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An Iterative Algorithm Based on the
Measured Equation of Invariance for the

Scattering Analysis of Arbitrary Multicylinders
Jun Chen and Wei Hong,Member, IEEE

Abstract— It is known that the measured equation of in-
variance (MEI) is generally valid for outgoing waves just as
other absorbing boundary conditions (ABC’s). However, for the
scattering problem of multicylinders, the scattered field from one
cylinder is just the in-going incident wave to other cylinders. So
the MEI cannot be directly applied to the scattering problem
of multicylinders. In this paper, an iterative algorithm based
on the MEI is first proposed for the scattering problems of
multicylinders with arbitrary geometry and physical parameters.
Each cylinder is coated with several layers of meshes and the
MEI’s are applied to the truncated mesh boundaries. It has been
demonstrated that the MEI can truncate the meshes very close
to the surfaces of the cylinders and then results in dramatically
savings in memory requirements and computational time. The
MEI coefficients of each cylinder can be stored and reused to
form the sparse matrices during each iteration procedure as they
are independent of excitations. So more central processing unit
(CPU) time is saved as the MEI coefficients are calculated only
once in the algorithm. The method can be applied to problems of
various kinds of multiple cylinders with arbitrary configurations
and cross sections. Numerical results for the scattered fields are
in good agreement with the data available. Finally, examples are
given to show the iterative algorithm applicable to electrically
large multicylinders coated with lossy media.

Index Terms—Iterative algorithm, measured equation of in-
variance, multiple scattering.

I. INTRODUCTION

T HE multiple scattering of a plane wave by a system
of cylinders is important in a variety of practical

applications. For instance, the solution can be used to study
the propagation of electromagnetic waves through a city
where complex skyscrapers can be modeled by a collection
of cylinders.

The scattering by conducting cylinders of arbitrary cross
section was investigated by Twersky in 1952 [1], who gave
the total field as an incident field plus scattered fields of various
orders generated by an iterative procedure and later expressed
the multiple-scattering solution as a series of Hankel function
of the single-scattering cylinder. The formula is valid when
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the separation is large compared to the cylinder. Since then,
many researchers made attempts to deal with more practical
configurations with kinds of methods [2]–[9]. For example,
Elsherbeni and Hamid [7] coped with cylinders of arbitrary
cross section and spacing between cylinders approaching zero.
However, little effect is made to handle with other kind of
cylinders except conducting ones. The reason is explicitly
that the existing field solution of a single conducting cylinder
enables the solution of multiple scattering simple whatever the
method is, which, therefore, is naturally believed to illustrate
the method effectively. Although a complex multicylinder
system is, say, not within a restriction of the presented method
theoretically, no example and data are available for complex
media, i.e., inhomogeneous dielectric or lossy coated conduct-
ing cylinder. In fact, complicated geometry and complex media
often make it impossible to complete the formula deduction
and require a large executive time to achieve a good accuracy
by these methods.

In the present paper, we attempt to cover a wide range
of multiple scattering problem by a novel iterative algorithm
based on measured equation of invariance, which involves a
system of conducting cylinders with arbitrary cross sections,
a system of inhomogeneous dielectric cylinders with arbitrary
cross sections, and a system of arbitrarily shaped conducting
cylinders coated with lossy inhomogeneous dielectric media.
The benefit of this presented method is that arbitrary geometry
and complex media are well rendered in the finite-difference
(FD) equation deduced. Thus, the effects by discontinuity and
inhomogeneity and so on are easily involved for a complicated
system.

The FD once was regarded as a memory-consuming method
in comparison with the boundary methods, because the trun-
cation boundary should be far from the scattering surface
if conventional absorbing boundary conditions (ABC’s) are
used [10]. So less literature combines the iteration procedure
with the FD method. Fortunately, the measured equation of
invariance (MEI), presented in 1994 [11], is able to truncate
the boundary much closer to the surface. This new technique
has been successfully applied to various electromagnetic (EM)
problems [12]–[15]. In this paper, the measured equation of
invariance (MEI) method is first used to the iterative procedure
for the multiscattering problem. The invariance characteristic
is made full use of during the iterations, which means the MEI
coefficients for each node at the truncation may not change
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Fig. 1. Scheme of multiple scattering byN cylinders.

as they are invariant to different excitations, thus, they are
calculated only once and can be stored and reused. Details
will be presented in the following sections.

II. FORMULA

Consider parallel infinitely long circular cylinders as
shown in Fig. 1. These cylinders are situated such that their
axes are parallel to theaxis of the global coordinate system.
Each cylinder has its own local coordinate whose original is
located at in the global coordinate. Cross sections of
cylinders are described by curve , where is the local
vector. These curves are useful when conformal meshes are
made around cylinders. As there is no discontinuity occurring
along the axis, TM (or TE) polarized wave can exist in the
system. Denoting the longitude component of the field by,
one can write an incident plane wave of the form

(1)

And the Helmholtz equation holds in the system

(2)

A. Measured Equation of Invariance

The concept of MEI is very important and basic for the
iterative (IA)-MEI. Therefore, the method should be briefly
presented. The problem dealt with in the paper involves
complex media, so the technique to decouple the electric
metrons and the magnetic metrons, which is first presented in
[12], is necessarily applied. The node configuration for MEI
is shown in Fig. 1 and the MEI may be represented by a local
linear equation of the type

(3)

where are the MEI coefficients and will be determined
by metrons, which are defined on the scattering surface; the
superscript “” stands for scattered field.

For the general case, both the equivalent electric current
and magnetic current exist on the surface, so

the scattered field is

(TM wave) (4)

(TE wave) (5)

where are the position vectors of MEI nodes, the position
vectors on the surface, and the outward normal direction
of the surface. is the Green’s function of free-
space, , and is
the Hankel function of the second kind.

Usually, the metrons may be chosen as

(6)

where is the circumferential length of the cylinder.
In (4) or (5), the scattered field produced by the metrons

corresponding to the equivalent electric current and the equiv-
alent magnetic current is not independent. To decouple these
two fields, a simple decomposition technique is used by
considering that

(7)

where

(8)

(9)

and
(TM)
(TE),

(TM)
(TE).

(10)

Substituting the scattered fields and produced by
electric and magnetic metrons into MEI, respectively, yields

(11)

(12)

It is easy to understand that if the MEI is valid for electric
and magnetic metrons separately, it should be valid for any
combinations of electric and magnetic metrons due to the
homogeneity of MEI. Solving the system of linear algebraic
(11) and (12) simultaneously, we obtain the MEI coefficients

.
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B. Finite-Difference Equation and Scattered Field

Conformal meshes are made around cylinder with dielectric
coating. For the interior nodes, five-point FD equations are
necessarily applied

(13)

where formulas for are presented in [9].
Equations (3) and (13) can be used to form a sparse matrix

equation. However, it should be noticed that the field in (3) is
the scattered field while that in (13) is the total field. So it is
necessary to split the fields for different demands. We choose
the layer next to the truncated boundary as the splitting loop to
achieve the separation. Field in the area closed by the splitting
loop is the total field and that in the area outside the loop is
scattered field. Nodes of scattered field are denoted by open
circle dots while those of total field are marked by solid ones in
Fig. 2. With the relation among the total field, incident field,
and scattered field, which is

(14)

field of nodes on the splitting loop has the FD equation of
the form

(15)

and (3) is written as

(16)

Thus, in the whole computational area the matrix equation is
formed

(17)

where is a sparse matrix filled by (13), (15), and (16),
is a column matrix and consists of the scattered field values

at truncation nodes and the total field valuesat interior
nodes, is a given column matrix obtained by the right
side of (15) and (16) when the incident field is introduced. If

, then we have . The equivalent electric
and magnetic currents are then calculated according to the
solution. Finally, the scattered fields are calculated from the
equivalent currents based on (4) and (5), which, in terms of
operator matrix, is

(18)

C. Iteration Procedure

In a multicylinder system, discretization of the whole area
will make the computer source inefficient. Therefore, local dis-
cretization in the local coordinate is employed. In accordance
with the infinite scattering among cylinders, iterative procedure
may be considered the most logical approach to determine the
scattered field by multiple cylinders.

Usually, the iteration procedure assumes each cylinder to
be alone in the incident field, which does not take change
until the next iteration. Therefore, the first-order scattered field
comes from the excitation of each cylinder by the incident

Fig. 2. FD nodes, MEI nodes with scattered (on white nodes), and total (on
black nodes) fields.

plane wave only, while the second-order scattered field results
from the excitation of each cylinder by the sum of all first-
order scattered fields. Hence, this iterative process continues
until the solution converges. That is

(19)

From (18), the scattered field for theth cylinder in the th
iteration is

(20)

where represents the operator matrix for theth cylinder.
So (19) is rewritten as

(21)

in which

(22)

Equation (21) is the iterative procedure in form of matrix
equation. As it is similar for this iterative process to the idea
of the Jacobi algorithm for solving matrix equation, we call
it the Jacobi iteration.

A further look at the Jacobi iteration finds that scattered
fields of , , and have already been calculated and
remained unused when the scattered field for theth under
is to be calculated. It is easy to see that if the incident field
is modulated in time with these computed scattered fields,
the convergence can be possibly sped up. So we justify the
incident field for these cylinders in the th iteration by
instantly considering the effect of scattered fields. So the
scattered field for the first cylinder is

(23)

And taking into consideration the effect by the first scattered
field, the second cylinder has its scattered field as

(24)
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(a) (b)

Fig. 3. Two iterative procedures based on MEI. (a) Jacobi iteration. (b) Gauss–Seidel iteration.

Similarly, scattered field for theth cylinder is

(25)

Substitution of (25) into (19), yields

(26)

where

(27)

and is give by

(28)
in which is the unit matrix. This iterative process is
called the Gauss–Seidel iteration. Difference between these
two iterations is shown in Fig. 3.

The IA-MEI described above makes full use of the concept
of the MEI. Once the MEI coefficients for each cylinder
have been calculated during the first iteration, in response to
the idea of MEI, calculation of these coefficients does not
need repeating during the following iterations. Therefore, the
IA-MEI does not introduce extra computer burden.

Fig. 4. Scattering pattern by two cylinders(ka = 0:1; kd = 3; � = 10�).

III. N UMERICAL RESULTS

The scattering by multiple circular cylinders is calculated
and shown in Figs. 4–7. The radii of the cylinders are consid-
ered equal according to the configuration in [6].

Fig. 4 shows the scattered field for , while the
separation between the centers of the two cylinders is
and the incident angle . Fig. 5 presents the scattering
patterns based on the exact and the IA-MEI method for an
equispaced linear array of three cylinders. The radius and the
separation between the successive cylinders are and
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Fig. 5. Scattering patterns by three cylinders(ka = 0:75; kd = 2�;
� = 90�).

Fig. 6. Scattering pattern by four cylinders(ka = 0:5; kd = 2�; � = 45�).

Fig. 7. Scattering patterns by nine cylinders(ka = 0:5; kd = 2�;
� = 45�).

, respectively, while the incidence angle is .
The scattering pattern of a four-cylinder array located at the
vertices of a square, which has side length is depicted
in Fig. 6. The radius of each cylinder is , while the
angle of incidence is . Another two-dimensional (2-D)
array of nine cylinders is calculated and shown in Fig. 7. The
vertical and horizontal separations between the two successive
cylinders are with the radius and the

Fig. 8. Scattering pattern of three cylinders(a1 = 2:0�; a2 = 1:5�;
a3 = 1:0�; d = 2:0�; � = 45�).

Fig. 9. Pattern of two electrically large cylinder(a = 20:0�; d = 50:0�;
� = 45�).

incident angle . It is easy to find good agreement
between the results given by the exact solution and those by
this method.

The case of three cylinders of a 2-D array is calculated.
The geometry centers of the three cylinders are located at
the vertices of an equilength triangular whose side length is

. The cross sections of cylinders are shaped by a circular,
a square, and a hexagon with the diameter and
the side length and , respectively. The
incidence angle is . Scattering pattern is shown in
Fig. 8.

Then the scattering pattern of two electrically large circular
cylinders is computed and shown in Fig. 9. The radii are equal,
which is , and the separation is , the incidence
angle .

The scattering by two electrically large circular conducting
cylinders with coating is plotted in Fig. 10. The conducting
parts of the coated cylinders are the same as those in Fig. 9.
So it is with the separation. The left cylinder has its dielectric
coating changing along the periphery, four equal parts with
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Fig. 10. Pattern of two electrically large cylinder with coating
(a = 20:0�; d = 50:0�; t = 0:2�; � = 45�).

Fig. 11. Scattering pattern for three conducting circular conducting cylinders
with coating (a1 = 2:0�; a2 = 1:5�; a3 = 1:0�; t = 0:5�; d = 2:0�;
� = 45�).

two interval parameters. The right one has its dielectric coating
changing along the radial, two layers of equal thickness with
two parameters. Both the coating thicknesses of the two
cylinders are equal to . For the case of lossless coating, the
parameters are .
For the case of lossy coating, the parameters are

, . The angle of
incidence is .

Finally, the scattering field of three conducting cylinders
with inhomogeneous dielectric coating is depicted in Fig. 11.
Both the cases of lossless and lossy coating are calculated.
The size, the location and the cross section of the conducting
part of the cylinders are the same as those in Fig. 8. The
coating for each conducting cylinder is thick. Dielectric
coating for the circular cylinder is divided into four equal
segments along the periphery, filled at intervals by two kinds
of material (dark gray in the figure) and
(light gray in the figure). The square cylinder has its coating
made up of two dielectric layers, each of which has the
same dimension in thickness. The constitutive parameters for
the two layers are and , respectively. The
hexagon cylinder has its coating changed in two directions,

namely circumference and radial. The dielectric coating is
segmented into twelve parts, two layers outside each board
of the hexagon. Two types of material are distributed in such
a manner that the neighboring segments are made sure to have
different parameters. To compute the scattered field of the
three-coating-cylinder system, parameters for lossless media
are of the values that

, and for lossy media the parameters are
. The incident angle to the system

is still. The figure shows the asymmetry of the system
causes the asymmetry of the scattered field. The pattern for the
lossy case is no long similar to that for the lossless case just by
some attenuation in amplitude. Newly deep attenuation points
for the lossy pattern appear somewhere instead some old ones
disappear.

IV. CONCLUSIONS

The iterative algorithm based on measured equation of
invariance is proposed for the scattering problem of multiple
cylinders for the first time. The iterative procedure in terms
of matrix is derived. The present method is shown effective
and convenient with no limitation on configuration and media
for the problem.
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