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Radiation and Low-Frequency Scattering
of EM Waves in a General Anisotropic
Homogeneous Medium

Nickolay P. Zhuck and Abbas S. Omar

Abstract—This paper focuses on a boundless homogeneoushave been proposed in [9] and [10]. Asymptotic behavior of the
medium with general anisotropy of electromagnetic properties. far-zone field in anisotropic and bianisotropic media has been
The explicit exact form of the four spectral Green’s dyads. ¢ (k) studied, respectively, in [8], [11], [12], and [9]. Asymptotic

is obtained and a coordinate-free representation of the four calculation of Green's dvads for bianisotropic media in the
spatial Green's functions G,¢(x — x') in terms of one scalar y P

potential W (x — x') is developed. On this basis, asymptotic Source region has been accomplished in [6], [9], and [13].
expressions for the radiation field due to arbitrary sources are The present paper is an extended and modified version of
derived that show that the associated modes and the eigenmodespur reports [8], [14]. Its main contribution to prior knowledge
dgtermlne radlatlop along a smgqlar optic aX|s.and in all other is fourfold. Namely, here we:

directions, respectively. Using an integral equation approach and ] o ) )
the theory of Newtonian potential, the problem of low-frequency ~ * derive an explicit solution (13)—-(18) for the four dyadic

scattering by a small anisotropic ellipsoidal body immersed into GF's éa’g(k) in the spectral domain referring to an

an anisotropic medium is solved analytically. unbounded medium with general anisotropy of electro-
Index Terms—Anisotropic media, electromagnetic radiation, magnetic properties;

electromagnetic scattering. « give a simple method for the determination of plane-wave

modes and associated modes by knowledge of SGFs;
« obtain asymptotic expressions (49)—(51) for the radiation
field of sources of finite extent which account for the
excitation of associated modes;
illustrate the usefulness of the Green’s functions tech-
nigue by solving the scattering of a time-harmonic plane
wave from an anisotropic ellipsoid immersed into an

I. INTRODUCTION

INCE an ever-growing number of electromagnetic (EM)
roblems find their origin rooted in (bi)anisotropic media
(including crystals, plasmas, composite materials), the devel-

opment of analytical tools that facilitate the analysis of such

media is essential. In this regard, a concept of dyadic Green’s anisotropic region, under a low-frequency approximation.

functions (GF's) has proven to be especially fruitful because it_rh bl f low-f ttering i bianisotroi
offers a flexible way to relate impressed or induced sources to e problem of low-frequency scattering in a (bi)anisotropic

the EM field [1]. Exact closed-form solutions for space-domaﬁ’a‘\m”ronment has be_en attract_mg_growmg m_terest In recent
GF's of certain anisotropic media have been exhaustivelya"s d.ue to its .ObVIOUS appllcatlons for e stimating eIe.c.tr.o-
reviewed in [2], and useful analytic representations for GF _agnet.|c properties of partlc!e—laden medla_such as artificial
of gyrotropic, biaxial anisotropic, affinely transformable uni= |elec_tr|cs, pol_yme_r composites, and sea ice. For a small
axial bianisotropic, and axially bianisotropic media have pespherical or ellipsoidal scatterer, closed-form expressions for
elaborated in [3][7], respectively. the internal field and the polarizability dyads have been

Concerning the general anisotropic media, the major profgiculated, e.g., in [15]-{18], of which the last paper is the
lem here is that the space-domain GF’s are unavailable mpst relevaqt to the present work. In'Fhat paper, a simultaneous
closed form. Employing the Fourier transformation, one cdiange of field variables and spatial coordinates has been
express GF'’s as three-dimensional (3-D) Fourier integrals. 9€Vised to substitute an original quasistatic problem for an
closed-form solution for the four spectral Green's functiondnisotropic ellipsoid in an anisotropic medium by a simpler
(SGF’s) of an arbitrarily anisotropic medium has been exhi@ne involving an anisotropic ellipsoid placed in a vacuum.
ited in [8], which covers the case of bianisotropic materiaithe aforementioned transformation of variables preserves the
by allowing for spatial dispersion in the medium. Originaf€lectrostatic” makeup of both differential equations as well as

procedures for developing the SGF’s of bianisotropic medii® boundary conditions on the scatterer’s surface, a merit not
shared by the solution of [15]. An affine transfomation of [18]
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with the theory of Newtonian potentials [19], [20] allows the For spatially harmonic impressed sourcEx) = Jy(x),
present authors to lift out some of the limitations inhereMI(x) = Mg(x),
in [18]. Namely, our solution to the low-frequency scattering _ ;
is obtained under an assumption that the symmetric parts of Jie(x) = I(k) eXp(Ll? %), (4)
the ambient medium’s constitutive dyads are real positive My (x) = M(k) exp(ik - x)
definite or negative def|-n|te dyads while the Co.nSt'tUt'Ve qy.a%%mogeneity of the medium entitles us to expand the excited
themselves may be neither real, nor symmetric, nor def'n'teﬁeld E(x) = _
i ) ; x) = Ex(x), H(x) = Hx(x) as
In the present paper, a time dependere®(—iwt) is
understood and supressed throughout, geometric vectors are Ex(x) = E(k) exp(ik - x) .
in boldfaced type, dyads are accompanied by a capxa33 Hy (x) = H(k) exp(ik - x) ®)
matrix comprising elementsl;; is designated asi, a bar _ _
under the quantity signifies algebraic vectors that are regardedere anexp(ik - x) dependence has been inherited from
here as column matrices, e.gr, = [z1,22, 23], and T that in (4). In these formulak is a wavevector (arbitrary
designates the matrix or dyad transposition operation. ~ Vvectorial quantity, maybe complex-valued)k), M(k) and
E(k), H(k) are the source and the field spectral amplitudes,
respectively. The SGF4,.(k), (,&é = e,m) may be

IIl. DYADIC GREEN'S FUNCTIONS identified as the dyads relating the source amplitudes to the
FOR AN ANISOTROPIC MEDIUM field amplitudes, viz.
A. Basic Definitions B(k) = Gee(k) - I(k) + G (k) - M(K) ©)
H(k) = Gpe(k) - J(k) + G (k) - M(k).

We shall start with the excitation problem in an unbound
dielectric-magnetic homogeneous medium bestowed withSpace-domain GF’s are expressible through SGF’s as 3-D
anisotropy and dissipative losses. Maxwell's equations feburier integrals
the EM field vectorsE(x) and H(x) in such medium read as

A Gue(x —x') = (2m) 73 / Plexplik - (x — x)]Gre(k). (7)
V x H(x) + ikoé - B(x) = —J(x)

04 (1) Here, the 3-D Fourier integrals should be interpreted in the
V x B(x) — ikofi - H(x) = __WM(X)_ spirit of generalized functions theory sin€.(k), Gynm (k)

¢ do not vanish ag — +oo—cf. later (13). Also, the singu-

larities of é,,;;‘ (k) are presumed to occur at complex locations
ue to dissipative losses, artificial if necessary, of the medium
nder consideration.

In these equationsx is the position vectork, = w/e,
c is the speed of light in free-space, and the permittivi:g
and permeability dyads, /i when expressed in a Cartesia
coordinate system;, x2, z3 possess all nine components each o ) )
which are allowed to take complex values. B. Explicit Solution for Spectral Green’s Functions
Maxwell's equations (1) are supplemented with the absorp-In this section, we first solve fdt(k), H(k), and then find
tion condition, which requires thd(x) and H(x) vanish at the desired SGF’'s by comparing the result with (6).
infinitely remote points, viz. Inserting (4) and (5) into Maxwell’'s equations (1) leads to
equations for the field spectral amplitudes in the form

1 1
= —_— = —_— . 47
E() 0<|x|>’ H(x) 0<|x|>’ (ef = F00)- (@) ko x H(k) + koé - E(k) = ——J (k).
i (8)
This condition is known to ensure a unique solution to the k x E(k) — koo - H(k) = @M(k).
excitation problem involving lossy media and sources of ¢
compact support [21]. In [8], these equations were solved by splitting the spec-

The space-domain GF& . (x—x'), (v, & = ¢,m) yield the tral amplitudesE(k), H(k) into transverse and longitudinal
electromagnetic field&(x), H(x) in terms of sourced(x), components. Here, we adopt a more straightforward approach

M(x) as follows: which is based on the direct inversion of two uncoupled
equations forE(k) and H(k)
— 3 TA Y. / . dri
B0 = [ d%[Guntx—x) - 3(x) 700 B - — R 0
~ C
+ Gem(x — X)) - M(X')], . ; )
H(x) = / P2 [Ge(x — %) - J(x) ¢
. which are obtainable from (8) by eliminating one unknown in
+ G (x — x') - M(x)]. favor of the other. Here
Here and below, integration is performed within infinite limits ‘A/e(k) =kx it xk+kje (10)
if the domain of integration is not indicated explicitly. R.(k) = koJ(k) + k x i~ - M(k). (11)
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Expressions forV,,,(k) and R,,,(k) are formally obtainable

from (10) and (11) via the following replacemenis:« £,

J — M, M — —J; they are omitted here for the sake of

brevity.
A formal solution to (9),
Ek) = — TiadiVelle) g g
¢ det Vo.(k) (12)
4 1 d j A,rn k
H(k) = — 7 2diVinl) g0

¢ det V, (k)

can be converted into explicit expressions by standard manipu-
lations [22], [23, p. 14]. Heradj anddet denote, respectively,

the adjoint and the determinant of a dyad.
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Dpm(K) = 371 - [{AK) — K X Dep(K)] (21)
#(k) = Kei(n) ()l () + k311 (n) - (adj )
‘n x (adj i) x n. (22)

Here,n is a unit vector in the direction of vectdt, £;(n)
andy;(n) are the “longitudinal” permittivity and permeability
of a medium, and/, (n) is the identity dyad in a plane
perpendicular ton

n=k/k, (K=k- k) (23)
gn)=n-£-n (24)
ju(m)=mn-j-n
Ii(n)=1-nn. (25)

A requirement that the obtained expressionsEdk) and The expressions of (13) are valid under the restrictions that the
H(k) match to (6) leads us to an explicit determination fogystitutive dyads are nonsingular, i.det ji # 0, det 2 #£ 0,

the spectral Green’s dyads that we are seeking

A e A
Gee(k) = —————D..(k
(k) oK) (k)
A e A
Grnrn k)= _7Drnrn k
(k) oK) (k) )
A dre 4
Gern k)= —Dern k
(k) A(K) (k)
A dre A
Grne k)= _—Drne k).
(k) A(K) (k)
Here the following designations are adopted:
D..(k) = ki(det p)adjé + (k - ji - k)kk
+ k2 [(k-a-K)T —k-pk-4
+ (k- k) — [ TeA)] (14)
Dy (k) = kd(det&)adj i+ (k - € - k)kk
+ R (kB K —k-ék-6
+(k-&-k)(§—ITrd) (15)
Dern(k) = k(;QDee(k) -k x /:L_l
= kg2t -k x Dy (K) (16)
Dnle(k) = k(;Qann(k) -k x é_l
=ky 2k X Deo(K) (17)
A(k) = k§(det &)(det ) + (k- € - K)(k- fi- k)
+E}(k-&-k—k-j-kTr4) (18)
&= fi-(adjé’) - i
B=2¢ (adjfi) ¢,
4= -adjé,
§=¢" adjji (19)

Therein, I is the identity dyad andr signifies the trace of

a dyad.

One can derive, through simple manipulations, a host of
other representations fap,.(k), of which we render a few

which find application in the following analysis:

3 nn kige n)/ —nn-é
() O R

-H(k) - (adj )" - [e1(n)] — & - ]

(20)

and thatA(k) # 0. The last requirement means tHatmust
not coincide with the wavevector of a plane wave mode of the
electromagnetic field (see Section II-C).

It can be easily checked that all the preceding treatment
holds for arbitrary homogeneous medium with spatial disper-
sion as well if one viewg, [ as pseudodifferential operators
&(—iV), p(—iV) in Maxwell’s equations (1), and as functions
é(k), ii(k) of spectral parameték in the remaining formulas,
which involve the constitutive parameters. The role played by
spatial dispersion is particularly well known for magnetoactive
plasma and in crystal optics [24]. Also, a bianisotropic medium
can be regarded as a spatially dispersive medium by virtue of
Drude—Born—Fedorov constitutive relations.

C. Plane-Wave Modes and Associated Modes

Here, we determine the eigensolutions to source-free
Maxwell's equations using a SGF's technique. With this
aim we set

I = AP,
o (26)
M(k) = %A(k)Pm

where P, and P,,, are arbitrary vectors which may depend
on k and are independent &f Recalling (6) we find that (5)
take the form

Ex(x) = e(k) exp(ik - x),

, (27)
Hy (x) = h(k) exp(ék - x)

where

e(k) = Dee(k) : Pe - kODEnl(k) : Prn, (28)
h(k) = Dpum(K) - P + koDime(k) - Pe.
Let k be a root of the dispersion equation

A(k) = 0. (29)

For such value ofk, the impressed sources (4) identically
vanish by virtue of (26), (29), and (27) obey the source-
free Maxwell's equations. Thus, relations (27) yield general
representation for a plane wave mode of the EM field in an
anisotropic medium. In the following, the directianof vector
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k is taken to be prescribed = kn and (29) is viewed as an the existence of a plane wave mode (27) as well as that of an
equation ink. Its solutions are discussed in Section II-D.  associated mode (31). Unlike plane wave modes, (31) shows
Let us assume that is a multiple root of the dispersionthat in an associated mode the amplitude factors are (linear)

equation satisfying the requirements functions ofx. For a detailed examination of conditions which
DA(K) permit the existence of singular optic axis and associated
Alk) =0, —r = 0. (30) modes, an interested reader is referred to [24]. Principally, they

presuppose the presence of losses in an anisotropic medium.
According to the existing nomenclature, every direction of

n that permits a multiple root of the dispersion equation i5. Analytic Representation for Space-Domain
called an optic axis of the anisotropic medium [23, sec. 5.3%reen’s Functions

Since for conventional anisotropic media(k) is an even
function of k, for each given direction of optic axia the

opposite direction—n will be an optic axis as well [23].
Based on (30) and (26) we can show tladh (x)/8k = 0

Following the lines of [11], one readily finds from (7) and
(13) that the space-domain GF's are represented by one scalar
potential W(x — x’)

anddMk(x)/0k = 0. Performing the operatiofi/dk in (27), N1 3, explik - (x — x)]
we obtain that Wix—x) = (2m)3 /d K A(k) (36)
B (x) = 20 as follows:
ok .
[ ; ey Amiy !
= |in-x)e(k) + ag(kk)} exp(ik - x) Geclx = %) = cko Dee(=iV)W(x —x)
. A 47i A .
aHk(X) (31) G""n(x - X/) = _TDrnnl(_ZV)W(x - X/)
Hi(x) = =5, P (37)
[ éern -x') = ﬂbenl — VYW —x
) énle(x - X/) = _%an(_zv)w(x - X/)'

is a source-free solution to Maxwell's equations.
An optic axis for which an additional requirement The computation of the 3-D Fourier integral in (36) proceeds
. as follows: [9], [13], [23, p. 345], [25]. First, introduce in the
t(k) =0 (32) k space a Cartesian coordinate systemék,, ks the k3 axis

holds, is called nonsingular [22], [24]. Equations (16), (17 Which is set along a unit vector

(20), and (21) imply thae(k) = h(k) = 0 and (31) becomes X —x
a plane-wave mode Hob = —F—- (38)
Ei(x) = de(k) exp(ik - x) TheremL is th_e distance from the source poirt to the
ok observation pointx
(33)
oh(k) . /
H,(x) = P exp(ik - x). L=|x-—%| (39)
It can be readily verified that its amplitude factors are inteifthe other axeg; andk, must be perpedicular to each other
related as follows: and theks axis and are otherwise arbitrarily oriented. Second,
de(k) -1 Oh(k) change in (36) the Cartesian variablgs k-, k3 into spherical
=—— -kx ——= variablesk, 8, ¢ by letting
ok ko ok (34)
oh(k) it N de(k) ki =ksinfcosyp, ky=ksinfsingp (40)
ok ke ok ks = kcosf, d*k = sin6dkdy df.

The argument in [24] shows that for a nonsingular optic axia the resulting expression integration ovier ¢, and ¢ is
there correspond two linearly independent plane waves pre@rried out within usual limit®) < k 4+ oo, 0 < 6 < =,
agating along this axis. Their general representation derivalled 0 < ¢ < 2. Third, by recognizing that the concurrent
from equations for the transverse components of spectral figiuction of integration ovef to an intervalo < 6 < 7/2
amplitudes [8] is rendered by and the extension of ranges fbrto —oo < k < 400 do not
affect the integral involved, brin§/’ (x — x") to a form

+oo 1.2
Wi(x—x') = L/ s’ K dk e
. o . . @2m)® Js A(kn)
wherea is an arbitrarily fixed vector in a plane perpendicular *
to the optic axis. Here,n = n(#, ¢) plays the part of a position vector to a point
If the solution k to (30) does not satisfy the conditionon the spher& = {k : k? + k2 + k2 = 1} of unit radius in
(32), an optic axis is called singular [22], [24]. In this casthek space, and the exterior surface integral is performed over
e(k) # 0, h(k) # 0, and the structure of the medium permitshe hemispher& of sphereX which is seen by an observer

Ex(x) = [El(n)f_— nn-é|-a; e)fp(ik X) (35)
koHy (x) = g1(n)fi Lkxa, exp(tk - x)

ikn-(x—x") ) (41)

— o0
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when the sphere is viewed looking in the direction opposite becomes parallel to an optic axis of the medium bt )

the direction of vecton,,,. Mathematically 3., is defined by and a term in the brackets on the right of (46) tend to zero;

the requirementd =1, 0 < 8 < 7/2, 0 < ¢ < 2m. hence, a limit) — 0 has to be taken to calculate the integrand
Finally, we calculate the interior integral ovér Having properly.

regard for the respective integral in (41), one can easily verify

that the integrand has poles in the compﬂgpllane, whigh are £ Ear-Field Zone

the roots of (29) taken dt = kn. There will be four simple ] . o ]

poles atk = k;(n), (j = 1,4) if both D(n) # 0 andA(n) # 0 We shall now engage in evaluating the radiation field of

and two second-order poles at= £k, (n) if D(n) =0 but & point source with electric dipole momep_g and mggnenc

A(n) # 0. In the explicit form, one has dipole momentp,,, located at the source poist. In this case

the current distribution is given by
k172(n) = koN:t(Il)

k3 a(n) = —ki o(n) J(x) = —iwpS(x — x')
’ ’ 42 . ) (47)
_ [B(n)=£ \/D(n) “2) M(x) = —iwpmd(x —x')
N:I:(n) - A(Il)

where §(x — x’) is the Dirac delta function. Our purpose is
to calculate the EM field (3) for largé where L is defined

ka(n) = koNa(n), in (39). To this end, we insert (41) into (37) and further into
B(n) (43) (3) and in_terchangg the order of thé ) integration a}nd the
No(n) = m k integration. The integration with respect foand ¢ in the

resulting equations is carried out according to an approximate
Here and in the remainder of the present paper the brarfehmula
of the square root is defined to satisfy the requirentent

arg,/<m SO that0 < arg Ny (n), No(n) <« / F(n)eik“'(x*x,)dij
=
A(m) = (n-&-n)(n-ji-n), |
C = (det &)(det ) (44) ~ 2rF (ko) ——
2B(n) = (n-é-n)TrS—n-B-n 1 o7

ar |, dertml+0(5) @
D(n) = B*(n) — A(n)C (45)
which follows from the stationary phase method. The remain-
N4 (n) and N_(n) are the indexes of refraction in the direcing integral overk may be evaluated via conventional residue
tion n, which permits the existence of two isonormal planealculus. Then performing differentiation with respectsto
waves (i.e., the waves propagating in the same direction kuid retaining the leading terms we get:/n.,) # 0 and
having different propagation constants) ak¥ig(n) is the index A(n,;,) # 0 then

of refraction along an optic axis where the two indexes of

refraction vV, (n) and N_(n) coalesce [22], [23, sec. 5.5]. (x) ~ 1 [ (5P) s ()

We remind the reader that the aforementioned poles have 2k L.DY/2(n,y,) ¢

been presumed to lie off the real axis in the compieplane _ e(kOb) ik (o, )L]

(e.g., due to dissipative losses in the medium). Then the poles ! 1 (49)
k = k12 andk = k, will be located in the upper half and Hix)n~r ——— Th(ke")ethzma)L

k = ks, andk = —k, in the lower half of the complex =) 2/€~(2)13Dl/2(nob)[ (157)

k plane. It is important to notice that a facté?/A(kn) — h(k§P)eihr o )L]

decays ag: 2 with k¥ — 4-oc, and a termexp[ikn - (x — x')]

vanishes as: approaches infinity in the upper half of the¢ D(ngp,) = 0, A(ngp) # 0 and#(kb) = 0 then
complex k& plane becausa - (x — x') > 0 forn € %,.

This allows us to close the real-axis path of integration by pike (o)L 26(k)

an infinite semicircle in the upper half-plane and compute the E(x) =

integral via conventional residue calculus. Implementation of 2k0LA(n°b) a(on) Ok figepr

this procedure furnishes analytic representation/fgx —x’) ¢ha (o)L oh(k) (50)
that we are questing (46), shown at the bottom of the page. It H(x) ~ 2k0LA(n 2 Na(nop) Ok

should be mentioned for the sake of rigour that whenaver © ° k=kgP

/ i d¥ ikq (n)n-(x—x") iko (n)n-(x—x")
— = 1 — _ 2
Wi(x —x') @)k /E+ o [Ny(n)e N_(n)e ] (46)
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and for D(n,;,) = 0, A(ng,) # 0, #(kSP) # 0 k2 in the k space.) Let us introduce the elements of the
i (110) L constitutive dyads in this basis set ag = u; - € - u;, and
E(x) ~ — é(kgb) i =y - fi-ug, (4, k = 1,2,3). Then the application of an
2ko A(nop, ) No(no) (51) integration technique of [9] and [13] to the calculation of 3-D

eika (o)L Fourier integrals in (54) yields

~ 1. (1,0b
0G0 ~ o Vo (o 2 (2 )
. . ge,rn(x - X/)
In the following: B 1 {+1 if wy<1 and we>1 (a)
kS = k1 2(nob)non 52) T nRep(x—x) | ~-1 ifw>1 and wy<1 (b).
k2" = ko (nop)nop (55)
and é(k), h(k) are formally obtainable frone(k), h(k) in In the above
(28) after the replaceme®. — pe, P — pm.

Equation (49) describes radiation in a direction that does Re,m(x — /) = [(x = X/) - e - (x — x)]*/2 (56)
not coincide with an optic axis, whereas (50) and (51) refer to o = adj ¥ G, = adj ﬂ(S) (57)
radiation along a nonsingular optic axis and a singular optic ) _ N CIE Ypp
axis, respectively. Physical interpretation of these expressions 2(5 +é9), 2(“ +i). (58)

follows from the analysis of phase factors encountered therein

and the comparison of the vectorial structure of these equatidAghe case of the static Gf(x — x’), the quantitiesv; and
with that of eigensolutions (27), (33), and (31). The terms orz are given by
the right-hand side of (49)-(51) may be interpreted as a sum of

two “isonormal” modes, a plane wave mode, or an assomated 2(nep) = €1l texn+ \/611622 — (12 +€21)?/4 . (59)
mode, respectively, which propagate along the ray launched’? €11 — €29 — (€12 + £21)

from the source poink’ to the observation poink. Note

that (49) and (50) contain a customary factghl, pertinent Similar expressions fotw; andw, referring to the magnetic
to a spherical wave propagation. The absence of such fadtd g.,,(x — x’) are obtainable from (59) after the replacement
in (51) should be ascribed to the excitation of an associated— .

mode whose amplitude grows linearly with distangel), It can be shown that the quantities »(n.1,) remain un-
thus compensating for an algebraic de¢ayL) of a spherical changed when the triagh;, uz, and us is rotated about
wave. the uz axis. This makes clear that the obtained solution for
ge. m(x—x') is, in fact, independent upon the choice of vectors
F. Static GFs u; andu,, as should be anticipated on physical grounds. It is

Anticipating further needs, we conclude this section wit ppropriate to mention that an equivalent form of expression

- . : : & 5a) was derived earlier in [13, eq. (39)].
the explicit solutions for the quasi-static parts(x — x’) ) : oA .
and Sm(x _ X' of the electricG..(x — x') and magnetic The analysis of what physical situation stands behind al-

Gmm(x _ x') Green's dyads. The quantitied, l(x — %) ternatives (a) and (b) in (55) goes beyond the scope of the

describe the behavior of respective GF's close to the sowr():esent paper. We may, however, remark that the top (bottom)
expression on the right of (55) holds true in the case where the

point. They can be calculated from the knowledge of the 26®)

limiting values of G (k) and & (K) as k — +o0 [26] ymmetrlc part of the permittivity dy belongs to a class

Taking note of (13)6‘6% ots mam of real positive-definite (negative-definite) dyads. We note that
9 9 in the aforementioned case the permittivity dyad itself need not

N N 4 . ..
Goo(x—x') ~ So(x— x') = %LVVge(x _x'), be real, symmetric, or definite.
CRo
A . 4
Grm(x—X )& S, (x—x) = %vam(x - x'), Ill. L ow-FREQUENCY SCATTERING
0

BY AN ANISOTROPIC ELLIPSOID
(x=x") (53)

whereg. ,,(x —x’) are the static Green’s functions defined a8. Quasi-Static Approximation

, 1 5. explik - (x — x)] We here consider the problem of scattering of an elec-
ge(x—x') = (2n)3 / v k- 2.k tromagnetic wave propagating in a homogeneous anisotropic
1 explik - (x — x)] (54)  medium of permittivityé and permeabilityz, which impinges
gm(x—x) = @) /d3k k ik . on a small homogeneous anisotropic scattdrgrwith the

constitutive parameter,, fi;,, and maximum diametet. The
Following [9] and [13], it is expedient to define in the 3-Dincident fieldE;, (x), Hi,(x) is assumed to have a plane wave
space a (right-handed) basis set, us, and us = ng,, form described in Section II-D and not discussed here.
whereu; andu, are arbitrarily fixed orthonormal vectors in a In the presence of the scatterer, the total EM fiBlk),
plane perpendicular te,. (A reader must not confuse; H(x) consists of an incident field&;,(x), Hi,(x), and a
and u, for unit vectors along the coordinate axés and scattered fieldE;.(x), Hs.(x) which may be generated by
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the induced electric and magnetic currents of densities [16}, negative definite dyads. Note that the constitutive dyads
[19], [20] themselvesg and /i, may be neither real nor definite.
. A 4 Under these conditions, separate consideration in the Ap-
Jina (%) = _(fkoc/47r)({ib - F’A) E(x), (60) pendix shows that the following relations hold [14]:
Miua (%) = —(ikoe/4r)(jiy — ) - H(x)

distributed over the regiof;,. Relating the scattered field to VV | g(x—%X)d* =N,

the induced currents (60) with the help of the dyadic GF's Ve (66)
yields a system of two Lippman—Schwinger integrodifferential VY [ gm(x — %) d3 = —N,

equations. On expanding the unknowns as well as the kernels Vi

in the aforementioned equations in powersked taking (53)
into account and retaining the lowest order terms only Wgovided thatx lies inside V,. Constant dyadsNe . are

arrive at the well-known relations of quasi-statics determined by the permittivit)(Ne) or permeability(Nm)
of the ambient medium, orientation, and dimensions of the
E(O)(X) = Ein(z.) +VV- f ge(x —X')(é, — &) ellipsoid and are independent of the constitutive parameters of
Oy 137 Ve the latter. Their specification is relegated to the Appendix.
CET () & (61) Accounting of the constancy of the right-hand members
HO (x) = Hin(2,) + VV - [ gml(x — <) iy — 1) Eiu(0) andHi,(0) in (61) and (62), and making use of (66)
¢ Vi enables us to develop an explicit solution % (x) and
THO (x') 3’ 62) HO(x) in the form:
which govern the leading-order ter$® (x), H® (x) of the EO(x) = [ + N, - (& — &) - Ewn(0)
aforementioned Rayleigh series for the total EM field in the [, PR . 1
vicinity of a small scatterer. Hereg, is an arbitrarily fixed H' )(X) =LA N (o = )] Hin(0), - (x € V2).
point within ;. By allowing x to lie in V3, (61) and (62) lead (67)
to a system of two volume integrodifferential equations for the
quasistatic interior fieldE©® (x), H® (x). It is clearly seen from these expressions that to the order
adopted in (61) and (62), the interior field within the ellipsoid
B. Solution Procedure is uniform in full agreement with a previously known result

. 8].
The above formulation (61) and (62) holds for a Sma“LWith the assistance of (60), an electric dipole mompnt

scatterer of arbitrary shape. Here we restrict ourselves to tercned a magnetic dipole momept, of the scatterer defined b
case where the scatter& has the form of an ellipsoid with 9 P k. y

semiaxesa, az andag, (a1 > a2 > ag) is centered at the 1

origin of the principal framery, z2, 3, and is aligned along Pe = —— Jina(x) a3z’

coordinate axes of a local orthogonal framk z}, z4. An v (68)

equation of the domaify;, in the local frame has a canonical P = _i Mina(x) d®2’

form iw Jy,

.’L’l 2 .’L’l 2 .’L’l 2 H
<_1> + <_2> + <_3> =) A-z'<1  (63) can be written as
a1 ag as -

where A stands for a diagonal matrikiag[1/a?,1/a2,1/a2]. Pe = Ge - Ew(0),  Pm = G - Hin(0) (69)

For the sake of convenience, the paintis chosen to coincide

with a symmetry center = 0 of the ellipsoid. Orientation whereiné&. and &, are the polarizability dyads

of the ellipsoid is determined by a real orthogonal matrix

O = [ij], Which establishes a linear relati_ons_hip between G = K(éb —). [_f+ N, - (& — é)]fl

the unit coordinate vectors,;, e;, e; of the pr|n?f:|pal frame %;r (70)

and those of a local framef, e}, e}, viz. ej = ZTjk:l O;rel, G = (i — 1) - [T+ Ny - (i — )]

(j = 1,2,3). With the aid of a relation! = O" - x [27] we 4r

can write (63) in terms of the global coordinates x», z3 as _ o

andV = (47 /3)aazaz is the volume of the ellipsoid.
B(z,z)=2"-B-z<1 (64)  Once the EM field throughout the body is solved, the

B=0O-A.07 (65) Scattered fieldEq.(x) = E(x) — Ein(x), Hee(x) = H(x) —

H,,(x) can be calculated by evaluating the integrals in (61)
where B is a real symmetric positive definite matrix andand (62) using expressions for Newtonian potentials at the
B(z,z) is a correlative quadratic form. external points of an ellipsoid [28] if the observation point is

At this point we shall further assume that both the symmetrigcated in the neighborhood df, and using the asymptotic
part of the permittivityé(*) and that of the permeabilitg® formulas (49)—(51) when the observation point is located far

referring to the surrounding medium are real positive definisavay from the scatterer.
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IV. CONCLUDING REMARKS toe; =Y o_, Djre;, (j = 1,2,3). For further use, we shall
In summary, after obtaining an explicit solution (13) for thdntroduce real symmetric positive definite matrices
four spectral GF's7,¢ (k) referring to an unbounded medium R = diag[\/e3¢5, \/=5¢3, \/e5¢3) (74)

with general anisotropy of electromagnetic properties (and
spatial dispersion), we have shown that the four spatial GF's
(e (x — x') can be expressed via (37) in terms of one scalar

. , ; g .
function W.(X — x.) for_wh|ch an analytic repres_entatlon (46Mith B having the same meaning as in (64) and consider the
as a two-dimensional integral over angular variables has bee

developed. On this basis, invariant asymptotic expressio%'genvalue problem defined by
S-u=Au. (77)

(49)-(51) for the far-zone field of point sources have been
derived, with special attention being drawn to the radiation.

along optic axes. As well, a coordinate-free form (55) olf is worthwhile to remark that the matrik represents a square

the static Green’s functiom.(x — x’) has been given. As roc_:_thof a pbc:smve7$e2n|te:[hdyadr n 'tthe baS'S seﬁ;, e e?”'d
an example of application of these results, rigorous analytjc e problem (77) has three positive eigenvaliigsiz, an

solutions for the interior EM field (67) and the polarizabilities'3 24 the corresponding real eigenvectoysu,, andy; can

(70) of a small homogeneous anisotropic ellipsoid in aﬁlways be chosen to satisfy the orthogonality condition [27]

anisotropic environment have been found referring to the case v vy =6k, (G, k=1,2,3) (78)

where the symmetric parts of the permittivity and permeabilit ) . _

dyads in the ambient medium are real positive definite 8i* being the Kronecker delta. It can be verified easily that

negative definite dyads. z; = ! vy, (1=1,2,3) (79)
The emphasis of this article is put on anisotropic materials -

which are describable in terms of the electric permittivitpre the eigenvectors andl; the eigenvalues of a general

and the magnetic permeability dyadsand ji. It would be eigenvalue problem

interesting tq exten_d the present methodology to th_e case of B-z=)\w-z (80)

general bianisotropic materials whose electromagnetic proper- = =

ties are describable in terms of four constitutive dyads. Tteairthermore, due to (78) the following general orthogonality

present authors’ attempt to achieve this goal will be reportég@ndition holds:

elsewhere. Zf Wz =m. (G k=1,2,3). (81)

= QEQT (75)
= g—l .é.g—l (76)

l[wrn IRy ]

APPENDIX We shall need a real & 3 matrix Z = [z}, 25, 23] whose

. . . column j comprises vectoe ., ( = 1,2,3). Because [27,
In this Appendix we have included, for the readers’ beneﬁéeC 6 3‘1 P s ) [

an analytical scheme by which the dyaﬁ’sym in (66), (67),

and (70) can be calculated for an ellipsoidal scatterer. In the Z' - B Z = diag[\1, A2, Ag] (82)
following, only the quantityV. is considered since the solution Z" - w- Z = diag[l,1,1]
for N,, is obtained automatically by replacing in subsequent oo T
formulas the symbol of permittivity to that of permeability. the Substitution
Consulting (55) supplies us with an equality z=27-y, P é'g' (83)
/ ge(x — %) d®2’ = +(1/47)@(x). (71) carries the quadratic formB(z’,2'), andw(z — z',z — 2’)
Vi into a sum of squares
Here and in later (93), the top (bottom) sign appliesif is B(z',2') = Myl + Aauy + Asuly
a real positive definite (negative definite) dyad wz—a' z—2") =y —v)? + (g2 — 15)? (84)
®(x) / i (72) +(vs —w3)* =y — o/
X) =
v, w2(z — 2’z — ') The values\;, A», and A; will henceforth be arranged in the
wz—z z-2)=@-2) w (z-2) (73) following order:0 < A; < X2 < A3 so that the reciprocals

_ _ _ of the square roots of these eigenvalbes= 1/,/A; fulfil
and w is a shorthand notation for the matrix of a dyaghe requirement; > b, > bs > 0. By using (83) together
. = adje® in the principal framee;, e;, and e;. Note with the relations
that in view of the constraints imposed éf) the matrixw D(), o, 7)
turns out to be real, symmetric, and positive definite. D,’i,’,) =detZ

A real symmetric dyad(®) possesses three real orthonormal Y142 Y3 ) (85)
eigenvectors{, e3, ande; belonging to real eigenvalueg, (det é)Q(det 5(5)) =1
€3, and e} [27]. Sinceé® is a definite dyad, the products,e find that
eies, ele3, andeses will be positive values. LeD = [Dj] 1 Pt
stand for a 3x3 matrix which determines transition from the O(x) = _ / Y ) (86)
basis set], e3, ej to the global basis set;, e,, e; according | det E(S)| w, [y =¥l
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where
I\ 2 N2 N2
Wo=4y (2} +(2) +(2) <1 @n M
i\ by by

(2]

The above expression (86) determines the Newtonian potentig]
of an ellipsoidW;. The potential at an inner point of an
ellipsoid W, is known to be given by [28, sec. 10]

27

(4]

— Liyf — Loy — Lsy3)  (88) 8]

whereL1, L., and L3 are the geometric factors of an ellipsoid [6]
Wy with semiaxesh;, bo, b3

blbgbg / d(] . [7]
’ 2 0 (q2 + b?)f(‘])
(8]
F@) = (¢ +03) (¢ + 83) (% + 03)] 2 (90)
and Lo = b3L; + b3Lo + b3L3. When the numbers;, b,

andbs are all different, the quantities, L., and Lz may be o]
expressed in terms of incomplete elliptic integrals of the first

and second kinds [28, sec. 5]. In the particular case where[H{
least two of the said numbers coincide, the geometric factors

are expressible in terms of elementary functions [28]. 1]

On reverting via (83) to the original variables, x», and
x3, the Newtonian potential becomes [12]

) = o (Lo—2"-M_-z), (x€V) (91)

| det 5(5)| =
[13]
where

M =(z"-L-z" (92) (4

e

and L = dlag[Ll, LQ, Lg]
Finally, if we act on (91) with thé&/V operator, the ensuing [15]
expression will read

VVe(x) =

[16]

F4rN.. (93)

Here N. denotes a dyad which is characterized in the globBi"]
basis set by matrix

18
N = (18]

(dete™) ™ M (94)
This concludes the derivation 6¥.. Accounting for (93) and [19]
(71) leads us to a representation (66) that we are seeking.
[20]
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