R ity — 0 hat# lies in th | The proof of Theorem 3 is a consequence of the theorem
roof: Restrict2’ = 0 so that# lies in theyz-plane. page 205 of [13].

Let ‘A/ - {(i’gg”(y’ ?) EﬁD’_:OéDf < oco}. Denote To apply the above theorems, we consider the cavity-backed
f=na[AxI) +(Vx A) x '] By (17) of [12],  aperture problem with the geometry of an infinite trough

X parallel toz with cross sectionD bounded byoD = c U S
v fds= )}E}éo /X oD fdt daf‘*‘/D . fdt in the yz-plane, as shown in F|g 2. Applylng Theorems 1-3
B (D,=X) to this problem, lettingA be E, H, and H™ in turn, and
_ using the boundary conditions satisfied by the fields as stated
+ /(D X / dg) =Lthtl in Section Il, we obtain
which equals the right-hand side of (2). Sindes C1(V) and z X / z X I;I(F’) -V X ﬁk:kl do+ %
G ~ 1/|z| as|z| — oo, it is easy to show thal, = I3 = 0. 4
On the Cgther hand _ ></ ax HF) -V x Ty, df
Ilz/ / fdzdx:/ / Fdo dt ey
—o0 JoD o oo = ; Lax B() fori o (5)
= — sk / ﬁ-{}ix [Vx <v/ G(?’D)dxxfﬂ
oD —o0 = =
[=S) o N N = Vv xr VT
+(V x 4) x <v/ GEP) dy ><T>} dt ”/U 2 x B { T k=k} o
= ’ k1Zy + gkoZo . = )
— gk / h- {4 x [V x (VG2 x T)] + IR L HF) - i
oD _
£ (V x A) x (VG®D) 4z x T)} df x /. o x H(7) - Tl d
= / A [A X (V xT@P)) 4+ (V x A) x T?P)] ds = jhoZoz x H™(F) for¥ € o (6)
aD
which is the left-hand side of (2) and thus completes trnd
proof. O o/ / s HY.T J
Theorem 2: Under the same conditions dil and A as in " - 2x H(T) Ll do+5
Theorem 1, the following identity holds: _
Wing 1aentity - ></ A x HF) -Taleen, df
/ it [21’ x (V x TEP)) 4 (V x A) x Fﬁ,%D)} dt s
oD ) . - 371 ax HF) fori €8 7)
= ()R x A7) FeD; () wherez, = 1/Y; = \/juiJer,i = 0,1.
0 ¥ ¢ DU We now derive scalar equations under TM polarization.
wherem = 1,2. Let E(y, z) = u(y, )& andE™(y, z) = etkoly sin+z cosb)g,

. Thg prOOf of Theorem '2 is similar to that of Theorem 1 and 1Scalar equations can be derived in a similar manner under TE polarization.
is omitted here for brevity. Here, for brevity, we only demonstrate the TM polarization.
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Then H(y,z) = —(1/5kZ)Vu x & and H™(y,z) = (y,z) coordinates and the arc length of the nodes along
Yo(—# cosf + & sinf)es*olv sinf+=z cos€) g ThenH(y,z) = the perimeter of the trough. Let there B& segments on the
—(1/3k2)Vu x & and H™(y,z) = Yo(—§ cosf + apertures and N, on S as shown in Fig. 2. We define the
% sin §)eko(y siné+= costheta) \whered is the angle between two unknowns in (10)
the positivez-axis and the propagation direction of the incident NN,
field out) _ T~ »
. ) = Z anpn(f), rlyeous, and
Correspondingly, we have an —

= 1 Ou N

N e 1 ou -

Zx H(T) = gk 1 Zy Oz * ree (8) where the pulse functiop,, (¢) is unity for¢,, < ¢ < ¢,4; and

3 x B(F) =u(@)g Peo zero elsewhere. We use the delta testing functiopg?) =
5(£—£m+(1/2)) Where£m+(l/2) = (Em—i—£m+1)/2. Thus, (10)

Zx H™([) =Yo cosfe’™V "%, Feo (9 g giscretized as
Substitute (8) and (5) to get a scalar equation. But first, we Ni+N- b1 1 M
considerV x I' = —jk(k?GT + VVGQ) for #, # € o. Note > o / G1(6, ') dt - 3 > bapall) =
Iy £

that VV @ has onlyg and z components, while x H is z n=1 " n=1
directed, so we havex H-VVG = 0,V # € 0. Thus, the left Taking the inner product with the testing functions on both

side of (5) reduces te-(k7/Z1) [op G(du/du) df g, while sides of the equation and using the sifting property of the
the right-hand side of (5) |$—k2/2Z1)uy Hence, we obtain delta function yields

8u(r) . vy _y Ni+N>
/6 D G- Ly forieo  (10) S i — = 0 a3
n=1

where G,,, = Gli=r,,, m = 0,1. Similarly, we substitute (8)
into (6) and (7) and obtain the remaining scalar equations where ,,,,, = f Gl lm1y2)) A0 andm = 1--- Ny
82(Gy — Go) Using matrix notation we construct the equation at the bottom
/ U(?')[kal — k§Go + T} d of the page. Similarly we producel, and A3 using (11)
7 4 and (12), resulting in the matrix systerdw = f where

1<1+ ) au( )_/ au(’F/) G, ds A = [Al Ao Ag]T,U, = [CL1~~~CLN1+N2 b1~~~le]T and
2 p) Oz s On 0Oz f=10[0--0 fi---fn, 0---0]%. The nonzero elements
= jko cos Qehoy’ sind for¥ € o (11) of f are found by evaluating the right side of (11) at the
match points. The matrix system may then be solved to find
and the expansion coefficientgz; } ' 7 and {b;} 70
o) , Au(r)
2 /,, g, VY da+/5 9z V. NUMERICAL RESULTS
. <n/ oG N T 3GD) ds In this section, we present some numerical results for the
Yo Oy Oz case of an unfilled cavity; that is, where, = k;. The
—1 ou(#) B first experiment is for a rectangular trough and the results
=5 “on fors e 5. (12) are compared to those from a hybrid FE/BI technique [15].
We also demonstrate the solvability of the problem using
IV. NUMERICAL SOLUTION our formulation and compared it to the GNF approach. Our

econd experiment is for a V-shaped trough and the results are

In this section, we employ the method of moments (Mo ompared to the EFIE implementation [16].

[14] to find an approximate solution to (10)—(12). Pulse-basis
functions and delta testing functions are used to reduce the
complexity of the matrix element computations.

To demonstrate the MoM implementation of our problem, We examine a rectangular trough, 1.2 m wikl®.8 m deep,
we present, without loss of generality, the approximatialuminated by a 300 MHz TM plane wave. We use ten pulses
scheme for (10). We use the nodas, z;, £;) to denote the per wavelength, resulting in a 28 28 matrix. These results

. Test Case |

1
a1 o2 v aINgdN, —3 00 o 0

1
Qg1 G2 -0 NN, 00 —3
Ay .

1
N1 N2 Tt AN N 4+N, O o - —3
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Fig. 3. Monostatic echo width vs. angle from normal for a rectangular trough 224.5 225 225.5
with depth= 0.8 and width= 1.2X. (a) TM. pol. (b) TE: pol. Echo width (b)

is in units decibels relative to a 1-m isotropic scatterer (dBm). Fig. 4. Condition number versus frequency.

are compared to the results of the FE/BI technique and g®mulation becomes very high, as shown in Fig. 4(a). In
shown in Fig. 3. contrast, the condition number for the matrix for the integral

This experiment shows an excellent agreement between g ations used here is very stable, as shown in Fig. 4(b). This
results produced by our integral equation method and thaty direct result of our method of construction, which avoids
by the hybrid FE/BI technique; however, the latter involveghe partitioning of the domain as is done in the GNF.
meshing the entire cavity area and, thus, is much more
computationally expensive than the former where only the Test case II
perimeter of the cavity is discretized. . ,

We note also that conventional integral equation based'V€ €xamine a V-shaped trough, 1.2 m wide.8 m deep,
methods used to analyze a trough in a ground plane éj}gmmated_ by a 300 MHz TM plane wave. The geometry is
based on the generalized network formulation [1] in whictjustrated in Fig. 5. _
the scattering domain is partitioned into an interior region '© Implement the EFIE method to model a geometry involv-
(the trough) and an exterior region (the half-space abol @n infinite ground plane, we employ vector background
the ground plane). An integral equation is written for eactbtraction (VBS), a standard measurement techrfiqae.
region separately and the two integral equations are coupled%?'gn a finite test b0(_jy to mimic the infinite ground plane.
enforcing field continuity across the aperture. An unfortunatd® _re_duce the scattering from the test body, a ZQDGD
byproduct of this partitioning scheme is the introductioffSiStive card of length 4 m is attached on each side of the
of spurious resonances at frequencies corresponding to Bf&fect electric conductor to form a total length of 24 m. The
cavity resonances of the interior region. At these frequenciégSUlts from both our integral equation method and the EFIE
the generalized network formulation breaks down and tfgethod are shown in Fig. 6. The oscillating effect evident in
resulting coupled integral equations are not uniquely solvab3® EF”_E approximation is a product of the m_teractlon between
In the moment method, the presence of a spurious resonaite cavity and the edge (R-cards). In particular, the method
manifests itself as an ill-conditioned impedance matrix. falls near grazing incidence due to scattering from the bottom

We now demonstrate that the integral equations (10)—(12}Vector background subtraction is a process to isolate the scattering due to
are uniquely solvable even at frequencies which are trgucomponent of a larger body. First, the complex scattered field from the larger

. . . ody with the component removed is determined. Then the complex scattered
blesome for the GNF-based methods. The interior regIoN dl4 from the larger body with the component installed is determined. The

resonant at approximately 225 MHz, corresponding to theherent difference between the two fields is attributed to the component
cutoff frequency of the TNy and TE, rectangular waveguide alone. In actuality, the difference is the sum of direct scattering by the

d N his f h diti b " component and interactions between the component and the larger body. In
modes. Near this frequency, the condition number of t ny cases, the larger body is designed to minimize these interactions relative

matrix for the interior region of the generalized networko the component scattering and so they may be neglected.
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Fig. 5. Geometry of V-shaped trough. For the reference solution based qm]
the EFIE, the ground plane is truncated. The edges of the finite ground plane
are treated with 20002/ R-Card to reduce the truncation effects.
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Fig. 6. RCS versus angle for V-shaped trough. The V-shaped trough iIIurrLiL-S]
nated by a 300-MHz plane wave incident from an angleThe reference 4]
solution is from an EFIE-based moment method code, with the grour%
plane truncated. The effects of the truncated ground plane are evident[ig]
the oscillation seen in the reference solution caused by interactions between
the trough and the truncation.

[16]

of the test fixture. However, the results from the new integral
equations correctly predict the cavity scattering for all angles.
This is due to the fact that the new integral equations are built
on the Green’s function for the conducting ground plane.

VI. CONCLUSION
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