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A Novel Wavelet-Based
Generalized Sidelobe Canceller
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Abstract—This paper presents a novel narrow-band adaptive ~ The second approach concerns the adaptive schemes, among
beamformer with the generalized sidelobe canceller (GSC) as the which the least-mean squares (LMS) algorithm, due to its
underlying structure. The new beamformer employs a wavelet- g jicity and robustness, has been widely used as the adaptive

based approach for the design of the blocking matrix of the . . .
GSC, which is now constituted by a set of regular}-band algorithm. However, it is well known that the LMS algorithm

wavelet filters. Such a construction of the blocking matrix can not IS notorious for its slow convergence rate, especially for signals
only block the desired signals from the lower path as required whose covariance matrices have widely diverse eigenvalues.
provided the wavelet filters have sufficiently high regularity, 1o gvercome this difficulty, several cascade preprocessors such

but it also encompasses the widely used one with ones and . . .
minus ones along the diagonals as a special case. In addition, itas the Gram-Schmidt orthogonalization [4] and unitary trans-

possesses two advantageous features. First, the eigenvalue spread®ms [5], [6] have been suggested. These preprocessors try
of the covariance matrices of the blocking matrix outputs, as to decorrelate the input signal before the adaptive processing,
demonstrated in various scenarios, are decreased as comparedresulting in faster convergence speed.

with those of previous approaches. Since the popular least-  tno Gram_Schmidt orthogonalization preprocessor is less

mean squares (LMS) algorithm has been notorious for its slow i . . . dati iah hi
convergence rate, the reduction of the eigenvalue spreads can, in@PP€aling since it requires more adaptive weights to achieve

general, accelerate the convergence speed of the succeeding LM$he orthogonalization process. On the other hand, the uni-
algorithm. Second, the new beamformer belongs to a specific type tary transforms, which include several Karhunenete-like
of p?;gfg% :dg:ati\cl)?f?ee:(;gfr?]rirgelth?I’izvgrc]ieiLemeogg/aatiri/oerti?gc(gstst]iﬁ transforms such as the discrete Fourier transform, the discrete
Z\éalsuch, thg overall computational complexity F?s su%stantiall;?. c?osme transform, and the wavelet transform qomprlse a set of
reduced when compared to previous works. The issues of choos-fixed orthonormal vectors. The transformed signals based on
ing the parameters involved for superior performance are also these transforms are roughly uncorrelated and can be further
addressed. Simulation results are furnished as well to justify this appropria’[e|y processed (SUCh as norma”zation) to reduce the
new approach. sensitivity to the eigenvalue spreads of the covariance matrices
Index Terms— Adaptive beamforming, generalized sidelobe of the input signals. The recently introduced wavelet transform
canceller, wavelet filters. has in particular received a great amount of attention [7], [8].
This new transform works effectively in analyzing nonstation-
I. INTRODUCTION ary signals, as it forms a frequency adaptive window on the

time-scale plane. Several variants of the wavelet transform

HE. deS|g_n (.)f gdapnve_beamformerg Is of mpo_rtance II.T%\/IS algorithms have been addressed and demonstrated to
various disciplines of signal processing applications suck

. . ield faster convergence behavior as compared with other
as radar, sonar, and geophysical explorations [1]. In ma
s o nsform-based approaches [9]-[11].
applications, it is not uncommon to use lots of sensors 1o

achieve better interference rejection as well as resolution. Th he wavelet transform has also been incorporated in the
) i aﬁaptive beamformer (WASPAB) [11]. The WASPB, which

enormous amount of computations involved in this type o . :
arrays, however, may hinder them from practical implement mploys the generalized sidelobe canceller (GSC) [12] as

tions. To alleviate the computational overhead, two approacﬁ & unc_jerlylng structure,. puts a wavelet tran_sfprm processor
have been advocated in the literature preceding the LMS algorithm and indeed exhibits faster null-

The first approach is based on the technique of part%‘eering process. In this paper, we further our pre_vious_work
adaptivity, in which only a fraction of the adjusting Weighté)f [11] and propose a more succinct approach by ingeniously

is employed, thus leading to lower computational Comp|exi&pmb|n|ng the blocking matrix and the wavelet transform

per iteration in adaptive processing. Several methods haU@C€SS into a single unit.
been addressed for designing an optimal partially adaptive' NS Néw unit is constituted by a set of regulaf-band
beamformer by minimizing the performance degradation (sékavelet filters [13], [14]. It is shown that this new unit, as
e traditional blocking matrix in the , can also block the
e.g., [2], [3)). the traditional block t the GSC Iso block th

desired signals from the lower path as long as the wavelet
Manuscript received August 4, 1997; revised October 29, 1998. This woplLt?rs have sufficiently hlgh regulgnty. This new unit, al§o
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two advantageous features. First, the eigenvalue spreadshef scaling filter and the superscript standing for matrix
the covariance matrices of the blocking matrix outputs, @asanspose.h, satisfies the constraints of, ho(k)ho(k +
observed in various scenarios, are decreased as compared With = §(1) and >°, ho(k) = VM, where §(1) is the
those of previous approaches. This in general leads to fagt@onecker delta function witld() = 1 if I = 0 andé(7) = 0,
adaptive response of the succeeding LMS algorithm. Secoontherwise. The prototype wavelets, (), m =1,2,--- M —

the new beamformer belongs to a specific type of partially can accordingly be determined by the following two-scale
adaptive beamformers, wherein higher dimensional adaptitéference equations:

weights are mapped into lower dimensional ones, thus further

reducing the computational overhead. As a consequence of L-1

these two characteristics, the computational complexity called Ym(t) = VM Z hin (k) P(Mt — k)

for is substantially reduced when compared to previous works. k=0

The eigenvalue spreads and the dimension reduced are de- m=12--M-1 (3)
termined by the parameters of the wavelet filters as well as

the corresponding matrix structure of the blocking matrix. Tohere h,, = [~m(0), ~o(1), -+ (L — DY, m =

facilitate the choices of these parameters, some suggestivé,---,M — 1, denote the corresponding (unitary) wavelet
guidelines are also provided, aiming at superior performandéters and satisfy

This paper is organized as follows. Section Il provides an
overview of the regulaii/-band wavelets with an emphasis Zhnl(k)hrn’(k + M) = §(m —m")6(1). 4)
on the properties relevant to the following derivations. In k
Section 1, we then develop our new wavelet-based GSC. The
relationship with the corresponding linearly constrained min- Note that the unitary scaling filteh, together with the
imum variance (LCMV) adaptive beamformer is addresse@avelet filtersh,,,,m = 1,2,---, M — 1 form a paraunitary
The issues of choices of parameters involved are also treatéiter bank in whichh, corresponds to a low-pass filter and
Some simulation results are furnished in Section IV to confirbtn,m = 1,2,---, M —1, correspond to band/high-pass filters

the proposed approach. Section V concludes the whole pagésl- In addition, as in the two-band case [7], some regularity
conditions need to be imposed on the scaling function, leading

Il. REGULAR M-BAND WAVELETS to the regulad/ -band wavelets [13], [14]. Several approaches

) . have been addressed in [13], [14] for the constructiorPef
Since the proposed approach relies on the regulaband (o jar A7-band wavelet filters of minimal length = M P.

wavelet filters, in this section, we briefly review the correqy o regularity condition also guarantees that fheegular
sponding basic principles with an emphasis on some of th%f-band wavelet filters havé vanishing moments, i.e.,
properties which are relevant to the following development.

The rationale behind the wavelet decomposition is to represent Z K b (k) = 0

a signal by a superposition of basis functions called wavelets. " ™

However, in contrast to the traditional Fourier transform,
the wavelets possess a constant relative bandwidth on the
logarithmic frequency axis, thus providing a more effective
tool for nonstationary signal analysis.

The M-band orthonormal wavelet basis functionsI3f{(R )
can be generated by a dilation and translation of a set of
prototype waveletg+,, (1)} =1 as{M e, (Mt — k), m = N
1,2,---.M — 1;4,k € Z}, wherei and k& denote the scaling Z(ko + k) hm (k) =0
and translation parameters, respectively. In other words, any K
square integrable functiofi(t) of L2(R) can be expressed as " =12 M —1 and »=0,1,---,P—1. (6)

m=12--M—-1 r=0,1,---,P—1. (5

From the vanishing moment property, we can deduce the
following useful property:
Lemma 1: For any integerky, we have

Nt Proof: Using the binomial expansion dfty + k)" =

f(t) = Z Z M%fm,i,kz/)m(Mit - k‘) (1) 27"—0 r! k.(()’—7)kz leads to

=1 ik r—a)h!

where{ ...} are the corresponding expansion coefficients. Z(ko ) R (R)

Under the framework of multiresolution analysis, the con-

struction of the M-band wavelets can be carried out by . |

first determining the scaling functiop(t) which satisfies the - Z [Z ;k("—ﬁki] P (K)
k

following two-scale difference equation [13]: S (r—a)lit?
L-1 . . r! (r—i) i —
o(t) = VI 3 ho(k)$(Mt — ) ) =2 gt [Z k hm“f)] =0
k=0 = ’
wherehg = [ho(0), ho(1),-- -, ho(L — 1)]7 denotes the cor- where we have used the vanishing moments property (5) of

responding (unitary) scaling filter with being the length of the regular wavelet filters. |
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IIl. THE WAVELET-BASED
GENERALIZED SIDELOBE CANCELLER

In this section, we shall first review the GSC which under-
lines the structure of our proposed adaptive beamformer. A
novel wavelet-based blocking matrix is then introduced.

Fig. 1. The structure of the GSC.

A. Background

Let us consider an equispaced linear array, which is coffi-which we have used the expressiomgf{#, ) as givenin (8).
posed ofV-omnidirectional sensor elements. The narrow-band® GSC reformulates the LCMV to facilitate more efficient
beamformer output at time instaht y(k), can be eXpressed|m_ple_mentat|ons as w_eII as performance analysus. The basic
asy(k) = wHx(k), wherew and x(k) denote the weight _prmuple of the GSC is to decqmp_ose the wglght veotor
vector and the array received vector, respectively, and tfg0 two components as shown in Fig. 1. The first component
superscript! denotes the Hermitian transpose. The receivés, Which stands for the_fixed target signal filter of the GSC,
vector x(k), which is assumed to consist of a single signd@ccounts for the constrained part of the LCMV. The second

under the interference environment.bfammers, can then be component, denoting the unconstrained and adaptive part, can
represented by be represented asBw,,, whereB is constituted by a basis of

the null space ofC”. As a consequence, (9) can be rewritten

as the following unconstrained problem:
x(k) = 5, (Fas(0:) + Y si(as@) +n  (7) J P
i=1 min(w; — Bw,)? R, (w; — Bw,) (13)

where s, (k) and s;(k),s = 1,2,---,.J are the waveforms of

the desired signal and jammers, respectively where C*B = 0 and C*'w; = f. The solution of (13) can

. be easily determined as
6,) = J(1-—no)ps J(2—nolps ., LJ(N—no)us 8
as(fs) = [e € e I ® w;=C(CTC)"f and w, = (B'R,B)"'BTR,w;,.
denotes the signal vector with an arrival angle n, is the (14)
reference point of the linear array,, = i—”dw sinf, with

Aw and d,, being, respectively, the WaveTength and sens&. The Proposed Wavelet-Based GSC

distancea, (6;) = [ mmadns edammadit . d VTR IE, o g now consider afV x ([5=2] + 1)(M = 1) (o]
i = _1,2, R c;)rresppnds to the_z Jammer arriving _fromdenotes the largest integer smaller than or equal)tmatrix
directiond;, yi; = 37 dwsinf;, andn is the additive receiver g \yhich is constituted by a set df-regularM-band wavelet
(white) noise. _ filters h,,,, m = 1,2,---,M — 1, as [19]
The LCMV beamformer considered by Frost [15] deter-

mines the weightw by minimizing the output power under H,
some appropriate linear weight constraints. This approach can BT — H, (15)
be expressed by the following linear constrained optimization :
problem: Hy

minw"R,w  subject toC*'w = f ) whereH,,, m =1,2,---,M —1,isa(|¥=ML| L 1) x N

matrix as (16), shown at the bottom of the next page, in which
where R, = &{x(k)x(k)"} is the data covariance matrixo, is a d x 1 zero vector and! is a prespecified integer. It
with £{-} denoting the expectation operat€F,andf are an can be readily shown that all of th N=MP| 4 1)(M —1)
N xS (full column rank) constraint matrix, and afi x 1 columns of B form a linearly independent set by using the
response vector, respectively. In particular, if we consider tigthogonality of the unitary wavelet filters as given in (4). In
mainbeam derivative constraints, which have been utilized g@rticular, ifd is a multiple of, then all of the column oB
achieve a flatter mainbeam response so that the array is Ig&s orthonormal an8”B = I, wherel is an identity matrix.
sensitive to the steering errors [16], [17], [18], th& — 1) Note thatB does not correspond to a wavelet transform matrix
order derivative constraints then require that since it does not contain the scaling filter. Such a choice of
CTw — T B possesses a distinctive feature of “nulling” out the first few
Tw =11,0,---,0] (10) , . . . :
terms of the Taylor's series expansion of the desired signal,

where theN x S matrix Cs corresponds to théS — 1) order as justified by the following theorem:

derivative constraint matrix as Theorem 1: The matrix B blocks the first(P — 1) order
Taylor's series expansion of the desired signal components,
CS = [co,c1,~~~,cs,1] (11) i.e.,
with BTagp_1)(6;) =0 (7)
ci =[(1—no)", (2= no), -, (N = ng)T", where agp_1)(6,) denotes the firstP — 1)-order Taylor's

1=0,1,---,5—1 (12) series expansion afs with respect to the look directiofiy
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and is equal to component. To follow, we will then employ sudB as the
blocking matrix in our proposed GSC. It is noteworthy that
(6, — 6o)'. matrix B is sparse and Toeplitz-like (the diagonal elements
0.=0, of eachH,,, are the same) and, thus, does not call for too
(18) many computations when the data pass through the blocking
Proof: Since the array has been assumed to be presteeredtrix (a detailed discussion of computational complexity is
we can, without loss of generality, tak®y = 0° in the provided in Section IV).
following derivations. From the definition afs(f.) as given ~ We can also note that whelW = 2 and P = 1, there is
in (8), we can readily verify that only one wavelet filter, namelh; = %[1,—1]? which is
d'as(6,) just the discrete Haar wavelet. If we further choabke- 1,
o8 then B becomes anV x (N — 1) matrix By as

0,=00

2r L 1 -1 0 0 0
Iy e, 1=1 110 1 -1 -0 o0

<—d>cz+2dc,, i=2.-,P—1 00 0 - 1 -1

ll)

wherec; is as defined in (12), and, are some constants (for The aboveB, corresponds to a normalized version of the

example, ifi = 2,d; = 0 and ifi = 3,d; = —j2xd,,/\, Widely used blocking matrix (for the look direction gain
and d; = 0). Let b, be thenth column of B, n = constraint), which contains ones and minus ones along the
'v(LWJ + 1)(M — 1), then diagonals [12], [20].
N—
bl e — Zlh (t = Dd)ei(k) C. Relationship with the LCMV Beamformer
" To follow, we consider the relationship between the wavelet-
MP—1 ‘ based GSC described above and the associated LCMV beam-
= Z h(B)(k+(1—no+(t—1)d))" =0 former with the derivative constraints. First, we show that in
k=0 this case, the columns @ are orthogonal to those &@s.
1=0,1,---,P—1 (20) Theorem 2: Assume thatCs is an N x S derivative con-

straint matrix of (11), then the wavelet-based mamias that

where we have used Lemma 1 and the fact that every (15) (assume thatf X=L| 4 1)(M —1) < N —5) satisfies

can be expressed as = ([2=ML| 4+ 1)(m — 1) + ¢,

m=12--,M-1 andt =1,2,---, | ¥=ML| } 1. Since BT’Cs=0 ifS<P (22)
every column ofB is orthogonal ta;, ¢ = 0,1---, P—1, we
can then obtaiB%c; = 0,7 =0,1,---, P — 1. It therefore Proof: SinceB is constituted by the’-regular wavelet
follows that filters, the proof then follows by noting that every column of
T B is orthogonal to that ofCs, as shown in (20). O
B as(0:) . As a consequence of Theorem 2rdfnk(Cs)+rank(B) =
= i N, then the columns o€ s and B all together orthogonally
=B" <CO + Z 1 l( Ao “’) ¢+ Zld c’] 0 ) =0 decompose the vector spage”, in which the weight vector

lies. Therefore, ifw,,, denotes the weight vector of the
where we have used the fact that(6,) = co. It thus corresponding LCMV, themv,,; can be uniquely decomposed
completes the proof. O aswe,, = wy — Bwj,. Let the weight vector of the proposed
Theorem 1 implies that if the desired signal is well approxGSC be expressed as = w; — Bw,, wherew; and—Bw,
imated by the firstP terms of the Taylor's series expansiorcorrespond to the weight vectors in the upper and lower paths
(or the wavelet filters iB have sufficiently high regularity), of the GSC, respectively. It has been shown in [20] and [21]
then the desired signal will be “blocked” by tH8 matrix that w, = w?, viz. the GSC is equivalent to the LCMV in
as required by the blocking matrix of the GSC structuréhis case.
From a signal processing point of view, this may be explained Next, consider the case wheank(Cs) + rank(B) < N,
by the fact that the proposed wavelet-based blocking matiixwhich the columns ofCs together with those oB do not
amounts to a high-pass spatial filter and thus can block theanR™. Let A be anyN x (N — S — (| =ML | +1)(M - 1))
desired signal, which only contains a low spatial frequenayatrix, which together witlB and Cg, form an orthogonal

hn(0) hm(1) -+ hp(MP—=1) 0 0
Ho_ o:;—,f hm:(o) hm(1) hm(l\/..flP—l) o .

oG o} han(0) hon(1) o hm(MP - 1)
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decomposition ofRY, then wope Of the LCMV can now be covariance matrixR,, of the blocking matrix outputi, where
expressed aw,,. = w; — Bw?, whereB = [B,A] andB R, = £{uu’’} andu = B¥x with B being defined by (15).
and Cs orthogonally decomposR?” . The adaptive term now We would pick these parameters to yield a smaller eigenvalue
becomes spread ofR,, which in general leads to faster response.
- . L Finally, the parameters chosen should optimize the output
-Bw; = -B(B'R.B) IBTR“JWf performance as well, which is measured in rferms of maximSm
=-B(B"R.B)"'B"R,w; output signal-to-interference-plus-noise-ratio (SINR).
—YA(ATR,;YA)—lATYHRwa (23) It has been shown in [9] that when data pass through a
partial transform the eigenvalue spread and the misadjustment
whereY =1I - B(B*R.B) 'B'R., R, is assumed to be of the succeeding LMS algorithm reduce. It is, however,
nonsingular, and we have used the matrix inversion formulfisticult to derive exact expressions for these two values.
in [22]. We can note that the first term of (23) is the samg [5], they provide an alternative approach by deriving an
as—Bw,, wherew, = (B'R,B) 'B’R.w/, whereas the ypper bound for the eigenvalue spreads of the transformed
second term accounts for the role of the column space @ita in the analysis of transform domain LMS algorithm and
A. In this case, the proposed GSC belongs to a partiaifen claim that the optimal transform is the one which can
adaptive beamformer since only a portion of & — 5)  attain the lowest upperbound. Likewise, to follow, we provide
adaptive dimension is utilized. The computational complexifypper bounds for these two values and then select parameters
called for is reduced as those of previously addressed partiq*&ich attain smaller upper bounds. As [5], although it is not
adaptive beamformers. Such an offset of the weight VeCt@lgcessarily true that a smaller upper bound would imply a
however, inevitably causes some degradation of the resultiggaller true value, it still provides some guidelines for the
performance. More specifically, it can be shown that the arr@yoices of these parameters. Additionally, it has been observed
output power of the proposed GS£;(= wR,w) can be in various scenarios [23] (see also the provided simulations in
expressed as [23] the next section) that choices of parameters based on these
03 :w;’Rxwf _W?RxB(BTRxB)qBTRwa \s/;lgugeesstive rules are generally in agreement with the true
= (09)" + |(ATR,YA) PATYH#R,w|*  (24)  If the desired signal, the jammers, and the contaminated
noise are assumed to be uncorrelated, then after some manip-
ulations (detailed derivations are provided in Appendix A), we

R,B)~* B'R,w, denotes the output power of the LCMV,¢an optain the following inequality for the misadjustmevit
|| -]| is the Euclidean norm, and we have used (23). There-

where(s°)2 2wl R,w,,, = wER,w; — wi R,B(BY
y 1 f ! !

opt.

fore, the output power of the proposed G is greater n{|N-MP e 9 9

than that of the corresponding LCM\,(pg)?.SgThe results = 5({ d J +1> <M20‘” +(M - 1)0">

of (23) and (24) can also be verified to be independent of ‘ (25)

the chosen matriA by using the fact thaBw] = w; —

R;1Cs(CLR1Cs) I CEwy [20]. where 7 is the step-size used in the LMS algorithm?,,
It is noteworthy that the array output power addressed above: 1,2, ---,.J, ando? stand for the power of théth jammer

are based on the Wiener solution. In practice, the resultiagd contaminated white noise measured at each element of
output power is the convergent mean squares error (MSE)tbé array, respectively. Similarly, we can also obtain the
the LMS algorithm, which includes not only the MSE basetbllowing inequality for the eigenvalue spreadBf, (detailed

on the optimum Wiener solution but also the excess one dderivations are provided in Appendix B):

to the employed noisy gradient [1]. As such, it is also crucial Amax(Ree)

to reduce the excess MSE of the GSC in order to attain dee

nulls in the resulting beampattern. For the proposed GSC, thé min(Re) NP I ) .

excess MSE depends on the choices of parametérsP, < M| 2] +1) 351 93 + 07 Amax(B'B) (26)
and d, which will be discussed in more detail in the next — 02 Amin(BTB)

subsection.

where Ayax(A) and \y,in(A) denote the maximum and mini-
mum eigenvalues of the matrix inside the bracket, respectively,
and o2 is assumed not to equal to zero.

In this subsection, we treat the issues of determining theNow, we consider how to choose the parameférs?, and
parameters\/, P, andd. Our consideration will be based ond to minimize the upper bounds of the inequalities of (25) and
the excess MSE, the adaptive response of the LMS algorith@6). We can observe that both the upper bounds of (25) and
and the output performance. As discussed above, to achi¢®8) decrease aB increases (for fixed and M). It follows,
deep nulls in the beampatterns, we would like to choose thakerefore, that the choice of wavelet filters with high regularity
parameters to render a small excess MSE or, alternativalypreferred for smaller misadjustments and eigenvalue spreads
misadjustment, which provides a measure of the excess MBER.,.
as compared with that obtained by the optimum Wiener As for the choice ofd, note that sincetr(BYB) =
solution. Also, since the convergence behavior of the LM§X="| + 1)(M — 1) = summation of all eigenvalues of
algorithm is highly dependent on the eigenvalue spreads of 18 B), wheretz(-) is the matrix trace operator, we can readily

D. Choices of Parameters
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deduce thah,.x(BYB) < tr(BYB) = (| Y=ML| +1)(M -

1) andAin(BTB) < 1 (otherwise, it will be in contradiction).
Also, since the upper bound of (26) is dictated mainly by
the eigenvalue spread ¢gB”B), we can then choosé to

TABLE |

SCENARIOS OF ExampLE 1, WHERE THE PREVIOUS

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 47, NO. 9, SEPTEMBER 1999

THE MISADJUSTMENTS OF THELMS ALGORITHM INVARIOUS

APPROACHESUSE THE BLOCKING MATRICES By AND Bg

L. ) . i Jamming previous approaches M=2
minimize this value. Recall that whehis a multiple of M, Angles B, B, P P=3 T P=i ] P-%
. 8 - £157 | 2997 x 107 7.639 X 1077 | 1598 x 1077 | 2.384 x 107% | 9.887 x 107° | 4.224 x 107°
BTB = T for which )\nlaX(BTB) = )\Inin(BTB) = 1. As 0= 350 [ T.160 x 1072 | 1.242 x 102 | 6.235 x 10=F | 5381 x 107 | 4.676 x 10~ | 3.860 x 07
1 H 0=455° | 1750 x 1072 | 1.197 x 1072 | 9.340 x 10~ 7.560 x 1077 | 6.328 x 10 7 | 5.066 < 107"
a_ rESU|t, we can ChOOS@ as a mU|t|p|e OfM’ WhICh then &= £75% : 1.895 x 10 1.264 x 10 1.011 x 10 7.601 x 107 6.335i 1077 [ 5.068 i 10~
yields a smaller upper bound of (26) (for fixddl and M).  Jemmius M=3 M M5
. . . Angles P=3 P=1 P=5 P=2 | P=3 P-3
In partlcular, whenM = 2, choosmgd = 2 would yleld a 5 - 4150 [ T976 % 107 | 6.928 x 10-7 | 2.863 x 103 | 4.518 x 105 { 3.015x 10% | 2830 x 10 ¥
; 135° | 5.700 x 1077 | 3802 x 103 | LOOI X 10 5 7.685 x 10~° | 5.069 x 103 | 3.067 x 10°°
smaller upper bound of (26) as Compared with that by USII"gJ 455° [ 5.672 x 1073 3‘795i10"3 J.sooi [ 7.366z 10~ /1.965i 1073170 10
d= 1’ which was employed bBO of (21)_ This explains Why 0 —£75° | 5.368 x 10 ° | 3614 x 10° | 18IS x 10 ° | 7.607 x 1077 | 5.072x 1073 [ 3114 10"
the proposed approach in general converges more rapidly than
that of the previous work which is based @&3y. TABLE II

The chosen parameters should also maximize the outpultHe EicenvaLue SPREADS OF R, IN VARIOUS SCENARIOS OF EXAMPLE 1,
SINR. First, note that a wavelet filter with high regu|arit)}NHERETHEPREVIOUSAPPROACHESUSETHEBLOCKING MATRICES Bg AND Bg

exhibits a fast decaying response. Since the wavelet filtergwming [ _previous approaches M =2
Angles B B P—1 P_3 | P=1 P=5
stand for the high-pass spatial filtering (while the scaling filter, s Pt e e o ey
corresponds to the low-pass spatial filtering), high regulam\p 95 18,082 x 107 | 1117 107 | 3110 107 2685 x 107 | 2,854 x 107 | 1931 x 107
659 | 4.549 x 10° | 1.077 x 10° | 4.663 3.77 3. - .53 3
of the wavelet filters will then form a sharper and Wider NUIlG—roe ot 1o a0 | fo | e oo I 2o o
in the low spatial frequency part of the spatial response o'rnAmmmg M3 M =1 M=35
ngl P—3 P4 =5 = = =
the blocking matrix. As such, the blocking matrix will blocK 5= s a1 107 | 5ast « 107 [ 1492 < 167 738w 07| T30 107 | 1105 1
not only the desired signal but also the interfering S|gnal¢ff;§” iii?qgj }:2?@83 AT 0 ;gixlgj ;4;0%‘ léggxig
. ., — £55° 1 2.831 x 8094 x 10° 489 x 675 x 10 ATT % X
which are supposed to pass through. Therefore, the SINR Wil=75 T 2570 x 107 | 1808 » 107 [ 0.087 x 107 | 8705 % 107 [ 2537 < 10° | T84 % 10°
somehow degrade if the regularify of the wavelet filters is
chosen widely large, in particular for jammers in the vicinity
of the look direction. Additionally, from [13], we know that (21); 2) B, as suggested in [20], where
(M — 1) wavelet filters with a largefi/ will provide better 5 0. 0. 0O
energy compaction, leading to a narrow null in the low spatial 0 ]§3 03 03
frequency part of the blocking matrix spatial response. Along B = |3 3 3 27
; ; [P 0 0s 03 B O
the same line, a larged is, therefore, preferred as it will 03 03 0 f’?
cause less degradation of the resulting SINR. The detailed 3 Y3 VB
erformance analysis can be found in [23] and [24]. . e O L
P y [ ] [ ] in which B = [bl, bQ, bg]T with by = bl, b2 =

Ib |
B |102, by = @63, b; = [0.87,-0.29,—0.29, —0.29]7,
by = [0,0.82,—-0.41, —0.41]", b3 = [0,0,0.71, —0.71]”, and

Some simulations are carried out in this section to assdksis a 3 x 3 zero matrix; and 3) the proposed wavelet-based
the proposed wavelet-based approach. We demonstrate thabilbeking matrix as given in (15) with various choices &f
proposed one can perform as well as the previous ones but vdtid P (d is chosen to be the same a4, as suggested in
lower computational complexity. Also, the misadjustments dlie previous section). For a more revealing comparison, we
the LMS algorithm and the eigenvalue spreadsRof are take M = 4 (d 4) and P = 3, resulting in a 16x
investigated with different choices of parameters in vario blocking matrix, for the jammer with an arrival direction
scenarios. To follow, we consider two examples, both af 55°. The resulting array output beampattern based on
which are based on linear equispaced arrays consisting ofan ensemble average of 50 independent trials by using the
omnidirectional sensors spaced one-half wavelength apart. Tieposed blocking matrix is shown in Fig. 2. The difference
GSC, with various blocking matrices along with the derivativpatterns (gain difference between the proposed one and that
constraints, is utilized for the determination of beamformef the previous scheme) based &y and B, are shown in
weights. The received datais as that of (7). The employedFigs. 3 and 4, respectively. From the figures, we can find that
P-regular M-band wavelet filters are as those addressed time beampattern based on the proposed approach can attain
[13]. a deep null at the jammer direction more rapidly than those

Example 1: The array considered in Example 1 is combased onB, and Bo.
posed of 16 sensors. The interference environment consists dExample 2: The array considered in Example 2 is com-
one jammer. The gain constraint, i.€;, is used for the GSC. posed of 48 sensors. The interference environment now con-
The arrival angle of the desired signal i%. 0he interference- sists of two jammers. The second-order derivative constraints,
to-noise ratio (INR) is 25 dB and the contaminated whitee., C3 (with ny = 24), is used for the GSC. The incident
Gaussian noise (WGN) is 10 dB. angle of the desired signal is stilP0

Tables | and Il list the misadjustments of the LMS algorithm In Tables Ill and IV, we list the misadjustments and the
and the eigenvalue spreadsRf,, respectively, for jammers eigenvalue spreads @&, for jammers arriving from several
arriving from several different directions based on:Hy of different directions based on: 1) the (normalizédx (N — 3)

IV. EXPERIMENTAL RESULTS AND DISCUSSION
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Fig. 2. The output beampattern of Example 1 by using the proposed blockifig. 4. The difference pattern of Example 1 by using the blocking matrix
matrix. Bo.
: . , . TABLE 11l
THE MISADJUSTMENTS OF THELMS ALGORITHM IN VARIOUS SCENARIOS OF
i , ExAMPLE 2, WHERE THE PREVIOUS APPROACHUSES THEBLOCKING MATRIX B2
Jamming previous M=2 M =4
Angles(8;,62) approach P=5 P=6 P=7 P=5 P4
( m“ F25%) [ 2220 % 10 7 [ 2.378 x 10~% | 2.013 x 104 | 1.721 x 107 | 1.285 x 1073 | 1128 x 10"
P {157, +50°) | 4.252 x 10°7 | 1084 x 10~° | 1.893 x 1073 | 1.798 x 102 | 1564 x 1073 | 1,372 x 1073
@ (F350,575%) [ 4.416 x 1073 | 1768 x 103 | 1.700 x 1073 | 1.627 x 102 | 1.605 x 1073 | 1.405 x 10~
= - 43 L 135°%) [ 2710 x 1073 [ 1.750 x 1072 | 1.690 x 1072 | 1.622 x 107 | 1.587 x 1072 | 1.391 x 1073
8 Jdmmmg, M =4 M=6 M-8
2 Angles(6;,62) P=7 P=5 P-6 P=7 P=5 P=6
£ (=15, +25%) [ 9.689 x 1077 [ 1208 x 1077 | 9.031 x 107 | 6.023 x 10~ 7 [ 802 x 1077 | 4.014 x 1077
B (—45%,4560°) [ 1179 x 107" [ 1.204 x 1077 [ G083 X 10 7 [ 6.023 x 1077 [ 8.036 x 1077 [ 4.017 x 1077
= (F35°,+75°) | 1204 % 10 7 | 1.204x 10 7 | 9.034x [0 7 | 6.024 x 1077 | 8.031 x 107 [4.016 x 1071
/s (—45°, 135%) | 1194 x 1073 ' 1204 x 10~° | 9.084 x 10~% | 6,024 x 10" 7 | 8.030 x 10 * | 4.016 x 101
-10r ' 1 TABLE IV
- :Snapshot=200
- :Snapshot=400 Jammer THE EIGENVALUE SPREADS OFR.,, IN VARIOUS SCENARIOS OF EXAMPLE 2,
s I WHERE THE PREVIOUS APPROACH USES THE BLOCKING MATRIX B
-80 -60 -20 0 20 40 60 80 Jamming previous M=2 M=4
. Angles(&l,Bz) approach P=5 P=6 P=7 P=5 P=6
Azimuth Angle (=15, +25°) | 3.080 x 10° | 9.032 x 107 | 7.745 x 107 | 6.655 x 102 | 3.901 x 10° | 2.832 x 10°
. . . . e 4r" +50°) | 3.760 x 100 | 4.158 x 10° | 3.798 x 10° | 3.780 x 10° | 3.568 x 10° | 3.253 x 10°
Fig. 3. The difference pattern of Example 1 by using the blocking matrix (735, 175%) | 5.636 x 1010 | 4.000 x 10° | 3.841 x 10° | 3.603 x 10° | 3430 x 105 | 2.938 x 10°
Bo. (—45°, +35°) | 2.938 x 100 | 3.975 x 10° | 3.807 x 10° | 3.580 x 10% | 3.493 x 105 | 2.830 x 10°
" Jamming M=4 M=6 M=8
Angles(01, 02) P_7 P=5 P-6 P=7 P= P=%
(—15°,125%) | 2.410 x 10° | 2.843 x 10° | 2.239 x 10° | 1.591 x 10° | 1.956 x 10° | 9.082 x 10
blocking matrix B2 [25] as (—45°,4+50%) | 2.964 x 10° [ 2.480 x 10% | 1,861 x 10° | 1.275 x 10° | 1.712 x 10% | 8.584 x 107
(+ 2, £75°) | 2.458 x 10° | 2.492 x 10° | 1,947 x 10° | 1.414 x 10° | 1,670 x (0P | 9.783 x 10
(S45°, ¥35%) | 2.676 x 10° | 2.663 x 10° | 2.036 x 10° | 1.541 x 10° | 1.792 x 10° | 9.089 x 10
1 1 -3 3 -1 --- 0 0
T _ - . .
BQ__\/% : .. .. .. .. .. : (28)
o ... 0 1 -3 3 -1 Remarks:

and 2) the proposed wavelet-based blocking matrix as givent) Smaller upper bounds of (25) and (26) (with appropriate
in (15) with various choices oM and P (d is chosen to be choices of parameters) in general imply smaller mis-
the same ad/). For a revealing comparison, we také = 6 aQJustments of the succeeding LMS algorithm and the
(d = 6) andP = 7, resulting in a 48« 10 blocking matrix, for eigenvalue spreads &,. These values decrease Bs

the jammers arriving from directions-@45°, 50°). The INR’s increases for fixed, which is also in consistence with
are equal to 20 dB and 30 dB for jammers with directions ~ (25) and (26). In contrast, these values decrease when
of arrival —45° and 50, respectively, whereas the WGN has M decreases only whef] =L | + 1) is fixed. More

a 10-dB SNR. The resulting array output beampattern based Simulation results to confirm these observations can be
on an ensemble average of 50 independent trials by using the found in [23].

proposed blocking matrix is shown in Fig. 5. The difference 2) The misadjustment and the eigenvalue spread of
pattern based oM, is shown in Fig. 6. From the figures, R,, in general, decrease as the jammer angle is
again we can see that the beampattern based on the proposed close to the mainlobe. To explain this (for clarity,
approach can attain deep nulls at the jammer directions faster only one jammer case is considered), suppose that
than that based oi3,. = [1,e0m . dMP=Um)T “which is equal to the



1492

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 47, NO. 9, SEPTEMBER 1999

3)

4)

—:Snapshot=200
-- :Snapshot=400
)
z
=
k=
O
-60 - I Jammer'1 I Jammer 2
-80 -60 -40 20 0 20 40 60 80
Azimuth Angle
Fig. 5. The output beampattern of Example 2 by using the proposed blocking
matrix.
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Fig. 6. The difference pattern of Example 2 by using the blocking matrix
Bs.

first M P terms ofa;(6;). r(p—1)(#1) denotes the first
(P — 1) order Taylor's series expansion &f;(f;)
with respect to the look directiofl, and is equal to

r(o-1(61) = r(60) + X0i5" % T les = (61 — o)’
Following the same steps as those of Theorem 1, it can
be shown thah! rr_;y = 0. Therefore, A, as given

in (35) can be reduced to

A =tr (BTR;B)
J+1)

(1=

M-1

> nE (e = rpoyy)|?

m=1

o3

d

(29)
which can be approximated by
2r
Ay~ ol N-MP\| 4 4, (61— 60)*"
d Aw
(MP)2P+1 (P!) 2
“ToPy1 | (2P) (30)

where we have used [23, eq. (6.57)]. It therefore fol-
lows that\; and the corresponding misadjustment will
decrease by (36). Similarly, we can demonstrate that the
eigenvalue spread will also decrease by using (41).

For a partially adaptive GSC with a blocking mati

of size N x K, the number of multiplications required in
the lower path to attain the desired beampatterVst
2K)T, whereT is the number of iterations required for
the LMS to converge. The first tertV and the second
term 2K of the above expression denote the numbers
of multiplications required when the data pass through
the blocking matrix and for adaptive processing per
iteration, respectively. Notice that since the former are
fully parallel [26], only one row-column multiplication

is counted. If, in particular, each row dB? only
consists of L nonzero elements, then the number of
multiplications required is reduced {&.+2K)T. Based

on this, the proposed wavelet-based GSC then requires

furvs(|

multiplications, where we have exploited the sparsity of
(15). As a consequence, we can note that the number
of multiplications per iteration then decreases from 32
(based onBg) and 39 (based oi3;) to 24 (based on
the proposed) in Example 1 and from 94 (based on
B;) to 62 (based on the proposési) in Example 2.
Also, as can be noted from Figs. 2—6 that the previous
schemes need more iterations and thus call for more
computations than the proposed one to attain deep nulls
in the jammer directions. These computational savings
will become even more substantial for a largérand

an appropriate choice af/ and P.

The rationale of choosing the blocking matricBs,

Bo, and B», as suggested in [20] and [25], is due
to their sparsity and simplicity. Other approaches such
as the singular value decomposition (SVD) and the
QR factorization can also be employed to design the
blocking matrix. These blocking matrices, however, are
generally not sparse and thus induce more computations
when data pass through (see the above discussion). Ad-
ditionally, the determination of these blocking matrices
are computationally more demanding. A comparison of
these methods can be found in [27].

N-MP

y J + 1>(M— 1)>T (31)

V. CONCLUSION

In this paper, we describe a new low complexity wavelet-

based GSC in which the blocking matrix is constituted by
a set of regulardM-band wavelet filters. This new blocking
matrix, as justified analytically, can block the desired signal
as required, provided the employed wavelet filters are highly
regular. Furthermore, the outputs of the blocking matrix not
only have reduced dimensions, but their covariance matrices
in general also have smaller eigenspreads as compared with
those of previous works. As a result, the array can form the
desired null-steering beampatterns with substantially reduced
computational complexity. Some suggestions regarding the
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choices of parameters have also been addressed to achiefrere we have used the fact th&t = 7 tr(R,) for smally
smaller eigenvalue spreads, smaller misadjustments of {hg Also, sincezf‘fz—ol | r|2 = M [14], which implies that
LMS algorithm and larger output SINR’s. Simulation results ’

confirm the proposed wavelet-based approach as well as these Ml T2
suggestive guidelines for the choices of parameters. Z |hmr| =M (37)
m=1

we can then arrive at the following inequality:

APPENDIX A
In this appendix, we derive the inequality for the misadjust- <M\ N=MPV N2 4 o200 — 1 38
ment of (25). Let us begin our derivations with= 1 (one Ms 2 d * (a“’ *oul )) (38)

jammer case). The jammer covariance makix is . .
J ) J % where we have substituted (37) into (35) and used (36).

R, = o2ajall The above derivations can be extended to multiple jammers
1 e—dm col eI(N=Dm (J > 1) case straightforwardly. Now, the jammer covariance
i 1 e (N2 matrix become®R,; = 37, Ry;, whereRy;, i =1,2,---,J
=0y . . . . correspond to the covariance matrix of thle jammer and we
Cj(zv'_l)m Cj(N'_Q)M 1 have used tr}e fact that the jammers are uncorrelated. Similar
(32) to (35), tr(B{ R ;B) is now bounded by
N_ MP J M-1 )
wheres? is the jamming power. The covariance matrix of the tr(B’R,;B) = <{TJ + 1) > 0% > |hhr
jammer after passing through the blocking matrix can then be i=1 m=1
expressed as J
P < MQMJ + 1) > o3 (39)
Rl X . X d P
R»
B'R,B=07| . .7 . : (33) where ¢%;, denotes theith jamming power andr; =
: : ' : [1, e/t o eI MP=Dp T 5 — 1 2 ... ] Following the
x xRy same approach as the one jammer case, we can get the
where (34), shown at the bottom of the page, = following inequality for the misadjustment
1,2, M —1,r=[1,&", ... JdMP=Dm]T gnd x are 7
the irrelevant cross terms. From (32), we can note Bhatis A < ﬂqu + 1) <MZU~2" + (M — 1)0,2)
an outer product o, sorank(BYR;B) = 1 and thus has T2 d =1 ’ "
only one nonzero eigenvalue as
Mol APPENDIX B
A =tr(B'R,;B) = o2 < {%J + 1) Z |hflr|2 Here we derive the upper bound for the eigenvalue spread of
m=1 (26). As above, we also begin our derivations with the simpler

(35) one jammer case. Invoking the inequalities Xf;,(.A) +
)\min(B) S )\11lin(A+B) and)\lllaX(A)+)\IllaX(B) 2 )\111ax(~’4+
where we have used the fact tha{B? R ;B) = summation B) [28] lead to the following inequality:
of all eigenvalues of BTR;B) = );. Next, consider the

covariance matrixR, of the blocking matrix output. Since  Amax(Ru) _ Amax(B"RuyB) 4+ Amax(B" R, B)

< . (40
the jamming and the contaminated noise are assumed to beAnin(Ry) = Amin(BTRyB) + Ain(BTR,B) (40)
uncorrelated and the desired signal has been blocked, we can . . -
obtainR, — BTR,B + BTR,,B, whereR,, 2 &{nnf} — fhe inequality of (40) can be further simplified as
o21 is the noise covariance matrix. The misadjustmatis MAmax(Ru) A7 + 02 Amax(BTB)
therefore given by Amin(Re) = 0ZAmm(BTB) (41)

M= ﬂ()\JJrar?L(M_ 1)<{MJ + 1)) (36) Where we have used the facts that..(BTR;B) = Ay,
2 d )‘min(BTRJB) = 01 )‘maX(BTRnB) = O—i)‘max(BTB)’ and

2 1T |2
R,, = o5|hlr|
. . N—MP
1 e—jdul . e_]dt—d JHl

y Cj(f/n 1 = o—d( L%J 1) m .

ejdLN_';prm ejd(LN_;\}pJ_l)m 1
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into (41), we arrive at the foIIowing inequality: constraint adaptive arrays with pointing errorfEEE Trans. Antennas
Propagat, vol. 40, pp. 975-981, Aug. 1992.
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