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Abstract—A model for electromagnetic scattering from natural
rough surfaces described by means of fractional Brownian motion
model is developed. The fractal surface model is employed to
obtain the Kirchhoff solution of the Stratton–Chu scattering in-
tegral. An analytical viable formulation is achieved and compared
to available classical solutions. Comparison with experimental
data is also provided. Results show advantages of proposed
solution from both theoretical and experimental viewpoint.

Index Terms—Electromagnetic scattering by rough surfaces.

I. INTRODUCTION AND MOTIVATIONS

T HE problem of electromagnetic wave scattering from a
randomly rough surface has been widely studied because

of its great relevance in the fields of telecommunications and
remote sensing. In the last decades, several approaches to the
solution of this problem have been proposed and developed.
Among them, the most popular ones are the Kirchhoff ap-
proach [1]–[3], the small perturbation method [2], [3], and
the integral equation method [4], [5]: these approaches are
based on different approximations and exhibit different ranges
of validity [3], [5], [6]. In all cases, the surface is described
by a stationary stochastic two-dimensional (2-D) process, with
given probability density function (pdf) (usually Gaussian) and
correlation function (usually Gaussian, exponential or combi-
nations of these). Accordingly, the surface can be characterized
by few parameters such as its height standard deviationand
its correlation length . The corresponding evaluated scattered
fields are in excellent agreement with numerical simulations
and laboratory measurements (performed by using artificial
rough surfaces generated employing above surface models),
while comparison with real data is less successful (see, e.g.,
[7]). This might be due to the presence of unmodeled volume
scattering, but also to limitations of above surface model. In
fact, measured natural surface height standard deviation and
correlation length turn out to depend on the length of the
considered profile [8] so that the process is not stationary.
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In recent years it has been shown that a new description
more suitable for natural rough surfaces, based on fractal
geometry, can be conveniently used [9]. Effectiveness of
fractal geometry for natural surface modeling was validated
by generating surprisingly realistic synthetic terrain surfaces
[9], [10]. More recently, field measurements have confirmed
that soil surfaces show self-affinity properties on a wide
range of scales [8] and that their spectra exhibit the shape

[8], [11]. For sea surfaces, spectra are both
obtained by field measurements and suggested by theoretical
considerations [12]. All these results lead to describe natural
surfaces by means of the fractional Brownian motion (fBm)
fractal model [9], [13]. Therefore, there is an increasing
consensus that it is of a great relevance to make use of this
model for computation of scattering from natural surfaces.

Results of some studies on use of fractal surface models for
the problem of electromagnetic wave scattering have recently
been reported [12], [14]–[17]. All these studies employ the
Kirchhoff approximation. In [12] and [14], attention is posed
on normal incidence only; in [15]–[17] the fBm process
is approximated by a Weierstrass–Mandelbrot bandlimited
function. This latter approach has the advantage that an
analytical expression (containing a few random parameters) of
the surface is available. By varying some fractal parameters,
different scattered field statistics actually observed in practice
are obtained [16]. However, the final analytical expression of
the scattered field is very involved and an analytical evaluation
of its mean-square value is not available.

In this paper, we explore use of the fBm model with the
Kirchhoff approach and the small-slope approximation, and we
analytically evaluate in a closed form the mean-square value
of the field scattered along an arbitrary direction by a surface
illuminated by a plane wave. We obtain a general expression,
which greatly simplifies in some special cases. Expression
of the backscattering coefficient, i.e., of the normalized radar
cross section, is also provided as a particular case. This allows
to elucidate the dependence of the scattered field on the surface
fractal parameters. A theoretical discussion on the validity of
this model for the study of scattering from natural surfaces is
carried out and, finally, some numerical examples are reported
to compare obtained results to the ones of classical models
and to some real data.

Before proceeding further, we stress that we do not use
the fBm surface model for its mathematical convenience, but
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because it best models natural rough surfaces (see [8]–[13]).
Furthermore, it is important to elucidate the fact that the fBm
fractal characterization exhibits some important advantages
with respect to a generic power law description, which has
sometimes been employed in literature, see e.g. [18]–[21].
First of all, fBm surface model is able to well describe the
scale-invariance properties of natural surfaces [8]–[13] (see
Section II). Another advantage of the fBm description, as
shown in this paper, is related to the analytical evaluation
of electromagnetic scattering. In fact, power law spectra are
not easy to analytically handle within the Kirchhoff approach
and numerical methods and/or Monte Carlo simulations are
usually employed to evaluate the normalized radar cross
section of a power law surface (see, for instance, [18]–[20]).
In the following, we show that an analytical formulation of
the normalized radar cross section can be obtained by using
the fBm fractal characterization with no extra simplifying
assumptions with reference to classical cases [21].

II. SURFACE MODEL

In this section, we describe and discuss the employed
surface model. As already stated, we model natural surfaces
by means of fBm 2-D processes.

A stochastic process is an fBm surface if, for every
, , , and , it satisfies the following relation [13]:

(1)

where

(2)

is the Hurst coefficient and is a real parameter measured
in [m ]. It can be demonstrated [13] that if , a
process satisfying (1) exists and that (with probability one) a
fBm sample surface has a fractal dimension .
Furthermore, the parameter is related to a characteristic
length of the fBm surface called topothesy[14], [12]

(3)

which is defined as the distance over which chords joining
points on the surface have a root mean square (rms) slope
equal to unity.

By using (3), (1) can be equivalently written as

(4)

Besides, it can be shown that fBm surfaces are self affine,
i.e., if we let , it turns out that
for any , has the same statistics as .
As a consequence, the ratio between vertical and horizontal
surface variations (statistically) decreases as the considered
scale length increases, except that for .

It is important to note that the fBm process is nonstationary,
but its increments over a fixed horizontal distanceare
stationary isotropic Gaussian processes with zero mean and
variance equal to . This property allows the
analytical evaluation of the backscattered power density, which
is performed in the following sections. Due to stationarity
of its increments, the structure function

of an fBm process can be defined [22] and is equal
to

(5)

In the above relations, the symbol stands for statistical
mean.

It can be also shown [11], [23] that the power spectrum of
an fBm 2-D process is

(6)

wherein

(7)

(8)

is the spatial frequency and is the spectral parameter
.

We recall that structure function and power spectrum of
an isotropic stochastic process with stationary increments are
related by the following expression [22]:

(9)

By using this expression, it is possible to find [12] the
relation between (5) and (6)

(10)

wherein and are the Gamma and Beta functions [24],
respectively.

Note that the power law spectrum of the fBm process
has an exponent [see (6)] which is limited to the interval

, as can be verified from (7) by recalling that
. This explains the (otherwise “mysterious”) fact

that all measured soil surface spectra are power law ones with
[8]–[10].

Finally, it is important to note that a surface satisfying (1)
for every is self affine on all scales so that it has details
on any arbitrarily small scale and is not differentiable in any
point (although it is continuous). Therefore, Kirchhoff approx-
imation, and more in general even the continuity conditions of
tangential fields, cannot be used. We call such a surface a
“mathematical” fBm surface [15]. However, natural surfaces
have been shown to satisfy (1) only in a wide but limited
range of scales or (see (6)] only in a wide
but limited range of spatial frequencies .
Besides, the range of scales of interest for our scattering
problem is limited on one side by the finite dimension of the
illuminated surface and on the other by the fact that surface
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Fig. 1. Geometry of the problem.

variations on scales much smaller than wavelength do not
affect the scattered field [16]. We refer as “physical” fBm
surfaces [15] to those satisfying (1) only in a limited range of
scales. For such surfaces, use of Kirchhoff approach and of
small slope approximation is appropriate if some conditions
on and are satisfied (see Section IV) and if,
at the smallest scales, the surface is sufficiently regular [12],
[25].

III. ELECTROMAGNETIC SCATTERING

A. General Case

In this section, we evaluate the mean-square value of the
field scattered in an arbitrary direction by an fBm physical
surface illuminated by a plane wave. We follow
the Kirchhoff approach and use the small slope approximation.
A discussion on the validity of these approximations for real
natural surfaces at microwave frequencies is addressed in the
next section. Let

(11)

the incident field (see Fig. 1), whereinstands for or (hor-
izontal or vertical polarization). Under the above mentioned
hypotheses, the generic component of the scattered field (in
the Fraunhofer region) is expressed by [2]

(12)

where , i.e.,

(13)

In (11)–(13), and are the propagation vectors of the
incident and scattered wave, respectively,is the wavenum-
ber, is the area of the illuminated patch, and the distance

from its center to the receiver, and can each stand for
or , and the meaning of is illustrated in Fig. 1. In
addition, is a dimensionless function depending on the
average Fresnel reflection coefficients over the mean plane, on
the incidence and scattering angle and on the polarization. A
detailed expression of the function can be found in [2].

In Appendix A, we show how the use of (1) and (12) leads
to the following expression of the mean-square value of the
scattered field:

(14)

wherein .
Equation (14) can be rewritten in a more convenient form

by using (3)

(15)

This expression shows more clearly that each term of the series
is dimensionless.

Equations (14) or (15) hold for fBm physical surfaces
satisfying (1) in a range of scales which includes the scale
lengths appreciably affecting the scattered field (see Section IV
and Appendix A). It is important to note that only the height
increments of the surface are assumed to satisfy a stationary
stochastic process and not the surface itself.

Equations (14) or (15) greatly simplify in the following three
cases: scattering in the specular direction , Brownian
surface , and nonfractal surface .

B. Specular Direction

In the specular direction, we have and (see
Fig. 1), so that and .
Substituting these values in (15) we get

(16)

C. Brownian Surface

A Brownian surface is obtained by setting in (1).
Its intersection with an arbitrary vertical plane is the graph of
a Wiener process [13]. If we let in (15), recalling the
Taylor series expansion of the function we get

(17)
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Equation (17) can be more easily obtained directly from
(A.7) (see Appendix A) with by using the relation
[24]

(18)

D. Nonfractal Surface

The limiting case corresponds to a surface with
fractal dimension equal to two, i.e., a regular (nonfractal)
surface. In this case, the topothesyhas no meaning, while the
parameter becomes dimensionless and assumes the meaning
of rms slope of the surface.

Substituting in (14) and recalling the series expan-
sion of the exponential function, we get

(19)

Equation (19) can be more easily obtained directly from
(A.7) with by using the relation [24]

(20)

It is interesting to note that (19) is coincident with the result
obtained [1] in the case of very rough Gaussian surface with
Gaussian correlation function.

E. Backscattering Coefficient

In order to simplify the discussion, in the next sections
we refer to the backscattering coefficient (also referred to as
surface normalized radar cross section), defined as [5]

(21)

when incidence and scattering directions coincide.
In the backscattering case, we have , , and

hence (setting )

(22)

and it can be demonstrated that under the small slope approx-
imation [2]

(23)

Then, use of (21)–(23) in (15) leads to

(24)

where is the Fresnel reflection coefficient of the mean
plane.

Scattering in the specular direction now occurs in the case
of normal incidence. Substituting (21)–(23) in (16) we get

(25)

which, in the case of perfectly conducting surface, coincides
with the expression found in [12].

For the Brownian surface (17), use of (21)–(23) leads to

(26)

Finally, for the nonfractal surface, we get

(27)

Few last words about the convergence rate of the series in
(24). It decreases as the incidence angle increases and as
decreases. In all the plots that we show (see Section V), a
maximum of 100 terms was sufficient to ensure that the error
on the backscattering coefficient was less than 0.1 dB.

IV. V ALIDITY OF THE FORMULATION

In order to have an idea of values assumed by fractal param-
eters for real natural surfaces, we recall some results available
from literature. For natural soil surfaces,in situ measurements
reported in [8] and [11] lead to fractal dimensions larger
than 2, but smaller than 2.5 (this corresponds to )
and to a spectral parameter ranging from 10 to 10
[m ] [i.e., see (2.10)] to a fractal parameter ranging
from 10 to 10 [m ]. For example, on a rocky natural
surface at Mt. St. Helens, a fractal dimension

and a profile spectral parameter equal to
3.57 10 [m ] (by use of [11, eq. (51)) and of (10)
and (3)], this corresponds to [m ] and

[m]) were found [11]. Besides, for this
natural surface, (6) (i.e., “fBm-fractalness”) turns out to hold
for spatial frequencies ranging at least from 0.05 to 100 [m]
(i.e., scale lengths from less than 1 [cm] to more than 20 [m]).

With regard to sea surfaces, in [12] it is shown how a
combination of theory and field measurements leads to

and [m] (i.e., [m ])
for isotropic gravity waves in the equilibrium range with a
friction velocity of 0.37 [m/s]. In this case, “fBm-fractalness”
holds for scale lengths from a few centimeters to several
meters [12].

We want now to verify that above mentioned ranges of
scales include the scale lengths that appreciably contribute to
scattering, so that calculations of Appendix A hold. Let us
analyze the quantity

(28)

which appears in the argument of the integral of (A.7) for
the backscattering case . It can be easily
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TABLE I
RANGE OF SCALES [��=10; 4�� ] WHICH APPRECIABLY CONTRIBUTE TO

SCATTERING FROM THE CONSIDERED SOIL SURFACE FORDIFFERENT

FREQUENCIES AND INCIDENCE ANGLE. SURFACE FRACTAL

PARAMETERS: D = 2:35, s2 = 2:8� 10�3 [m2�2H ]. RANGE OF

“fBm FRACTALNESS”: FROM ABOUT 0.5 cm TO ABOUT 20 m

TABLE II
RANGE OF SCALES [��=10;4�� ] WHICH APPRECIABLY CONTRIBUTE TO

SCATTERING FROM THE CONSIDERED SEA SURFACE FORDIFFERENT

FREQUENCIES AND INCIDENCE ANGLE. SURFACE FRACTAL

PARAMETERS: D = 2:25, s2 = 1:14� 10�2 [m2�2H ]. RANGE

OF “fBm FRACTALNESS”: FROM ABOUT 1 cm TO SEVERAL METERS

demonstrated that the function of (28) reaches its maximum for

(29)

This point of maximum is proportional to . It can also
be verified that if , the function in (28) is much
smaller than its maximum for and and
the contribution of these intervals to the integral of (A.7) is
negligible. Therefore, only the scale lengths from to
appreciably contribute to scattering.

By inserting in (29) the fractal parameters of the soil surface
analyzed in [11] and, considering three different frequencies
(500 MHz, 1 GHz, 5 GHz), we obtain the intervals
shown in Table I. They are all included in the interval of
“fBm-fractalness.”

By inserting in (29), the fractal parameters of the sea
surface analyzed by [12] and considering the same three
different frequencies, we obtain the intervals shown
in Table II. Again, they are all included in the interval of
“fBm-fractalness,” except that at 5 GHz and small incidence
angles.

As a summary of above results, we can state that usually,
for the scale lengths of interest for microwave scattering,
natural surfaces can be modeled as fractals, and that values
of ranging from 0.5 to 1 and values of of the order of

– [m ] are realistic ones.
At this point, a discussion on the range of validity of our

model is in order. It is well known [2], [3], [5] that the
Kirchhoff approximation holds if the surface mean radius of
curvature is much greater than the wavelength and that the
small slope approximation is valid if rms slope is much smaller
than unity. However, radius of curvature and rms slope are
not well defined for a “mathematical” fBm surface. For a

“physical” fBm surface these quantities should be related to
, , , and . The rigorous study of this point is

beyond the scope of this paper and is matter of current study. A
further discussion on this subject can be found in [25] and [26].
We want here only to show that a very simple condition for the
validity of the small slope approximation can be obtained by
the following heuristic considerations. It can be shown from
(5) that the mean-square slope (MSS) of chords joining points
at distance is

(30)

Therefore, this MSS increases asdecreases and the maxi-
mum MSS is obtained for , where is the smallest
scale length which appreciably contributes to scattering. This
maximum MSS is

(31)

If we want this MSS to be less than we get

(32)

By combining (29) and (32) we obtain

(33)

It can be verified that natural surfaces considered at the
beginning of this section satisfy this condition if the frequency
is less than a few gigahertz.

V. NUMERICAL EXAMPLES AND

COMPARISON WITH MEASUREMENTS

In this section, we present and discuss some examples
aimed at studying the backscattering coefficientevaluated
by means of (24). In particular, we first of all examine the
scattering dependence on the incidence angle, the Hurst
coefficient , the fractal parameter , and the frequency .
This study is followed by a direct comparison of our model
with some widespread scattering models and with a set of
measured data.

In order to analyze the scattering dependence on the surface
fractal parameters and on frequency, we show some results
obtained inserting in (24) realistic fractal parameters. By con-
sidering results of the discussion of Section IV, we can state
that usually, for the scale lengths of interest for microwave
scattering, natural surfaces can be modeled as fractals and that
values of ranging from 0.5 to 1 and values of from 10
to 10 [m ] are realistic ones. Accordingly, we plot in
Fig. 2 the backscattering coefficient at 1 GHz,polarization,
as a function of the incidence angle for ranging from
0.04 to 0.10 [m ], , and for (a) , (b)

, and (c) . Plots of Fig. 2 clearly show
that the dependence on the incidence angle is weakened by
a decrease of (i.e., an increase of the fractal dimension)
and by an increase of . To better illustrate this point, in Fig. 3
we plot the backscattering coefficient versus, Fig. 3(a), and
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(a)

(b)

(c)

Fig. 2. Backscattering coefficient�0 at 1 GHz (hh polarization) as a function of the incidence angle fors2 ranging from 0.04 to 0.10 [m2�2H ], "r = 15,
and for (a)H = 0:5, (b) H = 0:75, and (c) H = 1.

versus , Fig 3(b), for (long-dashed line),
(solid line), (short-dashed line). The same frequency,
polarization, and dielectric constant of Fig. 2 have been used.
Analogous plots can be obtained for polarization. Plots
of Fig. 3 show that at low-incidence angles the backscattered
field decreases as and increase, while at high incidence
angles the backscattered field increases withand . This
is in agreement with intuition since a higher fractal dimension

corresponds to a rougher surface and the parametersis in
some way related to the surface slope.

Examination of (24)–(27) shows that scattering by a fractal
surface is frequency dependent; this dependence becomes
weaker as approaches unity and scattering becomes fre-
quency independent when . To emphasise this point,
we plot in Fig. 4 the backscattering coefficient as a function
of frequency, at (a) , (b) , (c) ,
polarization, for equal to 0.07 [m ], , and for

(long-dashed line), (solid line), and
(short-dashed line). These plots clearly show that for
scattering is frequency independent while, for , at
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(a)

(b)

Fig. 3. Backscattering coefficient�0 versus (a)H and versus (b)s2 for
# = 10� (long-dashed line),# = 30� (solid line), # = 50� (short-dashed
line), at 1 and 5 GHz,hh polarization,"r = 15. In (a) s2 = 0:10 [m2�2H ]
and in (b)H = 0:75.

low and intermediate incidence angles, the backscattered field
decreases as frequency increases. At higher incidence angles

, for the backscattered field still decreases
with frequency, but with a smaller rate, and for it
increases with frequency. This behavior can be explained by
considering that at higher frequencies smaller scale lengths are
involved in the scattering, and that at smaller scales the ratio
between vertical and horizontal surface variations increases
(see Section II), so that a rougher surface is “seen” by the
incident wave.

Let us now move to a direct comparison of our model with
some measured data that can be found in literature. We also
compare our fractal model with the Gaussian surface height
model with Gaussian and exponential correlations, which, as
in our case, obtain a scattering formulation in a closed-form1

[2], [3]

(34)

Equation (34) is valid in the Kirchhoff and small slope ap-
proximation and the function is the Fourier transform
of the th power of the surface correlation function

(35)

1For other correlation functions, a numerical integration is needed to
evaluate the functionsW (n).

(a)

(b)

(c)

Fig. 4. Backscattering coefficient�0 as a function of frequency, at (a)
# = 10�, (b) # = 30�, (c) # = 50�, hh polarization for s2 equal to
0.07 [m2�2H ], "r = 15, and forH = 0:5 (long-dashed line),H = 0:75

(solid line), andH = 1 (short-dashed line).

for a Gaussian correlation function and

(36)

for an exponential correlation function. In (34)–(36)and
are the surface height standard deviation and correlation

length, respectively.
In the plots of Fig. 5, the case (reported in [7]) of a bare

soil surface, whose characteristic parameters are summarized
in Table III (surface ), is considered. Measured scattering
coefficient data at , , and bands are taken from [4]
and [7]. In Fig. 5 the measured data are represented by dots;
the scattering model relying on the fBm fractal surface model
is represented by the solid line whereas the scattering model
relying on the Gaussian surface model with Gaussian and
exponential correlation functions are plotted for reference with
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(a)

(b)

(c)

Fig. 5. SurfaceA backscattering coefficient�0 hh polarization at (a) 1.5
GHz, (b) 4.75 GHz, and (c) 9.5 GHz, as a function of the incidence angle:
measured data (dots), fBm (solid line), Gaussian correlation (long-dashed
line), exponential correlation (short-dashed line). Surface parameters are
reported in Table III.

dashed lines. The long-dashed line is relevant to the Gaussian
correlation function, the short-dashed line is relevant to the
exponential correlation function. The same format is employed
in all subsequent figures. In Fig. 5(a)–(c), the-band (1.5
GHz), -band (4.75 GHz), and -band (9.5 GHz) cases are
shown, respectively; polarization is considered. The model
data fitting has been tentatively obtained for the fBm model2

by using a least-square method.
The following comments are in order. First of all, the

Gaussian correlation model is not in good agreement with
measured data; besides, the exponential correlation model and
the fBm (with , , [m ]) generally

2Data fitting applied to the other models did not improve presented results
based on measured surface parameters.

TABLE III
CHARACTERISTIC PARAMETERS OF THENATURAL SURFACES CONSIDERED IN

FIGS. 5–7. PERMITTIVITY "r AND CLASSICAL SURFACE PARAMETERS �

AND L ARE TAKEN FROM [7] AND [3]. FRACTAL PARAMETERS H

AND s2 HAVE BEEN OBTAINED BY FITTING DATA WITH OUR MODEL

provide similar results in good agreement with measurements.
This is not true for large incident angles at-band and for
small incident angles at-band. In the first case, both models
fail [see Fig. 5(c)], most likely because multiple scattering
and shadowing effects are not considered. Conversely, in the
second case [see Fig. 5(a)], the fBm model provides a much
better agreement with real data. Therefore, we can state that for
the considered data set, the overall behavior of the scattering
model based on fBm surface description is superior to the one
based on classical surface descriptions. In order to obtain a
more quantitative comparison, we evaluate the rms difference

between each model results and measured data

(37)

where is the number of measured data points. We get
dB for fBm, dB for exponential correlation,

and dB for Gaussian correlation.
Let us now move to a different measurement data set. The

case reported in [3, p. 992] is considered. The soil surface
parameters are summarized in Table III (surface), whereas
the frequency is 2.25 GHz and polarization is. Correspond-
ing measured and calculated backscattering coefficients are
plotted in Fig. 6. Again, exponential correlation and fBm (with

, , 10 [m ]) models are in much
better agreement with measured data than Gaussian correlation
model and fBm model provides slightly better results than
exponential correlation, especially at near vertical incidence.
In this case, we get dB for fBm, dB
for exponential correlation, and dB for Gaussian
correlation.

Finally, let us consider another natural soil surface, also
reported in [3], whose parameters are summarized in Table III
(surface ). As in the previous case, frequency is 2.25 GHz
and polarization is . Corresponding measured and calculated
backscattering coefficients are plotted in Fig. 7. These plots
clearly show that in this case fBm model (with ,

[m ]) provides the best agreement with measured
data among the considered models. In fact, we get
dB for fBm, dB for exponential correlation, and

dB for Gaussian correlation.
As a summary of above results, we can state that our model

provides scattering estimates, which can significantly differ
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Fig. 6. SurfaceB backscattering coefficient�0 at 2.25 GHz,vv polarization,
as a function of the incidence angle: measured data (dots), fBm (solid line),
gaussian correlation (long-dashed line), exponential correlation (short-dashed
line). Surface parameters are reported in Table III.

Fig. 7. SurfaceC backscattering coefficient�0 at 2.25 GHz,vv polarization
as a function of the incidence angle: measured data (dots), fBm (solid line),
Gaussian correlation (long-dashed line), exponential correlation (short-dashed
line). Surface parameters are reported in Table III.

from the ones obtained by more classical models and which
are always in better or comparable agreement with measured
data considered here. This encourages further testing of our
model. In particular, it must be noted that fractal parameters of
previously considered surfaces are not known, but have been
obtained by fitting measured scattering coefficients with our
model. A comparison with measured scattered fields relevant
to natural surface with known fractal parameters would be
highly desirable. Unfortunately, such data are not available at
present. Therefore, we believe that, as a guideline for future
work, it is advisable to collect scattered data over surfaces
whose fractal parameters have been measured or vice-versa
to measure fractal parameters of surfaces for which scattered
field data are available.

VI. CONCLUSION

The fBm fractal model has been shown to be particularly
suitable for the description of natural surfaces. In this paper,
we have shown that by using the Kirchhoff approach and
the small slope approximation, it is possible to analytically
evaluate the mean-square value of the field scattered by a
natural surface described by the fBm fractal model. This
possibility is basically due to the fact that fBm surface

increments over a fixed distance are stationary. We have thus
obtained a general formulation that greatly simplifies in some
relevant particular cases. The expression of the backscattering
coefficient has been also derived.

As expected, the backscattered field dependence on the
incidence angle is weakened by an increase of the fractal
dimension and/or of . Besides, the scattering turns out
to be frequency dependent, except that for .

It must be stressed how the suggested method requires a
minimal amount of assumptions on the surface since only the
process must be specified. The price to be paid is
that only second-order statistical parameter, i.e., the scattered
power density, can be obtained. This is sufficient in most
remote sensing application (see, for instance, [2], [3], and [5]).
As a matter of fact, the surface scattering coefficient, i.e., the
normalized radar cross section can be determined [see (21)].
By its knowledge, important information can be extracted
about the surface electromagnetic and geometric properties
(see [3], [5], and [7]). In any case, when it is important to
have a closed-form expression of the complex scattered field,
the approach that we proposed in [16] or other approaches also
based on the Weierstrass–Mandelbrot function [15], [17] can
be used. However, we stress again that with those approaches
a closed-form expression of the mean-square value of the
scattered field cannot be obtained, and statistics (and mean-
squared value) of the scattered field must be measured by
performing a Monte Carlo simulation [16].

A theoretical discussion on the validity of our model for the
scattering from natural surfaces has been also carried out. In
particular, we have verified that most natural surfaces studied
in literature can indeed be modeled as fractals in a wide range
of scales including scale lengths of interest for microwave
scattering and that for these surfaces and frequencies, the small
slope approximation can be used.

Finally, a comparison with measured data has been per-
formed. It shows that our model results are in good agreement
with measurements with a superior (or comparable) fitting
compared to the use of more classical ones.

It can be concluded that use of fBm fractal surface model
for the evaluation of electromagnetic scattering from natural
surfaces is viable and effective, and that it is worthwhile
exploring further this subject.

A few last words on future possible applications of our
model in practical situations are in order. First of all, note that
although the full definition of an algorithm for the estimation
of the model parameters is certainly beyond the scope of our
paper, the fitting procedure cited in Section V can be itself
a (rough) method for parameters estimation. Furthermore,
fractal surface parameters provide important information on
the surface state and shape and, therefore, they can be used for
characterization and classification purposes, possibly in con-
junction with other more conventional parameters [27]–[29].

APPENDIX A

In this Appendix the analytical evaluation of the mean-
square value of the scattered field is detailed.
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Equation (12) can be more explicitly written as

(A.1)

Taking the mean-square value we get

(A.2)

where .
Note that is the characteristic function

of . Use of (1) leads to

(A.3)

By using this relation, performing the following coordinate
transformation:

(A.4)

and integrating over and , (A.2) becomes

(A.5)

In (A.5), integration is extended to the whole plane. This is
possible if the linear sizeof the illuminated patch is such that

(A.6)

In fact, this condition ensures that the argument of the integral
is negligible outside the original integration domain.

Integration of (A.5) over leads to [24]

(A.7)

wherein . From the series expansion of the
zero order Bessel function [24]

(A.8)

and the relation [24]

(A.9)

we get

(A.10)

Specifying this relation with , and
, (A.7) becomes

(A.11)

As a last remark, note that the integral of (A.7) spans all the
interval from zero to , while natural surfaces are described

by a wide but limited range of values (see Sections II and
IV). However, outside this interval, the value of the integrand
is usually negligible (see Section IV) and its relevance to the
integral can be ignored.
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