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Abstract—This paper deals with the application of an opti-
mization procedure based on a genetic algorithm (GA) to the
prediction of the electromagnetic fields scattered by weakly non-
linear dielectric objects. Starting by an integral approach and
describing the nonlinearities of the constitutive parameters by
the Volterra-type integrals, the nonlinear scattering problem is
numerically solved by an iterative procedure developed for the
minimization of a suitable defined cost function. A GA is applied
in order to deal with a large number of unknowns related to the
harmonic components of the nonlinear internal electromagnetic
field. In a preliminary stage, the behavior of typical parameters of
the GA is analyzed; then numerical solutions are carried out and
compared with those provided by other methods. Finally, some
considerations are made concerning the rate of convergence of
the iterative procedure.

Index Terms—Cylindrical scatterers, genetic algorithms, non-
linear media.

I. INTRODUCTION

I N the past decade, there has been a notable interest in the
study of the interactions between electromagnetic waves

and nonlinear materials. The problem has been addressed
both with reference to the propagation in infinite media and
by considering the interactions between waves and bounded
objects. Several analytical and numerical techniques have
been applied to obtain field solutions and to study a number
of physical phenomena associate with waves and nonlinear
materials. From a theoretical point of view, some of the
most relevant approaches to propagation and scattering in the
nonlinear case are based on Volterra series [1]–[3], whereas
additional heuristic hypothesis on the nonlinear medium (i.e.,
Kerr-like nonlinearities or, more generally, nonlinearities that
can be expressed as power series of the field [4]–[6]) are
usually assumed in the scientific literature in order to obtain
“simple” solutions whose validity is often limited to specific
assumed situations [7]–[11]. When addressed from a numerical
point of view, the problems do not usually results in simple
and straightforward computations as in the case of most of the
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numerical solutions to linear scattering and diffraction prob-
lems. The authors developed in [11] a numerical procedure
to solve a set of integral equations obtained by approaching
the nonlinear scattering starting from equivalent sources and
harmonic expansions of the field. The above procedure resulted
in a set of nonlinear algebraic equations to be solved. A
solution was rather inefficiently reached in [12] by using a
deterministic algorithm, the Wolfe’s iterative method, which
is a generalization of the secant method to multivariable
functions. Fortunately, the recent development of efficient
optimization techniques allows us to obtain solutions, even
to rather complex problems considered relatively intractable
in the past.

Among these techniques the electromagnetic community
is beginning to devote notable attention to genetic algo-
rithms (GA’s) [13], [14], which exhibit several interesting
features related to their capabilities in performing optimization
processes in a very robust way [15]. Recently, GA’s have
been proposed to synthesize thinned planar or linear arrays
that produce the lowest maximum relative sidelobe level
[16] or to design the shape of RF cavities that satisfies
user defined characteristics such as fundamental resonant
mode frequency and higher order modes frequencies [17].
Moreover, a typical application of the GA’s in the microwave
engineering is the design of radar absorbers [18]. Interesting
reviews on GA’s for electromagnetic applications have been
recently published [13], [14]. In the present paper, a GA
has been applied to minimize a cost function also called in
genetic terminology,fitness function arising in the solution
of the nonlinear scattering problem. Recently, the authors
obtained rather significant results by using a statistical cooling
procedure (SA) [19]. However, we focus on GA’s in the light
of their possibly easier parallelization. This is related to the
fact that at each iteration, the SA considers only one search
direction in the multidimensional solution space, whereas,
in procedures based on GA’s, different trial solutions are
simultaneously evaluated, corresponding to search processes
performed along different directions.

In short, the GA starts by choosing trial solutions,
which constitutes the initialpopulation (usually we indicate
as population the set of trial solutions that are used at each
iteration to span the solution space). Each trial solution (or
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individual) is coded in a binary sequence calledchromosome
(since the numerical algorithm is based on the analogy between
the natural selection and the solution searching process in an
optimization problem, it keeps some terms used in genetics).
Then, the algorithm generates a new population of trial arrays
by using three mechanisms:selection, crossover, andmutation.
It is evident that GA’s are “with-memory” methods. In partic-
ular, unlike the SA technique, which considers in the evolution
of the trial solution toward the optimal solution only the
history of one individual, the GA techniques take into account
the structures of all the previous populations coded in the
individuals of the current population. The selection mechanism
selects the trial solutions of the current population that will
generate the new population. To this end, the fitness function
of each trial solution is estimated and candidate solutions
are chosen to mate. The selected individuals are subjected
to crossover and/or mutation with a given probability. The
crossover works on two trial solutions and generates one or
two new solutions: the binary sequences of the two arrays
are swapped from a chosen bit. With the mutation procedure,
a new individual is generated by changing (with a given
probability) the binary sequence of the selected individual. The
new population is completed by reproducing the individual of
the old population for which the cost functions assume the
smallest values. Once the new population has been generated,
the fitness function of each individual is evaluated and the GA
restarts with a new generation or terminates if the threshold for
the stopping criterion is reached or when the iteration loops
are terminated.

The paper is organized as follows. In Section II, the for-
mulation of the nonlinear scattering problem is outlined with
some discussion concerning the heuristic hypotheses involved.
Section III describes in more detail the application of the
GA in order to provide enough information for the readers.
Finally, Sections IV and V contain the numerical results of
some computer simulations and some general conclusions,
respectively.

II. M ATHEMATICAL FORMULATION

The scattering problem in which an incident wave radiated
from a known source interacts with a bounded
weakly nonlinear dielectric object can be addressed in the
following rigorous way: at each point, the electromagnetic field
vectors satisfy the Maxwell’s equations and Sommerfeld’s
radiation conditions

(1)

(2)

and, due to the weak nature of the nonlinearity, the rela-
tionships for the constitutive equations and ,
expressed in terms of a truncated Volterra’s functional series
[1], [7], [20], [21] hold. In more detail, defining a Minkowski
four-vector , with and , and
assuming nonlinearity only in the electric flux density, we can

express the constitutive relation as follows:

(3)

where the truncation of the series is allowed by the weakness
of the nonlinearity, and theth term is

(4)

where the four-dimensional integrals are extended to the whole
space and “ ” denotes the dyadic inner multiplication between
the th order dyadic (intrinsic parameters related to the
medium) and the field vectors .

Under hypothesis of an electric field solution expressed in
term of periodic waves and in the case of a not-spatially
dispersive medium, we can rewrite (3) in the following form:

(5)

being

(6)

where is the fundamental harmonic frequency of the il-
lumination and the terms in (6) are regrouped as prescribed
by the orthogonality properties of the exponentials (being

if
otherwise).

With the above assumptions, substituting (5) in (2) and
applying the curl operator to both side of (1), we obtain a
harmonic representation of the field by solving the following
set of nonhomogeneous vector wave equations:

(7)

In particular, if we consider nonlinear scatterers having cylin-
drical geometries, embedded in the free-space (characterized
by and ) and illuminated by an incident electric field of
TM type, (7) reduces to the following scalar one:

(8)

In (8), indicates the th complex Fourier component of
the field (along the polarization axis) at the frequencyand

are coupling terms dependent on the field components at
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the same frequency and at other frequencies given by

(9)

The above coupling terms can be easily computed once
the type of the nonlinearity is chosen (subjected to the restric-
tions imposed by the previous considerations). The problem
can be reduced to an equivalent one in which the scattering
object is replaced by an equivalent current density distribution
defined in the region of the nonlinear medium and radiating in
a homogeneous medium with the same dielectric characteris-
tics of the external medium. Under decoupling conditions, the
electric field results as the sum of the incident electric field,
i.e., the electric field produced by the electromagnetic source
in the absence of the scattering object plus a scattered electric
field as follows:

(10)

It follows that the th harmonic component of the scattered
electric field now fulfils the following [22]:

(11)

where
.

Therefore, we obtain a formal solution to (8); that is, the
expression for the th generic harmonic component of the
periodic solution (to simplify the notation, the subscript,
denoting the Cartesian component of the electric field vector
along the direction of propagation, is omitted in this relation
as well as in the following ones) [26]

(12)

where is the Hankel function of the second kind
and zeroth order, is the cross section of the nonlinear
scatterer, is given by and

.
After discretization, performed by using the Richmond

formulation [22], the solution of the arising nonlinear algebraic
system is then obtained by minimizing afitness function
defined as follows:

(13)

where is the center of the th discretization subdo-
main, is an array of complex unknowns

(14)

of elements, being the maximum order of the
harmonic terms (a series truncation is used) andthe number
of discretization subdomains.

III. A PPLICATION OF THE GENETIC ALGORITHM

The developed iterative procedure based on a GA consists
of the following steps. At the initialization step (Step 0)
(indicated as “dimension of the population”) trial solutions (the
“individuals”) are randomly generated.

The th element of the th trial solution— —is
chosen by means of a random uniform distribution
of values in the range ,

for its real part and
,

for its imaginary part, where is the value of the
incident electric field at the center of theth subdomain of
the discretized cross section, and indicates the
real and imaginary part, respectively.

At the “coding step” (Step 1), each trial solution is encoded
in a binary sequence (chromosome). After quantization, the
component results in a string, denoted by , of

bits where is the number of quantization levels
used to code each component of the trial solution. Each
individual in the trial population results coded in a string
of bits as follows:

(15)

At this point, the algorithm continues with a generation
of a new population. Then (Step 2), we compute the value
of the fitness function for each individual of the population

, , (where indicates the iteration
of the procedure) and the probability of selection of each
individual in the following way:

(16)

We also set the optimal fitness value at each iteration

and the corresponding trial configuration
(“optimal configuration”).

Step 3 is related to the selection of the individuals of
the current population that will be used for generating the
new population. pairs of chromosomes are chosen. Let
us indicate the th pair with the notation

. A chromosome is randomly chosen and it constitutes
one element of the pair only if its selection probability is
less than a random value in the range . In this way,
more highly fit individuals (i.e., those individuals with lower
fitness values) have a higher number of offsprings in the next
population.
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At step 4, the crossover mechanism acts on theth pair
of chromosomes with a probability , in order to generate a
new individual

(17)

where the symbol indicates the binary value of theth
bit in the chromosome and the subscript “” is the crossover
position randomly chosen.

At step 5, after the crossover, the individuals of the current
population are subjected to the mutation operator with a
probability . Mutation alters only one bit randomly chosen
among the bits of the chromosome by changing a “1” to a
“0” or vice versa. The new individual presents the following
chromosome:

(18)

where is the changed bit and indicates the binary “not”
operator.

Finally (Step 6), theelitism operator is used to ensure that
the chromosome of the individual , generated up to now,
be reproduced in the th population. Although this
mechanism is not necessary, it was found to help to prevent
random loss of good chromosome strings.

The iterative process is repeated (we return to step 2) until
the optimal fitness value is smaller than a fixed threshold
for the stopping criterion or if the maximum number of
iterations exceeded.

IV. NUMERICAL RESULTS

In this section, we present the results of some numerical
simulations performed in order to explore the possibility of an
efficient application of a GA to the nonlinear electromagnetic
scattering problem. We considered an infinite cylinder with
a circular cross section of radius being the
free-space wavelength related to the frequency of a uniform
plane wave. The scatterer, discretized in subdomains
(according to the rule defined in [23]), was characterized by

, , with the
remaining nonlinear parameters set to zero. In the following,
for this geometry we show the behavior of the GA for different
values of its characteristic parameters.

First of all, the optimum value of the fitness function
at different iterations is shown in Fig. 1 for various

values of the number of levels of the uniform quantizier. In
more detail, starting by the same initial population and at initial
iteration , in the case of the value of is

greater than 50, whereas for . On the
other hand, for (12, 13, bits necessary
to encode each component) the coding error is approximately
equal to that in the case of .

Let us consider the problem of the population size for the
GA. It is well known [24] that an optimal population size

Fig. 1. Behavior of the fitness function versus the number of iterations for
various values of the number of quantization levelsQ.

Fig. 2. Behavior of the fitness function versus the number of iterations for
various values of the population size�.

for a GA is in the order of

(19)

where is the size of the schema (defined as “a similarity
template describing a subset of strings with similarities at cer-
tain string positions” [15]) of a chromosome. In our problem,
and for , the application of (19) indicates that an
appropriate value of will be of the order of about hundred
individuals. Therefore, we investigated the behavior of GA
considering a population size between 10 and 250 trial arrays.
Fig. 2 presents the plot of versus the number of GA
iterations. In this figure, it is possible to note that with a lower
population size, the optimum value of the fitness function more
rapidly decreases, but after fewer iterations all the individuals
of the current population are very similar. On the other hand,
when the population size increases, (e.g., or 250)
the convergence is very poor. A value of individuals
seems to allow a good balance among rate of convergence



CAORSI et al.: GENETIC ALGORITHMS APPLIED TO COMPUTATION OF EM SCATTERING 1425

Fig. 3. Behavior of the fitness function versus the number of iterations for
various values of the mutation probability}m(}c = 0:7).

of GA, amount of required computer time, and number of
iterations for which a not negligible diversity between the
individuals of the same population is kept.

As suggested in literature [25], also in the present appli-
cation we have obtained good results with a high crossover
probability , but with a lower value of the mutation
probability, as shown in Fig. 3. For example, in the case of
a value equal to , we obtained a high rate of
convergence with a good convergence value.

Now, to compare the results obtained by GA with those by
other numerical techniques, Fig. 4 gives the computed values
of the bistatic scattering width (BSW) defined in [26]
for the same scatterer previously considered. In this figure,

denotes the angular coordinate related to the observation
direction. These values are compared with those computed by
using the statistical cooling approach (SA) [19]. In particular,
Fig. 4(a) shows the values of at the iterations ,

, , , . As can be seen, the accuracy of the GA solu-
tion is very poor and the related plots significantly differ from
the SA solution in both the forward and backward directions.
Instead, starting from iteration , as the number
of the iterations increases, the approximated tends to
become more and more similar to the solution computed by
the statistical cooling approach. The not symmetric behavior
that the BSW keeps at the first iterations [Fig. 4(a)], tends
to disappear as increases [as shown in Fig. 4(b)] and the
solution agrees very well with that obtained by means of SA
procedure.

In a corresponding way, the fitness value for presents
a different rate of convergence depending on the iteration
number. For example, at the first iterations [Fig. 5(a)],
decreases of about 300 in 90 iterations, whereas in the range
around (Fig. 5(b)), the decrement is about 0.6 in
100 iterations. This fact can be due to a reduced number of
different chromosomes. This hypothesis seems to be confirmed
also by the results of Fig. 6, which shows the values of the
fitness function of each individual of a population during
the iteration process of the GA: at the iteration
(indicated as convergence iteration), the fitness values of

(a)

(b)

Fig. 4. Bistatic scattering width. Nonlinear values obtained by using sta-
tistical cooling approach (convergence values) and GA at the iterations (a)
k = 0, 10, 20, 80, 200 and (b)k = 10000, 30000, 50000. (Nonlinear
circular cylinder:a = 0:3�1, "(1)z;z(x; y) = 1:1"0, "(3)z;zzz(x; y) = 0:1"0,
� = 50, Q = 1024, }m = 4 � 10�4, }c = 0:7).

the individuals of the same population are about the same.
This is a clear indication that many individuals of the same
population, are very similar. Moreover, it is evident that further
improvements in the fitness function value, would require a
lucky random mutation in a chromosome of an individual of
the population.

Finally, Fig. 7 shows the values of the bistatic scattering
width computed at the convergence iteration by using the GA
procedure, the SA approach, and iterative methods based on
the Born approximation (BA) [23], the distorted-wave Born
approximation (DWBA) [27], and the Rytov approximation
(RA) [28]. The plots concerning the GA and SA procedures
are in good agreement and significantly differ from those
obtained with approximate techniques. This fact is due to the
magnitude of the nonlinearity: it is well known [19], [28] that
at the increase of the nonlinearity the approximate techniques
are unable to exactly predict the harmonic generation and the
corresponding harmonic mixing effect.
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(a)

(b)

Fig. 5. Behavior of the fitness function versus the number of iterations: (a)
0 � k � 90, (b) 9980 � k � 10080.

Fig. 6. Values of the fitness function for each individual of a population at
different iterations.

Similar conclusions can be achieved from Fig. 8, which
shows the error parameter defined as

(20)

Fig. 7. Bistatic scattering width. Convergence values computed by using the
GA, the statistical cooling procedure, and approximate iterative methods.

Fig. 8. Values of the parameter� for the GA and the iterative methods
based on distorted Born approximation, Rytov approximation, and Born
approximation, at the convergence iteration.

where is the first harmonic component of elec-
tric field computed at th discretization subdomain by using
the SA procedure (considered as the reference solution) and

indicates the same quantity as computed at the
convergence iteration, either by GA or by any one of the
aforementioned approximated approaches (BA, DWBA, RA).
For the sake of clarity, in Fig. 8 we show only the plot of
the DWBA solution because, at the convergence iteration, the
other approximated solutions (BA, RA) do not significantly
differ from this one.

V. CONCLUDING REMARKS AND GENERAL OBSERVATIONS

In this paper, a numerical approach based on a GA to
computing electromagnetic scattering by weakly nonlinear
objects, has been developed. The mathematical formulation
describes the nonlinear interactions between the electromag-
netic field and scatterers in terms of nonlinear equivalent
electromagnetic sources and by using truncated Volterra’s
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functional series. Weak nonlinearities are assumed such that
harmonic generation may be present, but shock-wave forma-
tion is excluded. Then a harmonic representation of the electric
field has been achieved, and the solution of the problem has
been reduced to the solution of a set of coupled nonlin-
ear integral equations. After discretization, an optimization
process has been formulated, in which a nonlinear fitness
function has been deduced. A GA has been applied and the
capabilities of the approach have been assessed by means
of numerical simulations. The obtained results show that the
present approach may represent a computational tool able to
deals with effects induced by nonlinearity. This point is of
great interest as at high excitation power levels, at radio as well
as at optical frequencies, these nonlinear effects are present
and should be taken into account by proper computational
methodologies.

In addition, a potential further development of the present
approach may lie in an extension to the field of inverse
scattering problems. In many cases, in fact, the nonlinearity
might be considered as an additional degree of freedom for
assessing the dielectric properties of an unknown scatterer
(e.g., the generated higher harmonic waves might be used to
glean more information about the scatterers).
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