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Radiation and Low-Frequency Scattering
of EM Waves in a General Anisotropic

Homogeneous Medium
Nickolay P. Zhuck and Abbas S. Omar

Abstract—This paper focuses on a boundless homogeneous
medium with general anisotropy of electromagnetic properties.
The explicit exact form of the four spectral Green’s dyadsĜ��(k)
is obtained and a coordinate-free representation of the four
spatial Green’s functions Ĝ��(x � x

0) in terms of one scalar
potential W (x � x

0) is developed. On this basis, asymptotic
expressions for the radiation field due to arbitrary sources are
derived that show that the associated modes and the eigenmodes
determine radiation along a singular optic axis and in all other
directions, respectively. Using an integral equation approach and
the theory of Newtonian potential, the problem of low-frequency
scattering by a small anisotropic ellipsoidal body immersed into
an anisotropic medium is solved analytically.

Index Terms—Anisotropic media, electromagnetic radiation,
electromagnetic scattering.

I. INTRODUCTION

SINCE an ever-growing number of electromagnetic (EM)
problems find their origin rooted in (bi)anisotropic media

(including crystals, plasmas, composite materials), the devel-
opment of analytical tools that facilitate the analysis of such
media is essential. In this regard, a concept of dyadic Green’s
functions (GF’s) has proven to be especially fruitful because it
offers a flexible way to relate impressed or induced sources to
the EM field [1]. Exact closed-form solutions for space-domain
GF’s of certain anisotropic media have been exhaustively
reviewed in [2], and useful analytic representations for GF’s
of gyrotropic, biaxial anisotropic, affinely transformable uni-
axial bianisotropic, and axially bianisotropic media have been
elaborated in [3]–[7], respectively.

Concerning the general anisotropic media, the major prob-
lem here is that the space-domain GF’s are unavailable in
closed form. Employing the Fourier transformation, one can
express GF’s as three-dimensional (3-D) Fourier integrals. A
closed-form solution for the four spectral Green’s functions
(SGF’s) of an arbitrarily anisotropic medium has been exhib-
ited in [8], which covers the case of bianisotropic materials
by allowing for spatial dispersion in the medium. Original
procedures for developing the SGF’s of bianisotropic media
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have been proposed in [9] and [10]. Asymptotic behavior of the
far-zone field in anisotropic and bianisotropic media has been
studied, respectively, in [8], [11], [12], and [9]. Asymptotic
calculation of Green’s dyads for bianisotropic media in the
source region has been accomplished in [6], [9], and [13].

The present paper is an extended and modified version of
our reports [8], [14]. Its main contribution to prior knowledge
is fourfold. Namely, here we:

• derive an explicit solution (13)–(18) for the four dyadic
GF’s in the spectral domain referring to an
unbounded medium with general anisotropy of electro-
magnetic properties;

• give a simple method for the determination of plane-wave
modes and associated modes by knowledge of SGFs;

• obtain asymptotic expressions (49)–(51) for the radiation
field of sources of finite extent which account for the
excitation of associated modes;

• illustrate the usefulness of the Green’s functions tech-
nique by solving the scattering of a time-harmonic plane
wave from an anisotropic ellipsoid immersed into an
anisotropic region, under a low-frequency approximation.

The problem of low-frequency scattering in a (bi)anisotropic
environment has been attracting growing interest in recent
years due to its obvious applications for estimating electro-
magnetic properties of particle-laden media such as artificial
dielectrics, polymer composites, and sea ice. For a small
spherical or ellipsoidal scatterer, closed-form expressions for
the internal field and the polarizability dyads have been
calculated, e.g., in [15]–[18], of which the last paper is the
most relevant to the present work. In that paper, a simultaneous
change of field variables and spatial coordinates has been
devised to substitute an original quasistatic problem for an
anisotropic ellipsoid in an anisotropic medium by a simpler
one involving an anisotropic ellipsoid placed in a vacuum.
The aforementioned transformation of variables preserves the
“electrostatic” makeup of both differential equations as well as
the boundary conditions on the scatterer’s surface, a merit not
shared by the solution of [15]. An affine transfomation of [18]
is always possible when the ambient medium is characterized
by the real symmetric positive definite constitutive dyads.
However, when this requirement is not fulfilled, as is typical
of lossy materials or nonreciprocal media such as magnetized
plasmas or ferrites, the said transformation cannot be accom-
plished. Applying an integral equation technique combined
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with the theory of Newtonian potentials [19], [20] allows the
present authors to lift out some of the limitations inherent
in [18]. Namely, our solution to the low-frequency scattering
is obtained under an assumption that the symmetric parts of
the ambient medium’s constitutive dyads are real positive
definite or negative definite dyads while the constitutive dyads
themselves may be neither real, nor symmetric, nor definite.

In the present paper, a time dependence is
understood and supressed throughout, geometric vectors are
in boldfaced type, dyads are accompanied by a cap, a 33
matrix comprising elements is designated as , a bar
under the quantity signifies algebraic vectors that are regarded
here as column matrices, e.g., and
designates the matrix or dyad transposition operation.

II. DYADIC GREEN’S FUNCTIONS

FOR AN ANISOTROPIC MEDIUM

A. Basic Definitions

We shall start with the excitation problem in an unbound
dielectric-magnetic homogeneous medium bestowed with
anisotropy and dissipative losses. Maxwell’s equations for
the EM field vectors and in such medium read as

(1)

In these equations, is the position vector, ,
is the speed of light in free-space, and the permittivity

and permeability dyads, when expressed in a Cartesian
coordinate system , , possess all nine components each,
which are allowed to take complex values.

Maxwell’s equations (1) are supplemented with the absorp-
tion condition, which requires that and vanish at
infinitely remote points, viz.

(2)

This condition is known to ensure a unique solution to the
excitation problem involving lossy media and sources of
compact support [21].

The space-domain GF’s , yield the
electromagnetic field , in terms of sources ,

as follows:

(3)

Here and below, integration is performed within infinite limits
if the domain of integration is not indicated explicitly.

For spatially harmonic impressed sources ,
,

(4)

homogeneity of the medium entitles us to expand the excited
field , as

(5)

where an dependence has been inherited from
that in (4). In these formulas is a wavevector (arbitrary
vectorial quantity, maybe complex-valued), , and

, are the source and the field spectral amplitudes,
respectively. The SGF’s , may be
identified as the dyads relating the source amplitudes to the
field amplitudes, viz.

(6)

Space-domain GF’s are expressible through SGF’s as 3-D
Fourier integrals

(7)

Here, the 3-D Fourier integrals should be interpreted in the
spirit of generalized functions theory since ,
do not vanish as —cf. later (13). Also, the singu-
larities of are presumed to occur at complex locations
due to dissipative losses, artificial if necessary, of the medium
under consideration.

B. Explicit Solution for Spectral Green’s Functions

In this section, we first solve for , , and then find
the desired SGF’s by comparing the result with (6).

Inserting (4) and (5) into Maxwell’s equations (1) leads to
equations for the field spectral amplitudes in the form

(8)

In [8], these equations were solved by splitting the spec-
tral amplitudes , into transverse and longitudinal
components. Here, we adopt a more straightforward approach
which is based on the direct inversion of two uncoupled
equations for and

(9)

which are obtainable from (8) by eliminating one unknown in
favor of the other. Here

(10)

(11)
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Expressions for and are formally obtainable
from (10) and (11) via the following replacements: ,

, ; they are omitted here for the sake of
brevity.

A formal solution to (9),

(12)

can be converted into explicit expressions by standard manipu-
lations [22], [23, p. 14]. Here and denote, respectively,
the adjoint and the determinant of a dyad.

A requirement that the obtained expressions for and
match to (6) leads us to an explicit determination for

the spectral Green’s dyads that we are seeking

(13)

Here the following designations are adopted:

(14)

(15)

(16)

(17)

(18)

(19)

Therein, is the identity dyad and signifies the trace of
a dyad.

One can derive, through simple manipulations, a host of
other representations for , of which we render a few
which find application in the following analysis:

(20)

(21)

(22)

Here, is a unit vector in the direction of vector,
and are the “longitudinal” permittivity and permeability
of a medium, and is the identity dyad in a plane
perpendicular to

(23)

(24)

(25)

The expressions of (13) are valid under the restrictions that the
constitutive dyads are nonsingular, i.e., , ,
and that . The last requirement means thatmust
not coincide with the wavevector of a plane wave mode of the
electromagnetic field (see Section II-C).

It can be easily checked that all the preceding treatment
holds for arbitrary homogeneous medium with spatial disper-
sion as well if one views , as pseudodifferential operators

, in Maxwell’s equations (1), and as functions
, of spectral parameter in the remaining formulas,

which involve the constitutive parameters. The role played by
spatial dispersion is particularly well known for magnetoactive
plasma and in crystal optics [24]. Also, a bianisotropic medium
can be regarded as a spatially dispersive medium by virtue of
Drude–Born–Fedorov constitutive relations.

C. Plane-Wave Modes and Associated Modes

Here, we determine the eigensolutions to source-free
Maxwell’s equations using a SGF’s technique. With this
aim we set

(26)

where and are arbitrary vectors which may depend
on and are independent of. Recalling (6) we find that (5)
take the form

(27)

where

(28)

Let be a root of the dispersion equation

(29)

For such value of , the impressed sources (4) identically
vanish by virtue of (26), (29), and (27) obey the source-
free Maxwell’s equations. Thus, relations (27) yield general
representation for a plane wave mode of the EM field in an
anisotropic medium. In the following, the directionof vector
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is taken to be prescribed: and (29) is viewed as an
equation in . Its solutions are discussed in Section II-D.

Let us assume that is a multiple root of the dispersion
equation satisfying the requirements

(30)

According to the existing nomenclature, every direction of
that permits a multiple root of the dispersion equation is

called an optic axis of the anisotropic medium [23, sec. 5.3].
Since for conventional anisotropic media is an even
function of , for each given direction of optic axis the
opposite direction will be an optic axis as well [23].
Based on (30) and (26) we can show that
and . Performing the operation in (27),
we obtain that

(31)

is a source-free solution to Maxwell’s equations.
An optic axis for which an additional requirement

(32)

holds, is called nonsingular [22], [24]. Equations (16), (17),
(20), and (21) imply that and (31) becomes
a plane-wave mode

(33)

It can be readily verified that its amplitude factors are inter-
related as follows:

(34)

The argument in [24] shows that for a nonsingular optic axis
there correspond two linearly independent plane waves prop-
agating along this axis. Their general representation derivable
from equations for the transverse components of spectral field
amplitudes [8] is rendered by

(35)

where is an arbitrarily fixed vector in a plane perpendicular
to the optic axis.

If the solution to (30) does not satisfy the condition
(32), an optic axis is called singular [22], [24]. In this case

, , and the structure of the medium permits

the existence of a plane wave mode (27) as well as that of an
associated mode (31). Unlike plane wave modes, (31) shows
that in an associated mode the amplitude factors are (linear)
functions of . For a detailed examination of conditions which
permit the existence of singular optic axis and associated
modes, an interested reader is referred to [24]. Principally, they
presuppose the presence of losses in an anisotropic medium.

D. Analytic Representation for Space-Domain
Green’s Functions

Following the lines of [11], one readily finds from (7) and
(13) that the space-domain GF’s are represented by one scalar
potential

(36)

as follows:

(37)

The computation of the 3-D Fourier integral in (36) proceeds
as follows: [9], [13], [23, p. 345], [25]. First, introduce in the

space a Cartesian coordinate system, , the axis
of which is set along a unit vector

(38)

Therein is the distance from the source point to the
observation point

(39)

The other axes and must be perpedicular to each other
and the axis and are otherwise arbitrarily oriented. Second,
change in (36) the Cartesian variables, , into spherical
variables , , by letting

(40)

In the resulting expression integration over, , and is
carried out within usual limits , ,
and . Third, by recognizing that the concurrent
reduction of integration over to an interval
and the extension of ranges forto do not
affect the integral involved, bring to a form

(41)

Here, plays the part of a position vector to a point
on the sphere of unit radius in
the space, and the exterior surface integral is performed over
the hemisphere of sphere which is seen by an observer
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when the sphere is viewed looking in the direction opposite to
the direction of vector . Mathematically, is defined by
the requirements , , .

Finally, we calculate the interior integral over. Having
regard for the respective integral in (41), one can easily verify
that the integrand has poles in the complexplane, which are
the roots of (29) taken at . There will be four simple
poles at , if both and
and two second-order poles at if but

. In the explicit form, one has

(42)

(43)

Here and in the remainder of the present paper the branch
of the square root is defined to satisfy the requirement

so that

(44)

(45)

and are the indexes of refraction in the direc-
tion , which permits the existence of two isonormal plane
waves (i.e., the waves propagating in the same direction but
having different propagation constants) and is the index
of refraction along an optic axis where the two indexes of
refraction and coalesce [22], [23, sec. 5.5].
We remind the reader that the aforementioned poles have
been presumed to lie off the real axis in the complexplane
(e.g., due to dissipative losses in the medium). Then the poles

and will be located in the upper half and
and in the lower half of the complex

plane. It is important to notice that a factor
decays as with , and a term
vanishes as approaches infinity in the upper half of the
complex plane because for .
This allows us to close the real-axis path of integration by
an infinite semicircle in the upper half-plane and compute the
integral via conventional residue calculus. Implementation of
this procedure furnishes analytic representation for
that we are questing (46), shown at the bottom of the page. It
should be mentioned for the sake of rigour that whenever

becomes parallel to an optic axis of the medium both
and a term in the brackets on the right of (46) tend to zero;
hence, a limit has to be taken to calculate the integrand
properly.

E. Far-Field Zone

We shall now engage in evaluating the radiation field of
a point source with electric dipole moment and magnetic
dipole moment located at the source point. In this case
the current distribution is given by

(47)

where is the Dirac delta function. Our purpose is
to calculate the EM field (3) for large where is defined
in (39). To this end, we insert (41) into (37) and further into
(3) and interchange the order of the integration and the

integration. The integration with respect toand in the
resulting equations is carried out according to an approximate
formula

(48)

which follows from the stationary phase method. The remain-
ing integral over may be evaluated via conventional residue
calculus. Then performing differentiation with respect to
and retaining the leading terms we get: if and

then

(49)

if and then

(50)

(46)
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and for , ,

(51)

In the following:

(52)

and , are formally obtainable from , in
(28) after the replacement , .

Equation (49) describes radiation in a direction that does
not coincide with an optic axis, whereas (50) and (51) refer to
radiation along a nonsingular optic axis and a singular optic
axis, respectively. Physical interpretation of these expressions
follows from the analysis of phase factors encountered therein
and the comparison of the vectorial structure of these equations
with that of eigensolutions (27), (33), and (31). The terms on
the right-hand side of (49)–(51) may be interpreted as a sum of
two “isonormal” modes, a plane wave mode, or an associated
mode, respectively, which propagate along the ray launched
from the source point to the observation point . Note
that (49) and (50) contain a customary factor pertinent
to a spherical wave propagation. The absence of such factor
in (51) should be ascribed to the excitation of an associated
mode whose amplitude grows linearly with distance ,
thus compensating for an algebraic decay of a spherical
wave.

F. Static GFs

Anticipating further needs, we conclude this section with
the explicit solutions for the quasi-static parts
and of the electric and magnetic

Green’s dyads. The quantities
describe the behavior of respective GF’s close to the source
point. They can be calculated from the knowledge of the
limiting values of and as [26].
Taking note of (13) one gets

(53)

where are the static Green’s functions defined as

(54)

Following [9] and [13], it is expedient to define in the 3-D
space a (right-handed) basis set, , and ,
where and are arbitrarily fixed orthonormal vectors in a
plane perpendicular to . (A reader must not confuse
and for unit vectors along the coordinate axes and

in the space.) Let us introduce the elements of the
constitutive dyads in this basis set as and

, . Then the application of an
integration technique of [9] and [13] to the calculation of 3-D
Fourier integrals in (54) yields

if and (a)
if and (b)

(55)

In the above

(56)

(57)

(58)

In the case of the static GF , the quantities and
are given by

(59)

Similar expressions for and referring to the magnetic
GF are obtainable from (59) after the replacement

.
It can be shown that the quantities remain un-

changed when the triad , , and is rotated about
the axis. This makes clear that the obtained solution for

is, in fact, independent upon the choice of vectors
and , as should be anticipated on physical grounds. It is

appropriate to mention that an equivalent form of expression
(55a) was derived earlier in [13, eq. (39)].

The analysis of what physical situation stands behind al-
ternatives (a) and (b) in (55) goes beyond the scope of the
present paper. We may, however, remark that the top (bottom)
expression on the right of (55) holds true in the case where the
symmetric part of the permittivity dyad belongs to a class
of real positive-definite (negative-definite) dyads. We note that
in the aforementioned case the permittivity dyad itself need not
be real, symmetric, or definite.

III. L OW-FREQUENCY SCATTERING

BY AN ANISOTROPIC ELLIPSOID

A. Quasi-Static Approximation

We here consider the problem of scattering of an elec-
tromagnetic wave propagating in a homogeneous anisotropic
medium of permittivity and permeability , which impinges
on a small homogeneous anisotropic scattererwith the
constitutive parameters , , and maximum diameter. The
incident field , is assumed to have a plane wave
form described in Section II-D and not discussed here.

In the presence of the scatterer, the total EM field ,
consists of an incident field , , and a

scattered field , which may be generated by
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the induced electric and magnetic currents of densities [17],
[19], [20]

(60)

distributed over the region . Relating the scattered field to
the induced currents (60) with the help of the dyadic GF’s
yields a system of two Lippman–Schwinger integrodifferential
equations. On expanding the unknowns as well as the kernels
in the aforementioned equations in powers of taking (53)
into account and retaining the lowest order terms only we
arrive at the well-known relations of quasi-statics

(61)

(62)

which govern the leading-order terms , of the
aforementioned Rayleigh series for the total EM field in the
vicinity of a small scatterer. Here, is an arbitrarily fixed
point within . By allowing to lie in , (61) and (62) lead
to a system of two volume integrodifferential equations for the
quasistatic interior field , .

B. Solution Procedure

The above formulation (61) and (62) holds for a small
scatterer of arbitrary shape. Here we restrict ourselves to the
case where the scatterer has the form of an ellipsoid with
semiaxes , and , is centered at the
origin of the principal frame , , , and is aligned along
coordinate axes of a local orthogonal frame, , . An
equation of the domain in the local frame has a canonical
form

(63)

where stands for a diagonal matrix .
For the sake of convenience, the pointis chosen to coincide
with a symmetry center of the ellipsoid. Orientation
of the ellipsoid is determined by a real orthogonal matrix

, which establishes a linear relationship between
the unit coordinate vectors , , of the principal frame
and those of a local frame , , , viz. ,

. With the aid of a relation [27] we
can write (63) in terms of the global coordinates, , as

(64)

(65)

where is a real symmetric positive definite matrix and
is a correlative quadratic form.

At this point we shall further assume that both the symmetric
part of the permittivity and that of the permeability
referring to the surrounding medium are real positive definite

or negative definite dyads. Note that the constitutive dyads
themselves, and , may be neither real nor definite.

Under these conditions, separate consideration in the Ap-
pendix shows that the following relations hold [14]:

(66)

provided that lies inside . Constant dyads are
determined by the permittivity or permeability
of the ambient medium, orientation, and dimensions of the
ellipsoid and are independent of the constitutive parameters of
the latter. Their specification is relegated to the Appendix.

Accounting of the constancy of the right-hand members
and in (61) and (62), and making use of (66)

enables us to develop an explicit solution for and
in the form:

(67)

It is clearly seen from these expressions that to the order
adopted in (61) and (62), the interior field within the ellipsoid
is uniform in full agreement with a previously known result
[18].

With the assistance of (60), an electric dipole moment
and a magnetic dipole moment of the scatterer defined by

(68)

can be written as

(69)

wherein and are the polarizability dyads

(70)

and is the volume of the ellipsoid.
Once the EM field throughout the body is solved, the

scattered field ,
can be calculated by evaluating the integrals in (61)

and (62) using expressions for Newtonian potentials at the
external points of an ellipsoid [28] if the observation point is
located in the neighborhood of and using the asymptotic
formulas (49)–(51) when the observation point is located far
away from the scatterer.
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IV. CONCLUDING REMARKS

In summary, after obtaining an explicit solution (13) for the
four spectral GF’s referring to an unbounded medium
with general anisotropy of electromagnetic properties (and
spatial dispersion), we have shown that the four spatial GF’s

can be expressed via (37) in terms of one scalar
function for which an analytic representation (46)
as a two-dimensional integral over angular variables has been
developed. On this basis, invariant asymptotic expressions
(49)–(51) for the far-zone field of point sources have been
derived, with special attention being drawn to the radiation
along optic axes. As well, a coordinate-free form (55) of
the static Green’s function has been given. As
an example of application of these results, rigorous analytic
solutions for the interior EM field (67) and the polarizabilities
(70) of a small homogeneous anisotropic ellipsoid in an
anisotropic environment have been found referring to the case
where the symmetric parts of the permittivity and permeability
dyads in the ambient medium are real positive definite or
negative definite dyads.

The emphasis of this article is put on anisotropic materials
which are describable in terms of the electric permittivity
and the magnetic permeability dyadsand . It would be
interesting to extend the present methodology to the case of
general bianisotropic materials whose electromagnetic proper-
ties are describable in terms of four constitutive dyads. The
present authors’ attempt to achieve this goal will be reported
elsewhere.

APPENDIX

In this Appendix we have included, for the readers’ benefit,
an analytical scheme by which the dyads in (66), (67),
and (70) can be calculated for an ellipsoidal scatterer. In the
following, only the quantity is considered since the solution
for is obtained automatically by replacing in subsequent
formulas the symbol of permittivity to that of permeability.

Consulting (55) supplies us with an equality

(71)

Here and in later (93), the top (bottom) sign applies if is
a real positive definite (negative definite) dyad

(72)

(73)

and is a shorthand notation for the matrix of a dyad
in the principal frame , , and . Note

that in view of the constraints imposed on the matrix
turns out to be real, symmetric, and positive definite.

A real symmetric dyad possesses three real orthonormal
eigenvectors , , and belonging to real eigenvalues,

, and [27]. Since is a definite dyad, the products
, , and will be positive values. Let

stand for a 3 3 matrix which determines transition from the
basis set , , to the global basis set , , according

to , . For further use, we shall
introduce real symmetric positive definite matrices

(74)

(75)

(76)

with having the same meaning as in (64) and consider the
eigenvalue problem defined by

(77)

It is worthwhile to remark that the matrix represents a square
root of a positive definite dyad in the basis set , , .

The problem (77) has three positive eigenvalues, , and
, and the corresponding real eigenvectors, , and can

always be chosen to satisfy the orthogonality condition [27]

(78)

being the Kronecker delta. It can be verified easily that

(79)

are the eigenvectors and the eigenvalues of a general
eigenvalue problem

(80)

Furthermore, due to (78) the following general orthogonality
condition holds:

(81)

We shall need a real 3 3 matrix whose
column comprises vector , . Because [27,
sec. 6.3]

(82)

the substitution

(83)

carries the quadratic forms , and
into a sum of squares

(84)

The values , , and will henceforth be arranged in the
following order: so that the reciprocals
of the square roots of these eigenvalues fulfill
the requirement . By using (83) together
with the relations

(85)

we find that

(86)
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where

(87)

The above expression (86) determines the Newtonian potential
of an ellipsoid . The potential at an inner point of an
ellipsoid is known to be given by [28, sec. 10]

(88)

where , , and are the geometric factors of an ellipsoid
with semiaxes , ,

(89)

(90)

and . When the numbers , ,
and are all different, the quantities , , and may be
expressed in terms of incomplete elliptic integrals of the first
and second kinds [28, sec. 5]. In the particular case where at
least two of the said numbers coincide, the geometric factors
are expressible in terms of elementary functions [28].

On reverting via (83) to the original variables, , and
, the Newtonian potential becomes

(91)

where

(92)

and .
Finally, if we act on (91) with the operator, the ensuing

expression will read

(93)

Here denotes a dyad which is characterized in the global
basis set by matrix

(94)

This concludes the derivation of . Accounting for (93) and
(71) leads us to a representation (66) that we are seeking.
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