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Abstract—A model for electromagnetic scattering from natural In recent years it has been shown that a new description
rough surfaces described by means of fractional Brownian motion more suitable for natural rough surfaces, based on fractal
model is developed. The fractal surface model is employed to geometry, can be conveniently used [9]. Effectiveness of

obtain the Kirchhoff solution of the Stratton—Chu scattering in- f | f | f deli lidated
tegral. An analytical viable formulation is achieved and compared factal geometry for natural surface modeling was validate

to available classical solutions. Comparison with experimental by generating surprisingly realistic synthetic terrain surfaces
data is also provided. Results show advantages of proposed[9], [10]. More recently, field measurements have confirmed

solution from both theoretical and experimental viewpoint. that soil surfaces show self-affinity properties on a wide
Index Terms—Electromagnetic scattering by rough surfaces. range of scales [8] and that their spectra exhibit the shape
(/)= [8], [11]. For sea surfaceg,l/f)* spectra are both
obtained by field measurements and suggested by theoretical
considerations [12]. All these results lead to describe natural
HE problem of electromagnetic wave scattering from gurfaces by means of the fractional Brownian motion (fBm)
randomly rough surface has been widely studied becausgctal model [9], [13]. Therefore, there is an increasing
of its great relevance in the fields of telecommunications ag@dnsensus that it is of a great relevance to make use of this
remote sensing. In the last decades, several approaches tarBéel for computation of scattering from natural surfaces.
solution of this problem have been proposed and developedResults of some studies on use of fractal surface models for
Among them, the most popular ones are the Kirchhoff aghe problem of electromagnetic wave scattering have recently
proach [1]-[3], the small perturbation method [2], [3], antheen reported [12], [14]-[17]. All these studies employ the
the integral equation method [4], [5]: these approaches a&&chhoff approximation. In [12] and [14], attention is posed
based on different approximations and exhibit different ranggg normal incidence only; in [15]-[17] the fBm process
of validity [3], [5], [6]. In all cases, the surface is describegs approximated by a Weierstrass—Mandelbrot bandlimited
by a stationary stochastic two-dimensional (2-D) process, Wiifinction. This latter approach has the advantage that an
given probability density function (pdf) (usually Gaussian) angngjytical expression (containing a few random parameters) of
correlation function (usually Gaussian, exponential or comhfe syrface is available. By varying some fractal parameters,
nations of these). Accordingly, the surface can be characterizgflerent scattered field statistics actually observed in practice
by few parameters such as its height standard deviatiand gre gptained [16]. However, the final analytical expression of
its correlation lengttL.. The corresponding evaluated scattereghe scattered field is very involved and an analytical evaluation
fields are in excellent agreement with numerical simulatioRs jis mean-square value is not available.
and laboratory measurements (pgrformed by using artificial|y this paper, we explore use of the fBm model with the
rough surfaces generated employing above surface model§)chhoff approach and the small-slope approximation, and we
while comparison with real data is less successful (see, eghqytically evaluate in a closed form the mean-square value
[7]). This might be due to the presence of unmodeled volumg the field scattered along an arbitrary direction by a surface
scattering, but also to limitations of above surface model. Ifuminated by a plane wave. We obtain a general expression,
fact, mt_aasured natural surface height standard deviation ch greatly simplifies in some special cases. Expression
correlation length turn out to depend on the length of thg o nackscattering coefficient, i.e., of the normalized radar
considered profile [8] so that the process is not stationary. cross section, is also provided as a particular case. This allows
to elucidate the dependence of the scattered field on the surface
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because it best models natural rough surfaces (see [8]-[13])lt is important to note that the fBm process is nonstationary,
Furthermore, it is important to elucidate the fact that the fBiout its increments over a fixed horizontal distanceare
fractal characterization exhibits some important advantag&stionary isotropic Gaussian processes with zero mean and
with respect to a generic power law description, which hagriance equal toZ?=2#)72H_ This property allows the
sometimes been employed in literature, see e.g. [18]-[2&halytical evaluation of the backscattered power density, which
First of all, fBm surface model is able to well describe thes performed in the following sections. Due to stationarity
scale-invariance properties of natural surfaces [8]-[13] (segits increments, the structure functidd(7) = (|z(z,y) —
Section 11). Another advantage of the fBm description, asg(z’,%')|?) of an fBm process can be defined [22] and is equal
shown in this paper, is related to the analytical evaluatido
of electromagnetic scattering. In fact, power law spectra are 2 9H _ p(2—2H) 2H
not easy to analytically handle within the Kirchhoff approach D(r)=s7"" =T T ()
and numerical methods and/or Monte Carlq simulations are|, ihe above relations, the symbo)
usually employed to evaluate the normalized radar cro

section of a power law surface (see, for instance, [13]—[20]). It can be also shown [11], [23] that the power spectrum of
In the foIonvmg, we show that an analytical formulat|0n Ofan fBm 2-D process is

the normalized radar cross section can be obtained by using

the fBm fractal characterization with no extra simplifying S(k) = Sor™° (6)
assumptions with reference to classical cases [21].

stands for statistical

wherein
Il. SURFACE MODEL a=2+2H =8—-2D (7)
In this section, we describe and discuss the employed k= /K2 + K2 (8)
surface model. As already stated, we model natural surfaces v
by means of fBm 2-D processes. is the spatial frequency and, is the spectral parameter
A stochastic process(z,y) is an fBm surface if, for every (S, > 0).
z, y, «’, andy/, it satisfies the following relation [13]: We recall that structure function and power spectrum of
p o= an isotropic stochastic process with stationary increments are
riz(z,y) - 2(z'y') < C} related by the following expression [22]:
1 ¢ ¢? o0
= oo | <‘ —23272H> “« 0 D) =dn [ 1= dwn)SEwds. (@)
0
where By using this expression, it is possible to find [12] the
r=\@—2)2+ (y—y)? (2) relation betweens (5) and.5, (6)
H is the Hurst coefficient and is a real parameter measured  s? = 450 I3 -« sin(z(ii - a))B(l, - 1)
in [m=)]. It can be demonstrated [13] thatlf< H < 1, a a—2 2 2 2
process satisfying (1) exists and that (with probability one) a (10)

fBm sample surface has a f_ractal dimensibn= 3 — H . whereinI" and B are the Gamma and Beta functions [24],
Furthermore, the parameter is related to a CharaCte”St'Crespectively

length of the fBm surface called topothe®y[14], [12] Note that the power law spectrum of the fBm process

g = TWU—H) A3) has an exponent [see (6)] which is limited to the interval

2 < a < 4, as can be verified from (7) by recalling that

which is defined as the distance over which chords joinifg< H < 1. This explains the (otherwise “mysterious”) fact
points on the surface have a root mean square (rms) sldpat all measured soil surface spectra are power law ones with

equal to unity. a ~ 3 [8]-[10].
By using (3), (1) can be equivalently written as Finally, it is important to note that a surface satisfying (1)
., _ for every 7 is self affine on all scales so that it has details
Pr{z(z,y) - 2(z",1/) <§} on any arbitrarily small scale and is not differentiable in any
1 ¢ ¢? point (although it is continuous). Therefore, Kirchhoff approx-
- V2rTU—H) H [m eXp<_W> ac. imation, and more in general even the continuity conditions of

(4) tangential fields, cannot be used. We call such a surface a
“mathematical” fBm surface [15]. However, natural surfaces
Besides, it can be shown that fBm surfaces are self affifegve been shown to satisfy (1) only in a wide but limited
i.e., if we let Az(7) = 2(z,y) — 2(2’,%), it turns out that range of scales,,, < 7 < Tmax OF (See (6)] only in a wide
for anya > 0, Az(ar) has the same statistics a§ Az(7). but limited range of spatial frequencies,i, < # < Fmax-
As a consequence, the ratio between vertical and horizonBasides, the range of scales of interest for our scattering
surface variations (statistically) decreases as the considepedblem is limited on one side by the finite dimension of the
scale length increases, except that for= 1. illuminated surface and on the other by the fact that surface
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from its center to the receivep, and ¢ can each stand fok
or v, and the meaning ofy,4,, ?3 is illustrated in Fig. 1. In
addition, F},,(-) is a dimensionless function depending on the
average Fresnel reflection coefficients over the mean plane, on
the incidence and scattering angle and on the polarization. A
detailed expression of the functidh can be found in [2].

In Appendix A, we show how the use of (1) and (12) leads
to the following expression of the mean-square value of the
scattered field:

KBS PEpel?. 1 & (~)m2
()2y = M 17p | Fral — Y ey
(127 (47 Ro)? 27“42an=:0 22n(pl)2
I(ntt
(—qu (14)
(Floals) 7

Awﬂ?—% whereinv,, = ,/vZ +v2.
0 Equation (14) can be rewritten in a more convenient form
Fig. 1. Geometry of the problem. by using (3)

|ES P | Fyal?

012 k2T2 S (—1)”(7130 T)Qn
variations on scales much smaller than wavelength do n0(|E§ )| >= (47 Ro)? 2rA 2H 22n(n§y)2
affect the scattered field [16]. We refer as “physical” fBm n=0 '
surfaces [15] to those satisfying (1) only in a limited range of ) F("TH) (15)
scales. For such surfaces, use of Kirchhoff approach and of —(QW |T) e

2 z

small slope approximation is appropriate if some conditions

ON Tmin, Tmax. 2’ and H are satisfied (see Section 1V) and if This expression shows more clearly that each term of the series

at the smallest scales, the surface is sufficiently regular [13], dimensionless.

[25]. Equations (14) or (15) hold for fBm physical surfaces

satisfying (1) in a range of scales which includes the scale

ll. ELECTROMAGNETIC SCATTERING lengths appreciably affecting the scattered field (see Section IV

and Appendix A). It is important to note that only the height

increments of the surface are assumed to satisfy a stationary

In this section, we evaluate the mean-square value of th@chastic process and not the surface itself.
field scattered in an arbitrary direction by an fBm physical Equations (14) or (15) greatly simplify in the following three
surfacez = z(xr,y) illuminated by a plane wave. We follow cases: scattering in the specular directiop, = 0), Brownian

the Kirchhoff approach and use the small slope approximatiafyrface(H = 1/2), and nonfractal surfaced — 1).
A discussion on the validity of these approximations for real

natural surfaces at microwave frequencies is addressed in the o
next section. Let B. Specular Direction

A. General Case

In the specular direction, we havg = ¥, andd; = 0 (see
Fig. 1), so thatv, = vy = vzy = 0 andwv, = —2kcos;.
the incident field (see Fig. 1), whereirstands for: or v (hor-  Substituting these values in (15) we get
izontal or vertical polarization). Under the above mentioned , |E(i)|2|F E 272 (%)
hypotheses, the generic component of the scattered field (if|E()|") = 1= Te-2rA . 2.
the Fraunhofer region) is expressed by [2] (47 Ro) 2H  (V2kT cosy)m

. . 16
W P pq( 1, V2, 3)

) ia 1 C. Brownian Surface
* //A =p{=7v ) (12) A Brownian surface is obtained by settidfy= 1/2 in (1).

Its intersection with an arbitrary vertical plane is the graph of
a Wiener process [13]. If we l1éf = 1/2 in (15), recalling the

pES exp(—jk; - r) (11)

E =

wherev = k; — ka, i.e.,

v = k(sind; — sin s cos ) Taylor series expansion of the functi¢h+ t2)~3/2 we get
v, = —k sin ¥ sin ¥ (13) )2
Y : ° E() 2\ k2T2|E1(7)| |qu|22 A
v, = —k(cos 91 + cosda). <| Ty = (Ar B2 7r
In (11)-(13),k; andk, are the propagation vectors of the L2712
incident and scattered wave, respectivdlyis the wavenum- X - VPR 17)

4
ber, A is the area of the illuminated patch, afig the distance [(?UZT) + (vaT)Q]
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Equation (17) can be more easily obtained directly fromvhere R(¢) is the Fresnel reflection coefficient of the mean
(A.7) (see Appendix A) withH = 1/2 by using the relation plane.
[24] Scattering in the specular direction now occurs in the case
u of normal incidence. Substituting (21)—(23) in (16) we get
—_—. (18)
(u? + b2)2/2 o_ [ROPET  T(%)

Al
H z
D. Nonfractal Surface (V2kT)=

The limiting caseH — 1 corresponds to a surface withwhich, in the case of perfectly conducting surface, coincides
fractal dimension equal to two, i.e., a regular (nonfractafyith the expression found in [12].
surface. In this case, the topothéyas no meaning, while the ~ For the Brownian surface (17), use of (21)—(23) leads to
parameters becomes dimensionless and assumes the meaning
of rms slope of the surface. o0 — |RP(0)|2(\/§I€TCOS.0)4 ) (26)
SubstitutingH = 1 in (14) and recalling the series expan- P (V2KT cos 0)* 4 (2kT sin 9)?]3/2
sion of the exponential function, we get

/0 " Jo(br) exp(—ur)r dr =

(25)

Finally, for the nonfractal surface, we get

_ BB Bl

2 1 vz, 2 2
) (47 Rp)? 27“41/332 P <_ 21}332) ' Tpp = & O)F exp <— tan 19) . (27)

(|E
252 252
(19)

Few last words about the convergence rate of the series in
Equation (19) can be more easily obtained directly froif24). It decreases as the incidence angle increases aki#f as

(A.7) with H = 1 by using the relation [24] decreases. In all the plots that we show (see Section V), a
oo 1 b2 maximum of 100 terms was sufficient to ensure that the error
/ Jo(b7) exp(—ur?)r dr = % exp<—4—> (20) on the backscattering coefficient was less than 0.1 dB.
0 U U
It is interesting to note that (19) is coincident with the result IV. VALIDITY OF THE FORMULATION

obtained [1] in the case of very rough Gaussian surface with

Gaussian correlation function. In order to have an idea of values assumed by fractal param-

eters for real natural surfaces, we recall some results available
from literature. For natural soil surfaces,situ measurements
reported in [8] and [11] lead to fractal dimensiohk larger
In order to simplify the discussion, in the next sectionfhan 2, but smaller than 2.5 (this correspond6.to< H < 1)
we refer to the backscattering coefficient (also referred to afd to a spectral paramets ranging from 107 to 10°3
surface normalized radar cross section), defined as [5] [m2-2F] [i.e., see (2.10)] to a fractal parametet ranging
from 1076 to 10~! [m>~2#]. For example, on a rocky natural
(21) surface at Mt. St. Helens, a fractal dimensidéh = 2.35
(H = 0.65) and a profile spectral parameté equal to
3.57 x 10~* [m?—2H] (by use of [11, eq. (51)) and of (10)
and (3)], this corresponds t& = 2.8 x 102 [m?~2¥] and
T = 2.25 x 10~* [m]) were found [11]. Besides, for this
natural surface, (6) (i.e., “fBm-fractalness”) turns out to hold
vy = 2ksin ¥ for spatial frequencies ranging at least from 0.05 to 1004m
v, =0 (22) (i.e., scale lengths from less than 1 [cm] to more than 20 [m]).
With regard to sea surfaces, in [12] it is shown how a
Ve = —2kcos ¥ combination of theory and field measurements lead# te

and it can be demonstrated that under the small slope appr@ andZ” = 1.3x107* [m] (i.e., s* = 1.14x 107% [m*~2H])

E. Backscattering Coefficient

0 _ 47TR(2J<|E§S)|2>
rq W

when incidence and scattering directions coincide.
In the backscattering case, we ha%e= 9, ¥3 = 7, and
hence (setting? = ¥;)

imation [2] for isotropic gravity waves in the equilibrium range with a
friction velocity of 0.37 [m/s]. In this case, “fBm-fractalness”
Fun(9) = —2R,(9) cosd holds for scale lengths from a few centimeters to several
Ly(9) = F,(9) =0 (23) meters [12].
F,,(9) = —2R,(¥) cos . We want now to verify that above mentioned ranges of
_ scales include the scale lengths that appreciably contribute to
Then, use of (21)—(23) in (15) leads to scattering, so that calculations of Appendix A hold. Let us
o R (9)PRT? cos? i (=1)"(2kT sin 9)2" analyze the quantity
fo3 =
e H — 227 (nl)? f(7) = Texp[—2(ks cos 9)*721] (28)
r(z)

. (24) which appears in the argument of the integral of (A.7) for

2nt2 -

(V2KT cos0) ™7 the backscattering cas@. = 2kcos®). It can be easily




FRANCESCHETTIet al: SCATTERING FROM NATURAL ROUGH SURFACES

TABLE |

RANGE OF ScALES [7/10, 47] WHICH APPRECIABLY CONTRIBUTE TO
SCATTERING FROM THE CONSIDERED SOIL SURFACE FOR DIFFERENT
FREQUENCIES AND INCIDENCE ANGLE. SURFACE FRACTAL
PARAMETERS. D = 2.35, 52 = 2.8 x 1077 [m?>~2#]. RANGE OF
“fBm FRACTALNESS’: FROM ABOUT 0.5 cmT0 ABOUT 20 m

frequency \ incidence angle 9=0° B9=60°
500 MHz 0.12 - 4.8 [m] 0.36 - 14.0 [m]
1 GHz 0.04 - 1.6 [m] 0.12 - 4.8 [m]
5GHz 0.0035 - 0.14 [m] 0.013 - 0.41 [m]
TABLE 1

RANGE OF ScALES [7/10,47] WHICH APPRECIABLY CONTRIBUTE TO
SCATTERING FROM THE CONSIDERED SEA SURFACE FOR DIFFERENT
FREQUENCIES AND INCIDENCE ANGLE. SURFACE FRACTAL
PARAMETERS. D = 2.25, s2 = 1.14 x 10~2 [m2~2"']. RanGE
OF “fBm FRACTALNESS’: FROM ABOUT 1 ¢m TO SEVERAL METERS

frequency \ incidence angle 9=0° ¥=60°
500 MHz 0.04 - 1.6 [m] 0.10 - 4.1 [m]
1GHz 0.017 - 0.66 [m] 0.04 - 1.6 [m]
5GHz 0.002 - 0.08 [m] 0.005 - 0.20 [m]

1409

“physical” fBm surface these quantities should be related to
Tmins Tmax, 1, and H. The rigorous study of this point is
beyond the scope of this paper and is matter of current study. A
further discussion on this subject can be found in [25] and [26].
We want here only to show that a very simple condition for the
validity of the small slope approximation can be obtained by
the following heuristic considerations. It can be shown from
(5) that the mean-square slope (MSS) of chords joining points
at distancer is

o

Therefore, this MSS increases aglecreases and the maxi-
mum MSS is obtained for = 7,5, Wherer,,;, is the smallest
scale length which appreciably contributes to scattering. This
maximum MSS is

o

If we want this MSS to be less thaly10 we get

2
> — p(2—2H)  —(2—2H) (30)

min

2
> = -2, G2 (31)

T 1
min = — 107==7 T 32
7 0 (32)

demonstrated that the function of (28) reaches its maximum @y combining (29) and (32) we obtain

e <2k3\/ﬁcos19

) o

This point of maximum is proportional ta'/#. It can also
be verified that ifZ > 0.5, the function in (28) is much
smaller than its maximum for < 7/10 and+ > 47 and
the contribution of these intervals to the integral of (A.7) is
negligible. Therefore, only the scale lengths framil0 to 47
appreciably contribute to scattering.

1 H
2kT/H cos ¥ ) '
(29)

2kT cos ¥ < ; (33)

VH - 10750
It can be verified that natural surfaces considered at the

beginning of this section satisfy this condition if the frequency
is less than a few gigahertz.

V. NUMERICAL EXAMPLES AND
COMPARISON WITH MEASUREMENTS

In this section, we present and discuss some examples

By inserting in (29) the fractal parameters of the soil surfacmed at studying the backscattering coefficiefitevaluated
analyzed in [11] and, considering three different frequenciey means of (24). In particular, we first of all examine the

(500 MHz, 1 GHz, 5 GHz), we obtain the intervdis/10, 47]

scattering dependence on the incidence anyléhe Hurst

shown in Table I. They are all included in the interval otoefficientH, the fractal parametes?, and the frequency.

“fBm-fractalness.”

This study is followed by a direct comparison of our model

By inserting in (29), the fractal parameters of the seaith some widespread scattering models and with a set of
surface analyzed by [12] and considering the same thnewasured data.

different frequencies, we obtain the interviig10, 47] shown

In order to analyze the scattering dependence on the surface

in Table Il. Again, they are all included in the interval offractal parameters and on frequency, we show some results
“fBm-fractalness,” except that at 5 GHz and small incidenagbtained inserting in (24) realistic fractal parameters. By con-

angles.

sidering results of the discussion of Section IV, we can state

As a summary of above results, we can state that usuallijat usually, for the scale lengths of interest for microwave
for the scale lengths of interest for microwave scatteringcattering, natural surfaces can be modeled as fractals and that
natural surfaces can be modeled as fractals, and that valuakies ofH ranging from 0.5 to 1 and values ef from 10!
of H ranging from 0.5 to 1 and values of of the order of to 102 [m?~2] are realistic ones. Accordingly, we plot in

107%-10"! [m2~2"] are realistic ones.

Fig. 2 the backscattering coefficient at 1 GHa, polarization,

At this point, a discussion on the range of validity of ouas a function of the incidence angiefor s ranging from
model is in order. It is well known [2], [3], [5] that the 0.04 to 0.10 [M~2], ¢, = 15, and for (a)H = 0.5, (b)
Kirchhoff approximation holds if the surface mean radius of = 0.75, and (c) H = 1. Plots of Fig. 2 clearly show
curvature is much greater than the wavelength and that that the dependence on the incidence angle is weakened by
small slope approximation is valid if rms slope is much smaller decrease of (i.e., an increase of the fractal dimensify)
than unity. However, radius of curvature and rms slope aamd by an increase of. To better illustrate this point, in Fig. 3
not well defined for a “mathematical” fBm surface. For ave plot the backscattering coefficient vergsFig. 3(a), and
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Fig. 2. Backscattering coefficient’ at 1 GHz () polarization) as a function of the incidence angle $8rranging from 0.04 to 0.10 [AT 2], ¢, = 15,
and for (@) H = 0.5, (b)) H = 0.75, and (c)H = 1.

versuss?, Fig 3(b), ford = 10° (long-dashed line)y = 30° Examination of (24)—(27) shows that scattering by a fractal
(solid line), ¥ = 50° (short-dashed line). The same frequencyurface is frequency dependent; this dependence becomes
polarization, and dielectric constant of Fig. 2 have been usedeaker asH approaches unity and scattering becomes fre-
Analogous plots can be obtained fow polarization. Plots quency independent wheH = 1. To emphasise this point,

of Fig. 3 show that at low-incidence angles the backscattere@ plot in Fig. 4 the backscattering coefficient as a function
field decreases aB ands? increase, while at high incidenceof frequency, at (a)) = 10°, (b) ¥ = 30°, (c) ¥ = 50°, hh
angles the backscattered field increases vitland s2. This polarization, fors? equal to 0.07 [f2#], ¢, = 15, and for

is in agreement with intuition since a higher fractal dimensiod = 0.5 (long-dashed line)d = 0.75 (solid line), andd = 1

D corresponds to a rougher surface and the paramefergn  (short-dashed line). These plots clearly show thatAoe= 1

some way related to the surface slope. scattering is frequency independent while, f&r < 1, at



FRANCESCHETTIet al: SCATTERING FROM NATURAL ROUGH SURFACES 1411

10 m 1
=
T %
% & 6 8 10 f[GHgz]
H
-10
N
~
-20 ~
S~
S— — —
30 -30 — - .
-40
-40
@ @
Lo 10¢
g g
= . -
% T Q1 0.2 0.3 0.4 % 2 4 6 8 10 f[GHz]
’\ e e N S
] S — -10 \
L ~
-20 -20 S~ -
— — —_
-30 -30 - =
-40 -40
(b) ()
Fig. 3. Backscattering coefficient’ versus (a)H and versus (b)s? for
¥ = 10° (long-dashed line)y = 30° (solid line),¥ = 50° (short-dashed 10
line), at 1 and 5 GHzhh polarization,s, = 15. In (a) s> = 0.10 [m2 2] )
and in (b)H = 0.75. =
® 2 4 6 8 10 fIGHz]
low and intermediate incidence angles, the backscattered field -10 —
decreases as frequency increases. At higher incidence angles ™~ -
(¢ = 50°), for H = 0.5 the backscattered field still decreases  -20 o~
with frequency, but with a smaller rate, and fAr = 0.75 it - -
increases with frequency. This behavior can be explained by -30
considering that at higher frequencies smaller scale lengths are

involved in the scattering, and that at smaller scales the ratio -40*

between vertical and horizontal surface variations increases (©

_(se_e Section 1), so that a rougher surface is “seen” by tlh—% 4. Backscattering coefficient® as a function of frequency, at (a)

incident wave. ¥ = 10°, (b) ¥ = 30°, (c) ¥ = 50°, hh polarization fors> equal to
Let us now move to a direct comparison of our model with.07 [m¥— 2M], ¢, = 15, and forH = 0.5 (long-dashed line) = 0.7

some measured data that can be found in literature. We af&yd !ine). andH = 1 (short-dashed line).

compare our fractal model with the Gaussian surface height

model with Gaussian and exponential correlations, which, 8 @ Gaussian correlation function and

in our case, obtain a scattering formulation in a closed-form 2 i 27718
g WO (2ksing) = L |1 4 ZREsmO)” (36)
[2], [3] — —
= |R,(9)? - 2k* cos® ¥ - exp[—(2ka cos 9)?] for an exponential correlation function. In (34)-(36)and
L are the surface height standard deviation and correlation

W) (2 sin ). (34) length, respectively.
In the plots of Fig. 5, the case (reported in [7]) of a bare
Equation (34) is valid in the Kirchhoff and small slope apsoil surface, whose characteristic parameters are summarized
proximation and the functiob’ ") (.) is the Fourier transform in Table Il (surfaceA), is considered. Measured scattering
of the nth power of the surface correlation function coefficient data atl., ¢, and X' bands are taken from [4]
12 (2kLsin )2 and [7]. In Fig. 5 the measured data are represented by dots;
W(")(Qk sing) = —— exp {_7} (35) the scattering model relying on the fBm fractal surface model
2n an is represented by the solid line whereas the scattering model
LFor other correlation functions, a numerical integration is needed [&YiNg on the Gaussian surface model with Gaussian and
evaluate the function&/ ("), exponential correlation functions are plotted for reference with

i (2ko cos 29 m
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— 20¢ TABLE llI
% CHARACTERISTIC PARAMETERS OF THE NATURAL SURFACES CONSIDERED IN
= 19 FiGs. 5—7. RRMITTIVITY £, AND CLASSICAL SURFACE PARAMETERS o
2] . AND L ARE TAKEN FROM [7] AND [3]. FRACTAL PARAMETERS H
AND s2 Have BEEN OBTAINED BY FITTING DATA witH OUR MODEL
Surface & o [cm] L [cm] H 52 [m2-2H]
L-band 8.0-2.0
A (Fig.5) C-band 8.8-j1.0 0.40 8.4 0.5 4510
X-band 5.7-1.3
B (Fig.6) 19720 2.6 20.3 0.58 9.5 1073
C (Fig.7) 19-2.0 4.3 38.7 0.95 0.1

o° [dB]

provide similar results in good agreement with measurements.
This is not true for large incident angles At-band and for
20 30 40 50 60 70 small incident angles akt-band. In the first case, both models
O [degree] fail [see Fig. 5(c)], most likely because multiple scattering
~~~~~ and shadowing effects are not considered. Conversely, in the
—20F N e second case [see Fig. 5(a)], the fBm model provides a much
better agreement with real data. Therefore, we can state that for
the considered data set, the overall behavior of the scattering
\. model based on fBm surface description is superior to the one
based on classical surface descriptions. In order to obtain a
more quantitative comparison, we evaluate the rms difference
20 A between each model results and measured data

N 2
10 \ A — \/Zizl (O—gBi]; U?lBimeas) (37)

where N is the number of measured data points. We get

-10

-30

-40

o° [dB]

-10 A =5.9dB for fBm, A = 7.0 dB for exponential correlation,
and A = 68.9 dB for Gaussian correlation.

=20 Let us now move to a different measurement data set. The

10 case reported in [3, p. 992] is considered. The soil surface
parameters are summarized in Table Ill (surf@e whereas

40 the frequency is 2.25 GHz and polarizatiorvis Correspond-

ing measured and calculated backscattering coefficients are

C . . K . . .
© plotted in Fig. 6. Again, exponential correlation and fBm (with
Fig. 5. SurfaceA backscattering coefficient® hh polarization at (a) 1.5 — 058 52 = 095 102 [m2—2H]) models are in much

GHz, (b) 4.75 GHz, and (c) 9.5 GHz, as a function of the incidence anglg: . . .
measured data (dots), fBm (solid line), Gaussian correlation (Iong-dasrﬁ@tter agreement with measured data than Gaussian correlation

line), exponential correlation (short-dashed line). Surface parameters mm@del and fBm model provides slightly better results than
reported in Table . exponential correlation, especially at near vertical incidence.
In this case, we get\ = 1.05 dB for fBm, A = 1.97 dB
dashed lines. The long-dashed line is relevant to the Gausdi@nexponential correlation, andh = 4.14 dB for Gaussian
correlation function, the short-dashed line is relevant to tlerrelation.
exponential correlation function. The same format is employedFinally, let us consider another natural soil surface, also
in all subsequent figures. In Fig. 5(a)—(c), ttheband (1.5 reported in [3], whose parameters are summarized in Table I
GHz), C-band (4.75 GHz), and-band (9.5 GHz) cases are(surfaceC). As in the previous case, frequency is 2.25 GHz
shown, respectivelyi,h polarization is considered. The modelnd polarization i$v. Corresponding measured and calculated
data fitting has been tentatively obtained for the fBm mbédebackscattering coefficients are plotted in Fig. 7. These plots
by using a least-square method. clearly show that in this case fBm model (with = 0.95,

The following comments are in order. First of all, thes? = 0.1 [m?~2#]) provides the best agreement with measured
Gaussian correlation model is not in good agreement wittata among the considered models. In fact, we/yet 0.58
measured data; besides, the exponential correlation model dBdfor fBm, A = 2.24 dB for exponential correlation, and
the fBm (with H = 0.5, s = 4.5, 107* [m?~2H]) generally A = 5.56 dB for Gaussian correlation.

2Data fitting applied to the other models did not improve presented resultsAS a summary of above results, we can state that our model
based on measured surface parameters. provides scattering estimates, which can significantly differ
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10 increments over a fixed distance are stationary. We have thus
obtained a general formulation that greatly simplifies in some
relevant particular cases. The expression of the backscattering
coefficient has been also derived.

As expected, the backscattered field dependence on the
incidence angle is weakened by an increase of the fractal
dimensionD and/or of s2. Besides, the scattering turns out

o0 [dB]

-5t

-10 AN to be frequency dependent, except that for— 2.
N It must be stressed how the suggested method requires a
-15 minimal amount of assumptions on the surface since only the

process(z; — z2) must be specified. The price to be paid is
that only second-order statistical parameter, i.e., the scattered
Fig. 6. SurfaceB backscattering coefficient’ at 2.25 GHzpv polarization, power density, can be obtained. This is sufficient in most
as a function of the incidence angle: measured data (dots), fBm (solid lin . o .

gaussian correlation (long-dashed line), exponential correlation (short—dasﬁé&nme sensing appllcatlon (See' for ms_tance, [2_]’ _[3]’ a_nd [5])
line). Surface parameters are reported in Table III. As a matter of fact, the surface scattering coefficient, i.e., the
normalized radar cross section can be determined [see (21)].

By its knowledge, important information can be extracted

-20

W0r— about the surface electromagnetic and geometric properties

5 5 -~ ~ (see [3], [5], and [7]). In any case, when it is important to
% ~ 9 [degree] have a closed-form expression of the complex scattered field,
bttt = N the approach that we proposed in [16] or other approaches also

based on the Weierstrass—Mandelbrot function [15], [17] can
be used. However, we stress again that with those approaches
a closed-form expression of the mean-square value of the
scattered field cannot be obtained, and statistics (and mean-
squared value) of the scattered field must be measured by
performing a Monte Carlo simulation [16].
-20 A theoretical discussion on the validity of our model for the
. . - o scattering from natural surfaces has been also carried out. In
Fig. 7. SurfaceC backscattering coefficient’ at 2.25 GHzpwv polarization . - .
as a function of the incidence angle: measured data (dots), fBm (solid Iian‘mCUlarv we have verified that most natural surfaces studied
Gaussian correlation (long-dashed line), exponential correlation (short-dashaditerature can indeed be modeled as fractals in a wide range
line). Surface parameters are reported in Table IIl. of scales including scale lengths of interest for microwave
scattering and that for these surfaces and frequencies, the small
slope approximation can be used.
from the ones obtained by more classical models and WhiChFina"y, a comparison with measured data has been per-
are always in better or comparable agreement with measufgfined. It shows that our model results are in good agreement
data considered here. This encourages further testing of Qufh measurements with a superior (or comparable) fitting
model. In particular, it must be noted that fractal parameters&gmpared to the use of more classical ones.
previously considered surfaces are not known, but have beeft can be concluded that use of fBm fractal surface model
obtained by fitting measured scattering coefficients with o the evaluation of electromagnetic scattering from natural
model. A comparison with measured scattered fields relevagifaces is viable and effective, and that it is worthwhile
to natural surface with known fractal parameters would t@(ploring further this subject.
highly desirable. Unfortunately, such data are not available ata few |ast words on future possible applications of our
present. Therefore, we believe that, as a guideline for futyigyqe in practical situations are in order. First of all, note that
work, it is advisable to collect scattered data over surfacgfnough the full definition of an algorithm for the estimation
whose fractal parameters have been measured or vice-vefghe model parameters is certainly beyond the scope of our
to measure fractal parameters of surfaces for which scattelg%gber, the fitting procedure cited in Section V can be itself
field data are available. a (rough) method for parameters estimation. Furthermore,
fractal surface parameters provide important information on
the surface state and shape and, therefore, they can be used for
VI. CONCLUSION characterization and classification purposes, possibly in con-

The fBm fractal model has been shown to be particulariynction with other more conventional parameters [27]—{29].
suitable for the description of natural surfaces. In this paper,
we have shown that by using the Kirchhoff approach and
the small slope approximation, it is possible to analytically
evaluate the mean-square value of the field scattered by a
natural surface described by the fBm fractal model. This In this Appendix the analytical evaluation of the mean-
possibility is basically due to the fact that fBm surfacequare value of the scattered field is detailed.

-5

-10

-15

APPENDIX A
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Equation (12) can be more explicitly written as
jkexp(—jkRo)
47 Ry

X // exp[—j(vax + vyy + v.2(z, y))| dr dy.
! (A1)

we

E® = E) Fpy (91,92, 93)

Taking the mean-square value we get
k2|E(Z)| |qu|2

)= BB (1] ot jota-

— juy(y — v Nexp[—jv.(z — 2')]) dz da’ dy dy/
(A.2)

)2
(&5

wherez = z(z,y), 2 = 2(«',y/).
Note that{exp[—ju.(z — 2')]) is the characteristic function
of 2 — 2’. Use of (1) leads to

(expl—jo. = ) = exp | - 02D

:exp{ ;UQSQTQH:| (A.3) V).
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get

/000 Jo(bT) exp(—ur")T dr
o (_1)n,b2n
2 Py

L o>
/ exp(—
— 0

nb?n ]_" ( 2n+2 )
- Z 22n ’

UT'U)TQ"'H dr

v
2n+42
v

(A.10)

7’L' u

Specifying this relation withw = v?s*/2, b = w,,, and
v = 2H, (A.7) becomes

912 I{}2|E]()Z)|2|F |2 n gn

(B0 = —my 24 HZ 22nn'y
F("'H) (A.12)

(Ghoels) |

As a last remark, note that the integral of (A.7) spans all the
7 interval from zero tax, while natural surfaces are described
by a wide but limited range of values (see Sections Il and

However, outside this interval, the value of the integrand

is usually negligible (see Section IV) and its relevance to the
By using this relation, performing the following coordlnatqntegra| can be ignored.

transformation:
z—12' =7Tcosp
y—1y =Tsing
X =2
Y=y
and integrating over: andy, (A.2) becomes

2| (9)|2 2
< k |E | |FM| //exp (T, cos

(47 Rg)?
+ T, sin )] exp[— 5023272}[} Tdpdr. (A.D)

(1]
(2]
(3]
(4]

(A.4)

(5]
(6]

In (A.5), integration is extended to the whole plane. This is
possible if the linear sizéof the illuminated patch is such that []

voslt > 1. (A.6)

(8]
In fact, this condition ensures that the argument of the integral
is negligible outside the original integration domain. [9]

Integration of (A.5) overy leads to [24] [10]

{

k2|E(Z)| | |2

q oo
(A ko) 2r A/O Jo(VzyT)

1
X exp[ 21123272}[} Tdr

(1]

(A7)

[12]
whereinv,, = /v2 +v§. From the series expansion of the
zero order Bessel function [24] [13]

[14]
o t?n

n=0 :
and the relation [24] [16]
eo 1 1 w41
/0 exp(— ) T dr = ; uuj»l ) F( v ) [17]
Re(u) >0, Re(v) >0, Re(w)> -1 (A.9)
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