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Abstract—This paper deals with the application of an opti-
mization procedure based on a genetic algorithm (GA) to the
prediction of the electromagnetic fields scattered by weakly non-
linear dielectric objects. Starting by an integral approach and
describing the nonlinearities of the constitutive parameters by
the Volterra-type integrals, the nonlinear scattering problem is
numerically solved by an iterative procedure developed for the
minimization of a suitable defined cost function. A GA is applied
in order to deal with a large number of unknowns related to the
harmonic components of the nonlinear internal electromagnetic
field. In a preliminary stage, the behavior of typical parameters of
the GA is analyzed; then numerical solutions are carried out and
compared with those provided by other methods. Finally, some

considerations are made concerning the rate of convergence of

the iterative procedure.

Index Terms—Cylindrical scatterers, genetic algorithms, non-
linear media.

I. INTRODUCTION

I N the past decade, there has been a notable interest inR

numerical solutions to linear scattering and diffraction prob-
lems. The authors developed in [11] a numerical procedure
to solve a set of integral equations obtained by approaching
the nonlinear scattering starting from equivalent sources and
harmonic expansions of the field. The above procedure resulted
in a set of nonlinear algebraic equations to be solved. A
solution was rather inefficiently reached in [12] by using a
deterministic algorithm, the Wolfe’s iterative method, which
is a generalization of the secant method to multivariable
functions. Fortunately, the recent development of efficient
optimization techniques allows us to obtain solutions, even
to rather complex problems considered relatively intractable
in the past.

Among these techniques the electromagnetic community
is beginning to devote notable attention to genetic algo-
rithms (GA'’s) [13], [14], which exhibit several interesting
features related to their capabilities in performing optimization
feesses in a very robust way [15]. Recently, GA's have

study of the interactions between electromagnetic wav! gen proposed to synthesize thinned planar or linear arrays

and nonlinear materials. The problem has been addresd2 Produce the lowest maximum relative sidelobe level
both with reference to the propagation in infinite media add®l Or to design the shape of RF cavities that satisfies
by considering the interactions between waves and boundt§" defined characterl_stlcs such as fundamental _resonant
objects. Several analytical and numerical techniques haWode frequency and higher order modes frequencies [17].
been applied to obtain field solutions and to study a numporeover, a typical application of the GA's in the microwave
of physical phenomena associate with waves and nonlin€4gineering is the design of radar absorbers [18]. Interesting
materials. From a theoretical point of view, some of theeviews on GA'’s for electromagnetic applications have been
most relevant approaches to propagation and scattering in ifgently published [13], [14]. In the present paper, a GA
nonlinear case are based on \olterra series [1]-[3], wherd¥®$ been applied to minimize a cost function also called in
additional heuristic hypothesis on the nonlinear medium (i.€lenetic terminology fithessfunction arising in the solution
Kerr-like nonlinearities or, more generally, nonlinearities th&f the nonlinear scattering problem. Recently, the authors
can be expressed as power series of the field [4]-[6]) apbtained rather significant results by using a statistical cooling
usually assumed in the scientific literature in order to obtapfocedure (SA) [19]. However, we focus on GA's in the light
“simple” solutions whose validity is often limited to specificof their possibly easier parallelization. This is related to the
assumed situations [7]-[11]. When addressed from a numerita&gt that at each iteration, the SA considers only one search
point of view, the problems do not usually results in simpldirection in the multidimensional solution space, whereas,
and straightforward computations as in the case of most of tine procedures based on GA's, different trial solutions are
simultaneously evaluated, corresponding to search processes
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which constitutes the initiapopulation (usually we indicate
as populationthe set of trial solutions that are used at each
iteration to span the solution space). Each trial solution (or
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individual) is coded in a binary sequence callelttomosome express the constitutive relation as follows:

(since the numerical algorithm is based on the analogy between N

the_ natur_al selection a_nd the solution searching process in an D(X) = Z D (X) 3)
optimization problem, it keeps some terms used in genetics). —

Then, the algorithm generates a new population of trial arrays . o

by using three mechanisreelection crossoverandmutation where the truncation of the series is allowed by the weakness
It is evident that GA’s are “with-memory” methods. In particf the nonlinearity, and theth term is

ular, unlike the SA technique, which considers in the evolution_ () ()< _

of the trial solution toward the optimal solution only the D"I(X) = // u /{5 Xy, Xy)

history of one individual, the GA technlques_ take into ac_count CE(X X)) B(X — Xn)}d4X1 X,
the structures of all the previous populations coded in the

individuals of the current population. The selection mechanism (4)

selects the trial solut|ons_of the cqrrent popula}tlon that W,\'A/here the four-dimensional integrals are extended to the whole
generate the new population. To this end, the fitness f“nCt'ggace and denotes the dyadic inner multiplication between

of each trial solution is estimated and candidate solutiofs, ;i orger dyadicz™ (intrinsic parameters related to the
are chosen to mate. The selected individuals are S”bjeqﬁgdium) and thes field vectorsE

to crossover aknd/or mutat_loln Wl'th. a glvegn probability. The Under hypothesis of an electric field solution expressed in
crossover works on two trial solutions and generates one @[\ periodic waves and in the case of a not-spatially

two new solutions: the blnary sequences of the two arra}ﬁ%persive medium, we can rewrite (3) in the following form:
are swapped from a chosen bit. With the mutation procedure,

a new individual is generated by changing (with a given N N oo

probability) the binary sequence of the selected individual. TheD(X) = > D™(X) =Y > D{(x;aw)c’™" (5)
new population is completed by reproducing the individual of n=1 n=1a=—oo

the old population for which the cost functions assume the

smallest values. Once the new population has been genera’?&!ﬂg

the fitness function of each individual is evaluated and the GA _

restarts with a new generation or terminates if the threshold for D& (%; aw) = > Famyem, EM (K mgw, -+ mpw)

the stopping criterion is reached or when the iteration loops e_ _

are terminated. VEn (%) By, (%) (6)

The paper is organized as follows. In Section Il, the for- ] ) _
mulation of the nonlinear scattering problem is outlined withheré w is the fundamental harmonic frequency of the il-
some discussion concerning the heuristic hypotheses involvitinination and the terms in (6) are regrouped as prescribed
Section Il describes in more detail the application of thBY the orthogonality properties of the exponentials (being

GA in order to provide enough information for the reader§ami-—m, = 1 if a = mi+ -+ M Yagmgm, = 0

Finally, Sections IV and V contain the numerical results ditherwise).

some computer simulations and some general conclusionsVith the above assumptions, substituting (5) in (2) and
respectively. applying the curl operator to both side of (1), we obtain a

harmonic representation of the field by solving the following
set of nonhomogeneous vector wave equations:

=

Il. MATHEMATICAL FORMULATION

N
The scattering problem in which an incident wave radiated v x v x E, (%) — (aw)2uz {’Va;ml---mn Z .. Z
=2

from a known sourcel®™(r,¢) interacts with a bounded e
weakly nonlinear dielectric object can be addressed in the -
m(X)]}

following rigorous way: at each point, the electromagnetic field ~ x [6™)(x;mw, -+, maw) " Epy (X) -+ E
vectors satisfy the Maxwell's equations and Sommerfeld’s

radiation conditions = —jlaw)pI ™ (). (7)
V x E(F, 1) + IB(T, 1) -0 (1) In'particular, if'we consider noplinear scatterers having cylip—
ot drical geometries, embedded in the free-space (characterized
v x H(r, f) — dD(r,t) = Jin(E, f) @) by 1o andeg) and illuminated by an incident electric field of
at TM type, (7) reduces to the following scalar one:

and, due to the weak nature of the nonlinearity, the rela- V2E..,(z.y) + (aw)?poe™ (2. ) Eoo(z, y)

tionships for the constitutive equatiorﬁ(f,)) and _B(I_{), _ = —(aw) 210 o0 (,y) + §(Yarraw)po /20 (2, y).  (8)
expressed in terms of a truncated Volterra’s functional series

[1], [7], [20], [21] hold. In more detail, defining a Minkowski In (8), E.., indicates thesth complex Fourier component of
four-vectorX = X(r, jct), with j2 = —1 andX - X = 0, and the field (along the polarization axis) at the frequenayand
assuming nonlinearity only in the electric flux density, we cd#.., are coupling terms dependent on the field components at
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the same frequency and at other frequencies given by where (z,,y,) is the center of theth discretization subdo-
7 » main, ¥ is an array of complex unknowns
Tz;a(xvy) = Z {’Va;mlmmnZ"'Z{E;ﬁ-z(-ﬁay) U = [Ea(-Tpvyp)va: 1,--- ., I;p= ]_7...7P] (14)

n=2 my My,

of L = I x P elements, beind the maximum order of the
X By, (2,4) -+ Evo (@, 0)} b (9) harmonic terms (a series truncation is used) Aritie number
of discretization subdomains.

The above coupling terms.., can be easily computed once

the type of the nonlinearity is chosen (subjected to the restric- ||| A PPLICATION OF THE GENETIC ALGORITHM

tions imposed by the previous considerations). The problem ! . .
can be reduced to an equivalent one in which the scattering! '® developed iterative procedure based on a GA consists
object is replaced by an equivalent current density distributi@ the following steps. At the initialization step (Step @)
defined in the region of the nonlinear medium and radiating ffndicated as “dimension of the population”) trial solutions (the
a homogeneous medium with the same dielectric charactefisdividuals™) {Z}”, (h = 1,--- @)} are randomly generated.
tics of the external medium. Under decoupling conditions, the The /th element of thehth trial solution—(El)gO)—is
electric field results as the sum of the incident electric fieldhosen by means of a random uniform distribution
i.e., the electric field produced by the electromagnetic sourge values in the range {min,(—2|Re(E™(z,,4,))]),

in the absence of the scattering object plus a scattered eleqtﬁggxp(gme(Einc(xp’yp))|)} for its real part and

field as follows: o {ming, (—2(Im(E™(zp, yp))]),  max,(2[Im(E™ (zp, yp)])}
E.q = B33 (JSL) + ERS(J). (10) for its imaginary part, wheré&™(x,,, 3,,) is the value of the

It follows that the pth harmonic component of the scattereépc'de_m elt_actrlc field at th_e center of theh s_ubglomam of

electric field now fulfils the following [22]: the discretized cross sectioRe(-) and Lm(-) indicates the

real and imaginary part, respectively.

2 prscatt 2 scatt
Vi B2 (z,y) + (aw) poso B, (2, y) At the “coding step” (Step 1), each trial solution is encoded

za

= —jlaw)po JZ5 (%, ) (11) in a binary sequencecliromosomk After quantization, the
where J¢4 (¢, y) = j(aw){sﬁi(m,y) — e}l (x,y) + component(El)ELO) results in a string, denoted ufl)ﬁf”, of
j(aw)Tz;;tx,y). ' - log, @ bits where @ is the number of quantization levels

Therefore, we obtain a formal solution to (8); that is, thé#Sed to code each component of the trial solution. Each
expression for thesth generic harmonic component of théndividual in the trial populationtj” results coded in a string
periodic solution (to simplify the notation, the subscript Of B = Llogy(Q) bits as follows:
denoting the Cartesian component of the electric field vector

along the direction of propagation, is omitted in this relation ‘Pgbo) = {(El)gbo)v T (El)gbo)v ) (Eh)gbo)} = QELO)
as well as in the following ones) [26] - {(51)20),---,(51)5?),---,(&)53)}- (15)
2 Qs o0
E,(x,y) = E™(z,y) —j(aljf) / lgﬂ(w V) _ 1] At this point, the algorithm continues with a generation
S co of a new population. Then (Step 2), we compute the value
X E,,,(a:',y')HéQ)(akzp) dz’ dyf of the fitness function for each individual of the population
(ak.)? R o RF = Ry, B =1,..., &, (wherek indicates the iteration
—JT/STa(x Y ) Hy " (akzp) da’ dy of the procedure) and the probability of selection of each
(12) individual @5;“) in the following way:
whereHéQ)(akZp) is the Hankel function of the second kind R
and zeroth orderS is the cross section of the nonlinear @5}" =—3 h Ok (16)
scatterer,p is given by p = /(z —2/)2+ (y —¢/)? and =1 N,
k. = wy/loco.

After discretization, performed by using the RichmondVe alsokset the optimal fitness value at each iteraﬂ@ =
formulation [22], the solution of the arising nonlinear algebraiming, {X{*'} and the corresponding trial Corlfiguratiof’lép)t
system is then obtained by minimizing fitness function (“optimal configuration”).

defined as follows: Step 3 is related to the selection of the individuals of
B 1 P . the current population that will be used for generating the
N(W) = EZZ E (z4,yq) — {E;“C(a:q,yq) new population.® pairs of chromosomes are chosen. Let

a ¢=1 us indicate thecth pair with the notatior(ng);Q,(,k))c, c=

2 P 1) 1,---,®. Achromosome is randomly chosen and it constitutes
(ak-) €25 (%p: Yp) : o : >
—J E — 1) Eo(zp, yp) one element of the pair only if its selection probability is

less than a random value in the ranffel]. In this way,
more highly fit individuals (i.e., those individuals with lower

(13) fitness values) have a higher number of offsprings in the next
population.

€
p=1 0

2
2
+To(y, yp)] Hé )(akzpm)ASpq }
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At step 4, the crossover mechanism acts on dtie pair 100 ; . : : : : : : :
of chromosomes with a probabiliy,., in order to generate a Q=8
new individual Q¢ +Y \ a-16 —
(k+1) (k) (k) (k) (k) o \\7\ o ﬁi ]
Qc :{<Qs )17"'7<Qs >t7<Qr >t—|—1"”’<97’ >B} N o
a7) Q=32

where the symbol-},, indicates the binary value of theth
bit in the chromosome and the subscript is the crossover
position randomly chosen.

At step 5, after the crossover, the individuals of the current

Fitness value, X(¥,,)

1+-Q=4096
/
Q=1024

population are subjected to the mutation operator with a Q =2048
probability g,,,. Mutation alters only one bit randomly chosen Q=8192 Q=512 Q=256
H H " ” 001 1 1 1 1 1 1 1 1 1

?r?ong _theB bits of the chro_mo_spme by changing a “1 t(_) a 0 2000 2000 5000 3000 10000

0” or vice versa. The new individual presents the following lteration Number

chromosome: . . . . N
Fig. 1. Behavior of the fitness function versus the number of iterations for
various values of the number of quantization lev@ls

k+1 k41 k+1 k+1
QY = (), (AD), (A4 )

(18)

wherew is the changed bit and indicates the binary “not”
operator.

Finally (Step 6), theelitism operator is used to ensure that
the chromosome of the individuilg’;)t, generated up to now,
be reproduced in thék + 1)th population. Although this
mechanism is not necessary, it was found to help to preve
random loss of good chromosome strings.

The iterative process is repeated (we return to step 2) unti
the optimal fitness valulf!ff;)t is smaller than a fixed threshold
for the stopping criteriory or if the maximum number of
iterations K exceeded.

iBe, N (¥,

mess va

Fit

0 L L 1 | L 1
0 5000 10000 15000 20000 25000 30000 35000

IV. NUMERICAL RESULTS
Iteration Number, k

In this section, we present the results of some numerical ) ] ) o
simulations performed in order to explore the possibility of a\f %ioi's vBa?::: pe ?gghsomgzzrf“;;go” versus the number of iterations for
efficient application of a GA to the nonlinear electromagnetic
scattering problem. We considered an infinite cylinder with
a circular cross section of radius = 0.3A1, A1 being the ¢, o GA is in the order of
free-space wavelength related to the frequency of a uniform
plane wave. The scatterer, discretizeddn= 225 subdomains Llog,(@) 27 (19)
(according to the rule defined in [23]), was characterized by Y
522/(3?7.9) = l.leo, ei?gzz(x,y) = eoff, = 0.1 with the_ where v is the size of the schema (defined as “a similarity
remaining nonlinear parameters set to zero. In the followingympjate describing a subset of strings with similarities at cer-
for this geometry we show the behavior of the GA for differenn string positions” [15]) of a chromosome. In our problem,
values of its characteristic parameters. _ and for Q = 1024, the application of (19) indicates that an

First of all, the optimum value of the fitness functiony,nropriate value o will be of the order of about hundred
N(\ng)t) at different iterations is shown in Fig. 1 for variousndividuals. Therefore, we investigated the behavior of GA
values of the number of levels of the uniform quantizierin  considering a population size between 10 and 250 trial arrays.
_more_de@l,_startmg by the same_|n|t|al population zgrzg)at_mlt@@' 2 presents thg plot d{(\pg;)t) versus the numbgr of GA
iteration(k = 0), in the case of = 8 the value of(¥,;;) IS jterations. In this figure, it is possible to note that with a lower
greater than 50, whereas f@r= 1024 N(\Iff)%)t) ~ 0.7. On the population size, the optimum value of the fithess function more
other hand, fo = 4096, 8192, --- (12, 13,... bits necessary rapidly decreases, but after fewer iterations all the individuals
to encode each component) the coding error is approximatefythe current population are very similar. On the other hand,
equal to that in the case @@ = 1024. when the population size increases, (e®.= 100 or 250)

Let us consider the problem of the population size for thtbe convergence is very poor. A value ®f= 25 individuals
GA. It is well known [24] that an optimal population size seems to allow a good balance among rate of convergence
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[} X 4
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0.1t T o
- -4 4 o
Pm=4x10 Pm=2x104
0 1 1 1 1 I 1 1 _55 n 1 1
0 2000 4000 6000 8000 10000 0 n/2 n 3n/2 2x
Iteration Number ¢
Fig. 3. Behavior of the fitness function versus the number of iterations for (@

various values of the mutation probabiligy,, (. = 0.7).

SA Procedure

%, k=50000

of GA, amount of required computer time, and number of
iterations for which a not negligible diversity between the T
individuals of the same population is kept. 15t

As suggested in literature [25], also in the present appli-

cation we have obtained good results with a high crossover% ?
probability (. = 0.7), but with a lower value of the mutation & 2°T 7
probability, as shown in Fig. 3. For example, in the case 057 3+
a value equal tg,, = 4 x 10™*, we obtained a high rate of 351
convergence with a good convergence value.
Now, to compare the results obtained by GA with those by “ T k=30000
other numerical techniques, Fig. 4 gives the computed values 45}
of the bistatic scattering width (BSW)(¢) defined in [26] 5 ‘ . ‘
for the same scatterer previously considered. In this figure, 0 a2 m 3a/2 2n
¢ denotes the angular coordinate related to the observation ¢
direction. These values are compared with those computed by (b)

using the statistical cooling approach (SA) [19]. In particulaFjg. 4. Bistatic scattering width. Nonlinear values obtained by using sta-
Fig 4(a) shows the values %D(d)) at the iterationg: = o, tistical cooling approach (convergence values) and GA at the iterations (a)
10 '20 30. 200. A b th f the GA ' Ik = 0, 10, 20, 80, 200 and (b)k = 10000, 30000, 50000. (Nonlinear

S S - AS can be seen, the acc,ur"?“,’y 0 e, SO L(J:Trcular cylinder:a = 0.3\, e(;z(a:,,y) = 1.1ep, 592;:(1’7 y) = 0.1eo,

tion is very poor and the related plots significantly differ froms = 50, ) = 1024, p» = 4 x 104, p. = 0.7).

the SA solution in both the forward and backward directions.

Instead, starting from iteratioh = 10000, as the number

of the iterations increases, the approximateg(¢) tends to the individuals of the same population are about the same.
become more and more similar to the solution computed Iyis is a clear indication that many individuals of the same
the statistical cooling approach. The not symmetric behavigbpulation, are very similar. Moreover, it is evident that further
that the BSW keeps at the first iterations [Fig. 4(a)], tendgprovements in the fitness function value, would require a
to disappear a# increases [as shown in Fig. 4(b)] and theucky random mutation in a chromosome of an individual of
solution agrees very well with that obtained by means of Sfe population.
procedure. - Finally, Fig. 7 shows the values of the bistatic scattering
In a corresponding way, the fitness value o 1;1 presents width computed at the convergence iteration by using the GA
a different rate of convergence depending on the iteratipocedure, the SA approach, and iterative methods based on
number. For example, at the first iterations [Fig. 5(&1]@5’;1) the Born approximation (BA) [23], the distorted-wave Born
decreases of about 300 in 90 iterations, whereas in the raag@roximation (DWBA) [27], and the Rytov approximation
aroundk = 10000 (Fig. 5(b)), the decrement is about 0.6 i{RA) [28]. The plots concerning the GA and SA procedures
100 iterations. This fact can be due to a reduced numberak in good agreement and significantly differ from those
different chromosomes. This hypothesis seems to be confirnmaatained with approximate techniques. This fact is due to the
also by the results of Fig. 6, which shows the values of theagnitude of the nonlinearity: it is well known [19], [28] that
fitness function of each individual of a population duringt the increase of the nonlinearity the approximate techniques
the iteration process of the GA: at the iteratibn= 50000 are unable to exactly predict the harmonic generation and the
(indicated as convergence iteration), the fitness values aufrresponding harmonic mixing effect.
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Fig. 7. Bistatic scattering width. Convergence values computed by using the
GA, the statistical cooling procedure, and approximate iterative methods.

I DWBA Appr(laxlmation

0.1

0.08

0.06

0.04 f

0.02 |

GAs Procedure

L L It L L

0 25 50 75 100 125
Cell number, p

200

150 175 225

Fig. 8. Values of the parameté& for the GA and the iterative methods
based on distorted Born approximation, Rytov approximation, and Born
approximation, at the convergence iteration.

where E{(x,,y,) is the first harmonic component of elec-
tric field computed apth discretization subdomain by using
the SA procedure (considered as the reference solution) and
Ey(xp,yp) indicates the same quantity as computed at the
convergence iteration, either by GA or by any one of the
aforementioned approximated approaches (BA, DWBA, RA).
For the sake of clarity, in Fig. 8 we show only the plot of
the DWBA solution because, at the convergence iteration, the
other approximated solutions (BA, RA) do not significantly
differ from this one.

V. CONCLUDING REMARKS AND GENERAL OBSERVATIONS

Fig. 6. Values of the fithess function for each individual of a population at

different iterations.

Similar conclusions can be achieved from Fig. 8, whi

shows the error paramet&i(x,,,y,) defined as
- |El($pvyp) — Ef(xpvyp”

E(‘/L’ 7y )_ *
prep |ET (2, Up)|

(20)

In this paper, a numerical approach based on a GA to
computing electromagnetic scattering by weakly nonlinear
CBbject:s, has been developed. The mathematical formulation
describes the nonlinear interactions between the electromag-
netic field and scatterers in terms of nonlinear equivalent
electromagnetic sources and by using truncated Volterra's
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functional series. Weak nonlinearities are assumed such that S. Caorsi, A. Massa, and M. Pastorino, “A numerical solution to

harmonic generation may be present, but shock-wave forma-
tion is excluded. Then a harmonic representation of the electric
field has been achieved, and the solution of the problem Hag|
been reduced to the solution of a set of coupled nonlin-

ear integral equations. After discretization, an optimization

process has been formulated, in which a nonlinear fitneid§]
function has been deduced. A GA has been applied and the

full-vector electromagnetic scattering by three-dimensional nonlinear
bounded dielectrics,|[EEE Trans. Microwave Theory Teglvol. 43, pp.
428-436, Feb. 1995.

, “A numerical approach based on the moment method and
Wolfe's procedure for nonlinear electromagnetic scattering in free
space,” inProc. IEEE Melecon’94Antalya, Turkey, Apr. 1994, |IEEE
Catalog No. 94CH3388-6, pp. 431-434.

D. S. Wiele and E. Michielssen, “Genetic algorithm optimization applied
to electromagnetics: A review[EEE Trans. Antennas Propagatol.

45, pp. 343-353, Mar. 1997.

capabilities of the approach have been assessed by meamsr. L. Haupt, “An introduction to genetic algorithms for electromag-

of numerical simulations. The obtained results show that the
present approach may represent a computational tool abl
deals with effects induced by nonlinearity. This point is o
great interest as at high excitation power levels, at radio as wéfil
as at optical frequencies, these nonlinear effects are presgft
and should be taken into account by proper computational

methodologies.

In addition, a potential further development of the prese
approach may lie in an extension to the field of inverse
scattering problems. In many cases, in fact, the nonlinearﬁ;?
might be considered as an additional degree of freedom for
assessing the dielectric properties of an unknown scatterer

(e.g., the generated higher harmonic waves might be use
glean more information about the scatterers).

[21]
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