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A Novel Wavelet-Based
Generalized Sidelobe Canceller
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Abstract—This paper presents a novel narrow-band adaptive
beamformer with the generalized sidelobe canceller (GSC) as the
underlying structure. The new beamformer employs a wavelet-
based approach for the design of the blocking matrix of the
GSC, which is now constituted by a set of regularM -band
wavelet filters. Such a construction of the blocking matrix can not
only block the desired signals from the lower path as required
provided the wavelet filters have sufficiently high regularity,
but it also encompasses the widely used one with ones and
minus ones along the diagonals as a special case. In addition, it
possesses two advantageous features. First, the eigenvalue spreads
of the covariance matrices of the blocking matrix outputs, as
demonstrated in various scenarios, are decreased as compared
with those of previous approaches. Since the popular least-
mean squares (LMS) algorithm has been notorious for its slow
convergence rate, the reduction of the eigenvalue spreads can, in
general, accelerate the convergence speed of the succeeding LMS
algorithm. Second, the new beamformer belongs to a specific type
of partially adaptive beamformers, wherein only a portion of the
available degree of freedom is utilized in the adaptive processing.
As such, the overall computational complexity is substantially
reduced when compared to previous works. The issues of choos-
ing the parameters involved for superior performance are also
addressed. Simulation results are furnished as well to justify this
new approach.

Index Terms— Adaptive beamforming, generalized sidelobe
canceller, wavelet filters.

I. INTRODUCTION

T HE design of adaptive beamformers is of importance in
various disciplines of signal processing applications such

as radar, sonar, and geophysical explorations [1]. In many
applications, it is not uncommon to use lots of sensors to
achieve better interference rejection as well as resolution. The
enormous amount of computations involved in this type of
arrays, however, may hinder them from practical implementa-
tions. To alleviate the computational overhead, two approaches
have been advocated in the literature.

The first approach is based on the technique of partial
adaptivity, in which only a fraction of the adjusting weights
is employed, thus leading to lower computational complexity
per iteration in adaptive processing. Several methods have
been addressed for designing an optimal partially adaptive
beamformer by minimizing the performance degradation (see,
e.g., [2], [3]).
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The second approach concerns the adaptive schemes, among
which the least-mean squares (LMS) algorithm, due to its
simplicity and robustness, has been widely used as the adaptive
algorithm. However, it is well known that the LMS algorithm
is notorious for its slow convergence rate, especially for signals
whose covariance matrices have widely diverse eigenvalues.
To overcome this difficulty, several cascade preprocessors such
as the Gram–Schmidt orthogonalization [4] and unitary trans-
forms [5], [6] have been suggested. These preprocessors try
to decorrelate the input signal before the adaptive processing,
resulting in faster convergence speed.

The Gram–Schmidt orthogonalization preprocessor is less
appealing since it requires more adaptive weights to achieve
the orthogonalization process. On the other hand, the uni-
tary transforms, which include several Karhunen–Loève-like
transforms such as the discrete Fourier transform, the discrete
cosine transform, and the wavelet transform comprise a set of
fixed orthonormal vectors. The transformed signals based on
these transforms are roughly uncorrelated and can be further
appropriately processed (such as normalization) to reduce the
sensitivity to the eigenvalue spreads of the covariance matrices
of the input signals. The recently introduced wavelet transform
has in particular received a great amount of attention [7], [8].
This new transform works effectively in analyzing nonstation-
ary signals, as it forms a frequency adaptive window on the
time-scale plane. Several variants of the wavelet transform
LMS algorithms have been addressed and demonstrated to
yield faster convergence behavior as compared with other
transform-based approaches [9]–[11].

The wavelet transform has also been incorporated in the
adaptive beamformer (WASPAB) [11]. The WASPB, which
employs the generalized sidelobe canceller (GSC) [12] as
the underlying structure, puts a wavelet transform processor
preceding the LMS algorithm and indeed exhibits faster null-
steering process. In this paper, we further our previous work
of [11] and propose a more succinct approach by ingeniously
combining the blocking matrix and the wavelet transform
process into a single unit.

This new unit is constituted by a set of regular-band
wavelet filters [13], [14]. It is shown that this new unit, as
the traditional blocking matrix in the GSC, can also block the
desired signals from the lower path as long as the wavelet
filters have sufficiently high regularity. This new unit, also
being referred to as a blocking matrix, encompasses the widely
used one with ones and minus ones along the diagonals
as a special case (for the look direction gain constraint).
This novel construction of the blocking matrix possesses
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two advantageous features. First, the eigenvalue spreads of
the covariance matrices of the blocking matrix outputs, as
observed in various scenarios, are decreased as compared with
those of previous approaches. This in general leads to faster
adaptive response of the succeeding LMS algorithm. Second,
the new beamformer belongs to a specific type of partially
adaptive beamformers, wherein higher dimensional adaptive
weights are mapped into lower dimensional ones, thus further
reducing the computational overhead. As a consequence of
these two characteristics, the computational complexity called
for is substantially reduced when compared to previous works.
The eigenvalue spreads and the dimension reduced are de-
termined by the parameters of the wavelet filters as well as
the corresponding matrix structure of the blocking matrix. To
facilitate the choices of these parameters, some suggestive
guidelines are also provided, aiming at superior performance.

This paper is organized as follows. Section II provides an
overview of the regular -band wavelets with an emphasis
on the properties relevant to the following derivations. In
Section III, we then develop our new wavelet-based GSC. The
relationship with the corresponding linearly constrained min-
imum variance (LCMV) adaptive beamformer is addressed.
The issues of choices of parameters involved are also treated.
Some simulation results are furnished in Section IV to confirm
the proposed approach. Section V concludes the whole paper.

II. REGULAR -BAND WAVELETS

Since the proposed approach relies on the regular-band
wavelet filters, in this section, we briefly review the corre-
sponding basic principles with an emphasis on some of their
properties which are relevant to the following development.
The rationale behind the wavelet decomposition is to represent
a signal by a superposition of basis functions called wavelets.
However, in contrast to the traditional Fourier transform,
the wavelets possess a constant relative bandwidth on the
logarithmic frequency axis, thus providing a more effective
tool for nonstationary signal analysis.

The -band orthonormal wavelet basis functions of
can be generated by a dilation and translation of a set of
prototype wavelets as

, where and denote the scaling
and translation parameters, respectively. In other words, any
square integrable function of can be expressed as

(1)

where are the corresponding expansion coefficients.
Under the framework of multiresolution analysis, the con-
struction of the -band wavelets can be carried out by
first determining the scaling function which satisfies the
following two-scale difference equation [13]:

(2)

where denotes the cor-
responding (unitary) scaling filter with being the length of

the scaling filter and the superscript standing for matrix
transpose. satisfies the constraints of

and , where is the
Kronecker delta function with if and ,
otherwise. The prototype wavelets
, can accordingly be determined by the following two-scale

difference equations:

(3)

where
, denote the corresponding (unitary) wavelet

filters and satisfy

(4)

Note that the unitary scaling filter together with the
wavelet filters form a paraunitary
filter bank in which corresponds to a low-pass filter and

, correspond to band/high-pass filters
[13]. In addition, as in the two-band case [7], some regularity
conditions need to be imposed on the scaling function, leading
to the regular -band wavelets [13], [14]. Several approaches
have been addressed in [13], [14] for the construction of-
regular -band wavelet filters of minimal length .
The regularity condition also guarantees that the-regular

-band wavelet filters have vanishing moments, i.e.,

(5)

From the vanishing moment property, we can deduce the
following useful property:

Lemma 1: For any integer , we have

and (6)

Proof: Using the binomial expansion of
leads to

where we have used the vanishing moments property (5) of
the regular wavelet filters.
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III. T HE WAVELET-BASED

GENERALIZED SIDELOBE CANCELLER

In this section, we shall first review the GSC which under-
lines the structure of our proposed adaptive beamformer. A
novel wavelet-based blocking matrix is then introduced.

A. Background

Let us consider an equispaced linear array, which is com-
posed of -omnidirectional sensor elements. The narrow-band
beamformer output at time instant, , can be expressed
as , where and denote the weight
vector and the array received vector, respectively, and the
superscript denotes the Hermitian transpose. The received
vector , which is assumed to consist of a single signal
under the interference environment ofjammers, can then be
represented by

(7)

where and are the waveforms of
the desired signal and jammers, respectively

(8)

denotes the signal vector with an arrival angle is the
reference point of the linear array, with

and being, respectively, the wavelength and sensor
distance

corresponds to the jammer arriving from
direction , , and is the additive receiver
(white) noise.

The LCMV beamformer considered by Frost [15] deter-
mines the weight by minimizing the output power under
some appropriate linear weight constraints. This approach can
be expressed by the following linear constrained optimization
problem:

subject to (9)

where is the data covariance matrix
with denoting the expectation operator, and are an

(full column rank) constraint matrix, and an
response vector, respectively. In particular, if we consider the
mainbeam derivative constraints, which have been utilized to
achieve a flatter mainbeam response so that the array is less
sensitive to the steering errors [16], [17], [18], the
order derivative constraints then require that

(10)

where the matrix corresponds to the order
derivative constraint matrix as

(11)

with

(12)

Fig. 1. The structure of the GSC.

in which we have used the expression of as given in (8).
The GSC reformulates the LCMV to facilitate more efficient
implementations as well as performance analysis. The basic
principle of the GSC is to decompose the weight vector
into two components as shown in Fig. 1. The first component

, which stands for the fixed target signal filter of the GSC,
accounts for the constrained part of the LCMV. The second
component, denoting the unconstrained and adaptive part, can
be represented as , where is constituted by a basis of
the null space of . As a consequence, (9) can be rewritten
as the following unconstrained problem:

(13)

where and . The solution of (13) can
be easily determined as

and
(14)

B. The Proposed Wavelet-Based GSC

Let us now consider an (
denotes the largest integer smaller than or equal to) matrix

which is constituted by a set of-regular -band wavelet
filters , , as [19]

...
(15)

where , , is a
matrix as (16), shown at the bottom of the next page, in which

is a zero vector and is a prespecified integer. It
can be readily shown that all of the
columns of form a linearly independent set by using the
orthogonality of the unitary wavelet filters as given in (4). In
particular, if is a multiple of , then all of the column of
are orthonormal and , where is an identity matrix.
Note that does not correspond to a wavelet transform matrix
since it does not contain the scaling filter. Such a choice of

possesses a distinctive feature of “nulling” out the first few
terms of the Taylor’s series expansion of the desired signal,
as justified by the following theorem:

Theorem 1: The matrix blocks the first order
Taylor’s series expansion of the desired signal components,
i.e.,

(17)

where denotes the first -order Taylor’s
series expansion of with respect to the look direction
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and is equal to

(18)
Proof: Since the array has been assumed to be presteered,

we can, without loss of generality, take in the
following derivations. From the definition of as given
in (8), we can readily verify that

(19)

where is as defined in (12), and are some constants (for
example, if and if
and ). Let be the th column of ,

, then

(20)

where we have used Lemma 1 and the fact that every
can be expressed as ,

and . Since
every column of is orthogonal to , , we
can then obtain . It therefore
follows that

where we have used the fact that . It thus
completes the proof.

Theorem 1 implies that if the desired signal is well approx-
imated by the first terms of the Taylor’s series expansion
(or the wavelet filters in have sufficiently high regularity),
then the desired signal will be “blocked” by the matrix
as required by the blocking matrix of the GSC structure.
From a signal processing point of view, this may be explained
by the fact that the proposed wavelet-based blocking matrix
amounts to a high-pass spatial filter and thus can block the
desired signal, which only contains a low spatial frequency

component. To follow, we will then employ such as the
blocking matrix in our proposed GSC. It is noteworthy that
matrix is sparse and Toeplitz-like (the diagonal elements
of each are the same) and, thus, does not call for too
many computations when the data pass through the blocking
matrix (a detailed discussion of computational complexity is
provided in Section IV).

We can also note that when and , there is
only one wavelet filter, namely , which is
just the discrete Haar wavelet. If we further choose ,
then becomes an matrix as

...
...

...
. . .

...
(21)

The above corresponds to a normalized version of the
widely used blocking matrix (for the look direction gain
constraint), which contains ones and minus ones along the
diagonals [12], [20].

C. Relationship with the LCMV Beamformer

To follow, we consider the relationship between the wavelet-
based GSC described above and the associated LCMV beam-
former with the derivative constraints. First, we show that in
this case, the columns of are orthogonal to those of .

Theorem 2: Assume that is an derivative con-
straint matrix of (11), then the wavelet-based matrixas that
of (15) (assume that ) satisfies

(22)

Proof: Since is constituted by the -regular wavelet
filters, the proof then follows by noting that every column of

is orthogonal to that of , as shown in (20).
As a consequence of Theorem 2, if
, then the columns of and all together orthogonally

decompose the vector space , in which the weight vector
lies. Therefore, if denotes the weight vector of the
corresponding LCMV, then can be uniquely decomposed
as . Let the weight vector of the proposed
GSC be expressed as , where and
correspond to the weight vectors in the upper and lower paths
of the GSC, respectively. It has been shown in [20] and [21]
that , viz. the GSC is equivalent to the LCMV in
this case.

Next, consider the case when ,
in which the columns of together with those of do not
span . Let be any
matrix, which together with and , form an orthogonal

...
...

. . .
. . .

. . .
...

(16)
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decomposition of , then of the LCMV can now be
expressed as , where and
and orthogonally decompose . The adaptive term now
becomes

(23)

where , is assumed to be
nonsingular, and we have used the matrix inversion formula
in [22]. We can note that the first term of (23) is the same
as , where , whereas the
second term accounts for the role of the column space of

. In this case, the proposed GSC belongs to a partially
adaptive beamformer since only a portion of the
adaptive dimension is utilized. The computational complexity
called for is reduced as those of previously addressed partially
adaptive beamformers. Such an offset of the weight vector,
however, inevitably causes some degradation of the resulting
performance. More specifically, it can be shown that the array
output power of the proposed GSC can be
expressed as [23]

(24)

where
denotes the output power of the LCMV,

is the Euclidean norm, and we have used (23). There-
fore, the output power of the proposed GSC is greater
than that of the corresponding LCMV, . The results
of (23) and (24) can also be verified to be independent of
the chosen matrix by using the fact that

[20].
It is noteworthy that the array output power addressed above

are based on the Wiener solution. In practice, the resulting
output power is the convergent mean squares error (MSE) of
the LMS algorithm, which includes not only the MSE based
on the optimum Wiener solution but also the excess one due
to the employed noisy gradient [1]. As such, it is also crucial
to reduce the excess MSE of the GSC in order to attain deep
nulls in the resulting beampattern. For the proposed GSC, the
excess MSE depends on the choices of parameters, ,
and , which will be discussed in more detail in the next
subsection.

D. Choices of Parameters

In this subsection, we treat the issues of determining the
parameters , , and . Our consideration will be based on
the excess MSE, the adaptive response of the LMS algorithm,
and the output performance. As discussed above, to achieve
deep nulls in the beampatterns, we would like to choose these
parameters to render a small excess MSE or, alternatively,
misadjustment, which provides a measure of the excess MSE
as compared with that obtained by the optimum Wiener
solution. Also, since the convergence behavior of the LMS
algorithm is highly dependent on the eigenvalue spreads of the

covariance matrix of the blocking matrix output , where
and with being defined by (15).

We would pick these parameters to yield a smaller eigenvalue
spread of , which in general leads to faster response.
Finally, the parameters chosen should optimize the output
performance as well, which is measured in terms of maximum
output signal-to-interference-plus-noise-ratio (SINR).

It has been shown in [9] that when data pass through a
partial transform the eigenvalue spread and the misadjustment
of the succeeding LMS algorithm reduce. It is, however,
difficult to derive exact expressions for these two values.
In [5], they provide an alternative approach by deriving an
upper bound for the eigenvalue spreads of the transformed
data in the analysis of transform domain LMS algorithm and
then claim that the optimal transform is the one which can
attain the lowest upperbound. Likewise, to follow, we provide
upper bounds for these two values and then select parameters
which attain smaller upper bounds. As [5], although it is not
necessarily true that a smaller upper bound would imply a
smaller true value, it still provides some guidelines for the
choices of these parameters. Additionally, it has been observed
in various scenarios [23] (see also the provided simulations in
the next section) that choices of parameters based on these
suggestive rules are generally in agreement with the true
values.

If the desired signal, the jammers, and the contaminated
noise are assumed to be uncorrelated, then after some manip-
ulations (detailed derivations are provided in Appendix A), we
can obtain the following inequality for the misadjustment:

(25)

where is the step-size used in the LMS algorithm, ,
, and stand for the power of theth jammer

and contaminated white noise measured at each element of
the array, respectively. Similarly, we can also obtain the
following inequality for the eigenvalue spread of (detailed
derivations are provided in Appendix B):

(26)

where and denote the maximum and mini-
mum eigenvalues of the matrix inside the bracket, respectively,
and is assumed not to equal to zero.

Now, we consider how to choose the parameters, , and
to minimize the upper bounds of the inequalities of (25) and

(26). We can observe that both the upper bounds of (25) and
(26) decrease as increases (for fixed and ). It follows,
therefore, that the choice of wavelet filters with high regularity
is preferred for smaller misadjustments and eigenvalue spreads
of .

As for the choice of , note that since
summation of all eigenvalues of

, where is the matrix trace operator, we can readily
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deduce that
and (otherwise, it will be in contradiction).

Also, since the upper bound of (26) is dictated mainly by
the eigenvalue spread of , we can then choose to
minimize this value. Recall that when is a multiple of ,

for which . As
a result, we can choose as a multiple of , which then
yields a smaller upper bound of (26) (for fixed and ).
In particular, when , choosing would yield a
smaller upper bound of (26) as compared with that by using

, which was employed by of (21). This explains why
the proposed approach in general converges more rapidly than
that of the previous work which is based on .

The chosen parameters should also maximize the output
SINR. First, note that a wavelet filter with high regularity
exhibits a fast decaying response. Since the wavelet filters
stand for the high-pass spatial filtering (while the scaling filter
corresponds to the low-pass spatial filtering), high regularity
of the wavelet filters will then form a sharper and wider null
in the low spatial frequency part of the spatial response of
the blocking matrix. As such, the blocking matrix will block
not only the desired signal but also the interfering signals
which are supposed to pass through. Therefore, the SINR will
somehow degrade if the regularity of the wavelet filters is
chosen widely large, in particular for jammers in the vicinity
of the look direction. Additionally, from [13], we know that

wavelet filters with a larger will provide better
energy compaction, leading to a narrow null in the low spatial
frequency part of the blocking matrix spatial response. Along
the same line, a larger is, therefore, preferred as it will
cause less degradation of the resulting SINR. The detailed
performance analysis can be found in [23] and [24].

IV. EXPERIMENTAL RESULTS AND DISCUSSION

Some simulations are carried out in this section to assess
the proposed wavelet-based approach. We demonstrate that the
proposed one can perform as well as the previous ones but with
lower computational complexity. Also, the misadjustments of
the LMS algorithm and the eigenvalue spreads of are
investigated with different choices of parameters in various
scenarios. To follow, we consider two examples, both of
which are based on linear equispaced arrays consisting of
omnidirectional sensors spaced one-half wavelength apart. The
GSC, with various blocking matrices along with the derivative
constraints, is utilized for the determination of beamformer
weights. The received data is as that of (7). The employed

-regular -band wavelet filters are as those addressed in
[13].

Example 1: The array considered in Example 1 is com-
posed of 16 sensors. The interference environment consists of
one jammer. The gain constraint, i.e., , is used for the GSC.
The arrival angle of the desired signal is 0. The interference-
to-noise ratio (INR) is 25 dB and the contaminated white
Gaussian noise (WGN) is 10 dB.

Tables I and II list the misadjustments of the LMS algorithm
and the eigenvalue spreads of , respectively, for jammers
arriving from several different directions based on: 1) of

TABLE I
THE MISADJUSTMENTS OF THELMS ALGORITHM INVARIOUS

SCENARIOS OF EXAMPLE 1, WHERE THE PREVIOUS

APPROACHESUSE THE BLOCKING MATRICESB0 AND �B0

TABLE II
THE EIGENVALUE SPREADS OFRu IN VARIOUS SCENARIOS OFEXAMPLE 1,

WHERE THE PREVIOUS APPROACHESUSE THE BLOCKING MATRICESB0 AND �B0

(21); 2) as suggested in [20], where

(27)

in which with ,

, , ,

, , and
is a 3 3 zero matrix; and 3) the proposed wavelet-based

blocking matrix as given in (15) with various choices of
and ( is chosen to be the same as, as suggested in
the previous section). For a more revealing comparison, we
take and , resulting in a 16
6 blocking matrix, for the jammer with an arrival direction
of 55 . The resulting array output beampattern based on
an ensemble average of 50 independent trials by using the
proposed blocking matrix is shown in Fig. 2. The difference
patterns (gain difference between the proposed one and that
of the previous scheme) based on and are shown in
Figs. 3 and 4, respectively. From the figures, we can find that
the beampattern based on the proposed approach can attain
a deep null at the jammer direction more rapidly than those
based on and .

Example 2: The array considered in Example 2 is com-
posed of 48 sensors. The interference environment now con-
sists of two jammers. The second-order derivative constraints,
i.e., (with ), is used for the GSC. The incident
angle of the desired signal is still 0.

In Tables III and IV, we list the misadjustments and the
eigenvalue spreads of for jammers arriving from several
different directions based on: 1) the (normalized)
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Fig. 2. The output beampattern of Example 1 by using the proposed blocking
matrix.

Fig. 3. The difference pattern of Example 1 by using the blocking matrix
B0.

blocking matrix [25] as

...
...

.. .
. . .

. . .
. . .

... (28)

and 2) the proposed wavelet-based blocking matrix as given
in (15) with various choices of and ( is chosen to be
the same as ). For a revealing comparison, we take

and , resulting in a 48 10 blocking matrix, for
the jammers arriving from directions (45 , 50 ). The INR’s
are equal to 20 dB and 30 dB for jammers with directions
of arrival 45 and 50 , respectively, whereas the WGN has
a 10-dB SNR. The resulting array output beampattern based
on an ensemble average of 50 independent trials by using the
proposed blocking matrix is shown in Fig. 5. The difference
pattern based on is shown in Fig. 6. From the figures,
again we can see that the beampattern based on the proposed
approach can attain deep nulls at the jammer directions faster
than that based on .

Fig. 4. The difference pattern of Example 1 by using the blocking matrix
�B0.

TABLE III
THE MISADJUSTMENTS OF THELMS ALGORITHM IN VARIOUS SCENARIOS OF

EXAMPLE 2, WHERE THEPREVIOUS APPROACHUSES THEBLOCKING MATRIX B2

TABLE IV
THE EIGENVALUE SPREADS OFRu IN VARIOUS SCENARIOS OFEXAMPLE 2,

WHERE THE PREVIOUS APPROACHUSES THEBLOCKING MATRIX B2

Remarks:

1) Smaller upper bounds of (25) and (26) (with appropriate
choices of parameters) in general imply smaller mis-
adjustments of the succeeding LMS algorithm and the
eigenvalue spreads of . These values decrease as
increases for fixed , which is also in consistence with
(25) and (26). In contrast, these values decrease when

decreases only when is fixed. More
simulation results to confirm these observations can be
found in [23].

2) The misadjustment and the eigenvalue spread of
, in general, decrease as the jammer angle is

close to the mainlobe. To explain this (for clarity,
only one jammer case is considered), suppose that

, which is equal to the
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Fig. 5. The output beampattern of Example 2 by using the proposed blocking
matrix.

Fig. 6. The difference pattern of Example 2 by using the blocking matrix
B2.

first terms of . denotes the first
order Taylor’s series expansion of

with respect to the look direction and is equal to
.

Following the same steps as those of Theorem 1, it can
be shown that . Therefore, as given
in (35) can be reduced to

(29)

which can be approximated by

(30)

where we have used [23, eq. (6.57)]. It therefore fol-
lows that and the corresponding misadjustment will
decrease by (36). Similarly, we can demonstrate that the
eigenvalue spread will also decrease by using (41).

3) For a partially adaptive GSC with a blocking matrix
of size , the number of multiplications required in
the lower path to attain the desired beampattern is

, where is the number of iterations required for
the LMS to converge. The first term and the second
term of the above expression denote the numbers
of multiplications required when the data pass through
the blocking matrix and for adaptive processing per
iteration, respectively. Notice that since the former are
fully parallel [26], only one row-column multiplication
is counted. If, in particular, each row of only
consists of nonzero elements, then the number of
multiplications required is reduced to . Based
on this, the proposed wavelet-based GSC then requires

(31)

multiplications, where we have exploited the sparsity of
(15). As a consequence, we can note that the number
of multiplications per iteration then decreases from 32
(based on ) and 39 (based on ) to 24 (based on
the proposed ) in Example 1 and from 94 (based on

) to 62 (based on the proposed) in Example 2.
Also, as can be noted from Figs. 2–6 that the previous
schemes need more iterations and thus call for more
computations than the proposed one to attain deep nulls
in the jammer directions. These computational savings
will become even more substantial for a largerand
an appropriate choice of and .

4) The rationale of choosing the blocking matrices,
, and , as suggested in [20] and [25], is due

to their sparsity and simplicity. Other approaches such
as the singular value decomposition (SVD) and the
QR factorization can also be employed to design the
blocking matrix. These blocking matrices, however, are
generally not sparse and thus induce more computations
when data pass through (see the above discussion). Ad-
ditionally, the determination of these blocking matrices
are computationally more demanding. A comparison of
these methods can be found in [27].

V. CONCLUSION

In this paper, we describe a new low complexity wavelet-
based GSC in which the blocking matrix is constituted by
a set of regular -band wavelet filters. This new blocking
matrix, as justified analytically, can block the desired signal
as required, provided the employed wavelet filters are highly
regular. Furthermore, the outputs of the blocking matrix not
only have reduced dimensions, but their covariance matrices
in general also have smaller eigenspreads as compared with
those of previous works. As a result, the array can form the
desired null-steering beampatterns with substantially reduced
computational complexity. Some suggestions regarding the
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choices of parameters have also been addressed to achieve
smaller eigenvalue spreads, smaller misadjustments of the
LMS algorithm and larger output SINR’s. Simulation results
confirm the proposed wavelet-based approach as well as these
suggestive guidelines for the choices of parameters.

APPENDIX A

In this appendix, we derive the inequality for the misadjust-
ment of (25). Let us begin our derivations with (one
jammer case). The jammer covariance matrix is

...
...

.. .
...

(32)

where is the jamming power. The covariance matrix of the
jammer after passing through the blocking matrix can then be
expressed as

...
...

...
...

(33)

where (34), shown at the bottom of the page,
and are

the irrelevant cross terms. From (32), we can note thatis
an outer product of , so and thus has
only one nonzero eigenvalue as

(35)

where we have used the fact that summation
of all eigenvalues of . Next, consider the
covariance matrix of the blocking matrix output. Since
the jamming and the contaminated noise are assumed to be
uncorrelated and the desired signal has been blocked, we can
obtain , where

is the noise covariance matrix. The misadjustmentis
therefore given by

(36)

where we have used the fact that for small
[1]. Also, since [14], which implies that

(37)

we can then arrive at the following inequality:

(38)

where we have substituted (37) into (35) and used (36).
The above derivations can be extended to multiple jammers

case straightforwardly. Now, the jammer covariance
matrix becomes , where
correspond to the covariance matrix of theth jammer and we
have used the fact that the jammers are uncorrelated. Similar
to (35), is now bounded by

(39)

where , denotes the th jamming power and
. Following the

same approach as the one jammer case, we can get the
following inequality for the misadjustment

APPENDIX B

Here we derive the upper bound for the eigenvalue spread of
(26). As above, we also begin our derivations with the simpler
one jammer case. Invoking the inequalities of

and
[28] lead to the following inequality:

(40)

The inequality of (40) can be further simplified as

(41)

where we have used the facts that ,
, , and

...
...

.. .
...

(34)
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. Substituting (35) and (37)
into (41), we arrive at the following inequality:

(42)

The above derivations can also be extended to multiple jam-
mers case straightforwardly (assume that

. Similar to (35), the maximum eigenvalue
of , , is now bounded by

. Following the same approach as the one jammer
case, we can get the following upper bound for the eigenvalue
spread of :
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