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Experimental Characterization of the
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Abstract—In this paper, a new technique for measuring the transmission measurement technique (FSTM) [6], [7]. In this
effective propagation constant of dense random media is pre- technique, a slab of the dense random medium is positioned

sented. This technique involves two major steps: 1) measurement yoyeen two antennas and the transmission coefficient is
of the mean bistatic scattered field of a cluster of the random

medium confined in a spherical boundary and 2) characterization measured f:oherently. .T.hen by moving the slab and meas_ur!ng
of the complex permittivity for a homogeneous dielectric sphere the transmission coefficient repeatedly, the mean transmission
having identical radius and bistatic scattered field as those of the coefficient is computed from which the effective propagation
spherical cluster of the random medium. Using this measurement cgnstant of the random medium is calculated. Although the

technique, not only the effective propagation constant of complex measurement of the effective propagation constant using the
dense random media for which analytical solution does not exist

can be characterized, but it can also be used to establish the FSTM technique is silmple.ir! prir.1cip.le, its.accuracy !S Iir'ni.ted
validity region of the existing models. The sensitivity analyses by a number of practical difficulties including: 1) maintaining
of the proposed algorithm show that the imaginary part of the the phase coherency between the receiver and the transmitter

leffeCtilve pLopagaﬂon ﬁons;fant_can be n?easured_ Very acfcuraotl_ely. during measurements because of RF cables movement and
t is also shown that the effective complex permittivity of media .
with very low dielectric contrast or volume fractions can be 2) large slab size. Another drawback of the FSTM method

characterized accurately. Measurements of the effective propa- Stems from the fact that the effective propagation constant
gation constant of different dense random media comprised of must be computed from a single measured parameter of the
homogeneous spherical particles of different packing densities are medium, namely, the mean transmission coefficient. Hence,
reported and compared with the existing analytical models. the accuracy of the measurementigfis severely limited by
Index Terms— Electromagnetic propagation in nonhomo- the systematic errors. Also, the accuracy in the evaluation of
geneous media. K using this method decreases for dense random media with
significant extinction rates.
I. INTRODUCTION Mandt et al. used the FSTM method [6] to measuké of
. dense random media (volume fractign< 0.1) and compared
CHARACTERIZATION of the propagation constant of thethe measured extinction coefficient with those predicted by

mean field in the randqm medium is of great |mportan§§FA and QCA. At these volume fractions, the analytical
for modeling electromagnetic wave propagation and scatteri dels were in good agreement with the measured extinctions.

:cn rz;?doml mlecil_la. T?etrﬁ ar?f at_number of a}[palytlcal tmotd_ is is also confirmed by the results which will be reported in
or the calcuration of the etiective: propagation constant ifj;q paper. However, due to the limitations inherent in the

random media. Among these, the most widely used mod . ; e .
are: the Polder—Van Santen mixing formula [1], the effecti\;?gTM technique, it was difficult to measure the effective

field approximation (EFA), and the quasi-crystalline appro ropggatlon constant of dense media with higher volume
. . . ractions.
imation (QCA) [2]. However, the validity of these models .

In this paper, a novel approach for the measurement of

in characterizing the effective propagation constant of dense . . :
: . .tﬂe effective propagation constant of dense random media
random media has not been determined, except at low partic

€ . : :
. : ; - IS presented which circumvents most of the aforementioned
volume fractions [6]. The literature concerning experimens... . :
o . . difficulties of the standard approach. Using the new approach,
tal characterization of the effective propagation const&nt . . . .
L it is shown that the effective propagation constant of random
of random media is rather scarce. In general, measurement ,. i
m%jdla can be measured very accurately over a wide range of

techniques can be categorized into low- and high-frequeng ume fractions, thereby establishing a benchmark that can
approaches. In low frequencies when the particle dimensicﬁé ' y 9

are much smaller than the wavelength, standard dielec e used for the characterization of the validity regions of the
measurement techniques can be used tc’) measuf@]—[5] existing analytical models. Besides the benchmarking purpose,

At high frequencies, the standard approach is the free—spgnlf% megs_,urement technique may b? used for the development
of empirical models for the effective propagation constant
Manuscript received August 15, 1995; revised March 8, 1996. of random media of interest. In the following sections, first
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48109 USA. issues such as measurement accuracy and sensitivity analysis
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of the random medium about its axis of symmetry and/or
randomizing the particles within the boundary. To evaluate the
effective propagation constant of the dense random medium,
Receiver the measured mean bistatic scattering amplitudes are fitted
v to the bistatic scattering pattern of a homogeneous dielectric
Transmitter . material having the same geometrical boundary. Toward this
= .'.:’ =476 *h end, a constrained search routine [8], can be used to minimize
h o the difference between the measured and theoretical responses.
With the real and imaginary parts & acting as free param-
eters, the following error function is minimized as shown in
(1) at the bottom of the page, where the superscriptand ¢
refer to the measured and theoretical responses, respectively,
(@) N refers to the total number of bistatic angles measured, and
M refers to the total number of frequency points measured.
Axis of Rotation Quantitiess and ¢ refer to the magnitude and phase of the
copolarized mean bistatic scattering amplitudes, respectively.
The CBSM technique offers a number of advantages over
the FSTM technique in that measurements need only be
performed on a small volume of the random medium and that
more than one measured parameter is used to characterize
K. Basically, the scattering properties of a cluster of the
random medium can be accurately characterized in an anechoic
chamber environment. In addition, it is rather convenient to
position and orient a relatively small target (the cluster of
the random medium) and, therefore, it becomes possible to
Fo 1 Th g ¢ set Bistatic. rad _measure many independent samples of the random media
Fl L e proposed messuenert setu, (@) Bisic radr messuhhependent of their volume fractions. Moreover, since i
rotatable ground plane measuring the bistatic response of a cluster of a randdt@racterization of the effective propagation constant, bistatic
medium. measurements at many bistatic angles are used the effect
of systematic errors on the overall measurement accuracy is

Y
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Backscattered
Fiel 4
ield /, r
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(b)

technique is demonstrated by performing experiments on rdRinimized. o
dom media for which the effective propagation constant s It should be noted here that a phase-coherent polarimetric
known. In Section IV. measurements of dense random medistatic scattering measurement is a difficult task since in

of different volume fractions are presented and compared wifiPVing the receiving antenna the phase coherence and the
existing analytical models. polarization reference coordinates may be perturbed. To avoid

these problems we have recently developed a novel method
for measuring the bistatic scattering response of a target using
II. ' COHERENT BISTATIC SCATTERING a monostatic radar [9]. In this bistatic measurement technique,
MEASUREMENT TECHNIQUE (CBSM) a wide-band (high-spatial resolution) polarimetric monostatic
In this section, a new measurement technique for charaedar in conjunction with a rotatable perfectly conducting
terizing the effective propagation constant of a dense randg@iane positioned behind the target is used to measure the
medium is presented. First, a cluster of constituent particlbstatic scattering amplitudes of the target [see Fig. 1(b)]. Itis
of the random medium is confined in a rotationally symmetrighown that the bistatic scattering matrix of point targets can
geometry such as a sphere or a cylinder. Then, the copolaribedmeasured very accurately while eliminating the complexity
bistatic scattering amplitudeS,,,, and Sy, of the cluster are of the traditional measurement setup (two antenna system)
measured over many bistatic scattering angfgsn a single and its complex calibration procedure. The role of the ground
scattering plane, as shown in Fig. 1(a). At each bistatic angjgane is to reflect the desired bistatic response back to the
the radar measurements are performed over many indepenadeonostatic radar. Primarily, there are three major scattering
realizations of the random medium from which the coherenbmponents that contribute to the signal received by the radar.
and incoherent components of the scattered amplitudes @hese scattered signals arrive at the antenna with different
computed. Independent bistatic measurements for a giwdglay times. The first component is the direct backscatter from
bistatic angle can be realized by simply rotating the clustére target which arrives at the antenna with a delay time of

s (i, D)elléln D=0l _ gt ()i [#ha 000, 6.0] |

N . . 2
m 1) — st (4, 1
E = Z 31,1,(L ) 31/1/([’ ) ‘ +

spu(t; 1)

s (i, Z)Cj[qu (i, =7, G, )]
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2r1/c, wherec is the speed of light. The second component 10 ; . ; ; . ;
is comprised of two identical subcomponents representing the
desired bistatic scattering signals [the solid and dotted lines
in Fig. 1(b)]. These two subcomponents arrive at the antenna
with a delay time of(»; + r2 4+ 73)/c. The third component

is the indirect backscatter of the target in response to the
reflected wave from the ground plane. The third component
arrives at the antenna with a delay time2§#; + r3)/c. By
choosing the distance between the target and the ground plane
to be larger than the radar resolution, all components of the
measured backscattered signal can be resolved and collected
separately. The reader is referred to [9] for further details on
the measurement technique and its corresponding calibration
procedure.

In principle, a cluster of particles confined in any geometargé TZ/A C_OngpgéeguEicst}?);iCoSfth;litstgiincgsrceastrthr?se gl;] tvybe EpTirtf‘yﬁgtg Tvals
of arbitrary boundary can be used so long as the bistafltq’in‘tnese computations. g angi.= %4+ L.
scattering response of an equivalent homogeneous dielectric
material having the same boundary can be evaluated. The
effective dielectric constantdz = ¢ + je) or the effective ©n numerical simulations of bistatic scattering from two-
index of refraction gz = n’ + jn”’) can be equivalently used dimensional (2-D) random media, Sarabandi and Siqueira [12]
for a random media with the effective propagation constaf@und that a cluster size as small as one wavelength is enough
K = K’ + jK" where the equivalent relation is given byt0 obtain the correct estimate of the effective propagation
K = konei, K = ko /cer. The measured mean bistaticconstant when particle sizes are on the orderApf0. On
scattering response of the cluster is a function of the equivaléf¢ other hand, a cluster of many wavelengths in size would
dielectric constant of the dense random media and the sh&g¥€ @ mean bistatic response that would vary rapidly as a
and size of the enclosing volume. In this paper, a spheriddnction of the bistatic scattering angle (multiple nulls in the
boundary is used since an exact solution (Mie solution) for ti&ttern). Hence, the measured bistatic response from a large
bistatic scattered fields of a homogeneous dielectric sphereCbiSter is prone to errors in the rotation angle of the ground
arbitrary size can easily be computed [10], [11]. In additioilane. Furthermore, it was shown that in the backscattering
the symmetry in the spherical geometry eliminates errors ddection, the standard deviation of the magnitude of the
to target misalignment and allows for collecting independefgattered field increased with increasing the size of the cluster
samples simply by rotating the spherical enclosure. [12]. In this case, a large number of independent measurements

In summary, the measurement procedure involves thr@kthe cluster is needed for accurate estimation of the mean
steps starting with positioning a cluster of constituent particl@gckscatter field.
of a random medium confined in a spherical volume in front of
the ground plane at an appropriate distance. Next, the grolhdSensitivity Analysis

plane is rotated to the desired bistatic angle and the bistaticScattering from a homogeneous dielectric sphere is a func-
component of the backscattered signal is gated and measutgh of two parameters, namely, the index of refraction=
Then, the coherent and incoherent components of the scattefed- ;) and the normalized radius/\,, wherer is the
fields are separated using many independent measuremenig@ius of the sphere andi, is the wavelength in free-space.
the cluster for a given incident and bistatic directions. In what follows, the sensitivity of the bistatic scattered field
of a homogeneous sphere to these two parameters is studied.
This sensitivity analysis reveals the accuracy with which the
effective index of refraction of random media can be measured.
As was mentioned before, measuring the scattering prop-As mentioned, one of the influential parameters in the
erties of the random medium can be conducted much mdnstatic response of a dielectric sphere is the radius normalized
easily when a sample of the random medium is confined intm wavelength. As an example, Fig. 2 shows the bistatic
a relatively small spherical geometry. However, for accuratesponses of two spheres withi\, = 1 andr»/X, = 2 and an
measurements ak, the size of the enclosing sphere must bimdex of refraction ofn = 1.4 4+ 50.0 (a typical value for dry
chosen so that the confined cluster of particles preserves smew). Heref = 0° and é = 180°, respectively, refer to the
scattering statistics of the infinite random medium. There a@rward scattering and backscattering directions. It is shown
a number of conflicting criteria that need to be considerddat the overall scattering amplitudes and the number of nulls
in choosing the size of the enclosure. For example, tlire the scattering pattern increase with increasifig,. This
cluster must include many particles of the random mediusensitivity to normalized radius suggests that if the bistatic
so that the effect of multiple scattering between particlexattering measurements were to be conducted for spheres
is preserved. Furthermore, the cluster must be larger thaith different radii, a much larger set of independent data
many field correlation distances in the random medium swoould be available for the inversion of the index of refraction.
that the statistics of the scattered field are preserved. Basestead of varying the radius, the wavelength can be varied

o,, (dB)

Bistatic Scattering Angle 6 (deg)

A. Remarks on the Size of Spherical Enclosure
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bandwidth was used. The spatial resolution of this system
is about 10 cm. A perfectly conducting circular disc with
diameter of 1.2 m was used as the ground plane. The ground
plane was positioned inside the anechoic chamber at a distance
of r, = 15 m away from the radar system and the target was
located 0.6 m away from the ground plane, as depicted in
Fig. 1(b). The orientation of the ground plane with respect
to the radar polarization coordinates was accomplished using
a laser system and by maximizing the ground plane’s radar
return at normal incidence. Precise rotation of the ground plane
was facilitated using a computer-controlled stepper motor.
The same experimental setup and monostatic radar were used
in [9] to demonstrate the accuracy of the bistatic scattering
” measurement technique. In [9], it is shown that the bistatic
scattering cross sections and the phase differences between
Fig. 3. Computed normalized differential bistatic radar cross section definggg copolarized amplitudes of point targets can be measured
by (2) as a function ofn/’ for a dielectric sphere with/ = 1.4 and . .
"fAe = 1.3, with an accuracy oft0.5 dB and+5°, respectively.
To examine the accuracy in the measurement of the effective

propagation constants of random media using the proposed

as long as the index of refraction remains constant. This Method, a random medium with low fractional volume is con-
usually the case when a small bandwidth around the ceng '

frequency is usedAf/f, < 10%). This can be particularly fdered. It is well known that the effective field approximation

ful i here the si f th herical | ’ (EFA) method can accurately predict the effective propagation
useful in cases where the size ot tne spherical enclosure 1S ) <o nt of random media in the limiting case of low-volume

the order of many wavelengths gnd the bistatic response Y?z’fctions [6]. Since at low particle densities, the effect of
be measured accurately at a limited number of bistatic angles

. S g . Ultiple scattering between patrticles on the overall scattered
close to forward scattering direction. In this investigation thﬁe}d is negligible, a simple Monte Carlo simulation based

Eigltj;r;cé :Ziggnmsﬁ]g;ig]; zzgstfr;gzt;zrwgegﬁsti:?nc\:gnog single scattering properties of particles confined within a
SRte volume can be performed to demonstrate the feasibility

aIgFoor:trr;rg.St ractical cases of interest. the imadinary paff of of extracting the effective index of refraction from the mean
N pract R ginary part ot e tatic pattern of a cluster of particles. In this paper, a random
which is proportional to the extinction in the random media

. . rhedium with fractional volume 1% comprised of metallic
is much smaller than the real part. Hence, it is important 0 P

. : . spheres with diameter 6.35 mm was chosen as a test case.
to determine whether the measurement technique is accutgte : ) .

- . ) . € metallic spheres (scatterers) were confined within a 7.62
enough to detect small variations in the imaginary part qQ

the effective index of refraction of the medium. In order tc?m spherical boundary~(2) at 9.5 GHz). In such spherical

. L o ) enclosure, on average, only 16 spheres can be enclosed for
examine the sensitivity of the bistatic scattering radar cross, . . : e
X P o achieving 1% fractional volume. The positions of the scatterers
section of a homogeneous spherg (n’, »n”, 6)) to variations

in the imaginary part of the index of refraction, let us definQS'de the spherical enclosure were determined using a random

4 . e . Aumber generator with a uniform distribution. The bistatic
the normalized differential bistatic radar cross section by ; . )
scattered field from a spherical cluster of the test medium was
1 80”(71’, 7’LH, 9)
vii(0) = ;

i = orh. computed from coherent addition of scattering from individual
au(n’, n', 6) on'! ’ particles within the cluster. Overall, the bistatic scattered fields
(2) from 1000 independent realizations of the spherical cluster of
the test medium were computed in order to evaluate the desired
. , o ) %Eatistics of the bistatic response. Using (1), the effective
a dlelegtr|c_sphere with = 1'4,,and, 7’/)‘0, = 1.23 1s propagation constant of the test medium calculated from the
showr_l |n_F|g. 3 as a function O’ﬁ - Fig. 3 |ndlqa_1tes that_ umerically generated bistatic responseis,,, = (1.0099 +
the bistatic scattering cross sections are sensitive to S|I% F0028)k0. The effective propagation constant of the test

changes inn” especially whenn” is small. Therefore, a \1o4ium under the effective field approximation A s =
combination of bistatic scattering response in both frequen 0098 + j0.0033)k,. It is shown that the result based on the

and scattering angle should drastically enhance the accur Inte Carlo simulation is in good agreement with EFA

in the measurement of”. With confidence in the feasibility of the procedure we pro-
ceeded with the experimental verification. For this purpose, ten
different spherical clusters of the test medium were constructed
In this section, the validity and accuracy of the proposeshere styrofoam spheres with diameter 7.62 cm were used as
method is examined by conducting numerical simulations ahdsts for the metallic spheres. The positions of the metallic
experiments in an anechoic chamber. For all measuremespéieres inside the styrofoam spheres were determined using
reported in this paper, a network analyzer-based polarimettie random number generator described before. In backscatter,
monostatic radar [9] operating at 9.5 GHz with a 1.5-GHthe response from a styrofoam sphere is expected to be

Yan

The normalized differential bistatic radar cross section

Ill. V ERIFICATION OF THE NEW TECHNIQUE
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Fig. 4. Comparison between the measured mean bistatic scattering raeigr 5. Comparison between the measured and simulated average incoherent
cross section of a styrofoam sphere (7.62 cm in diameter) and the calbistatic radar cross section of the test medium.

lated bistatic scattering radar cross section of a homogeneous sphere with

€styro = 1.0397 4 70.0198.

constant are investigated experimentally. In general, the effec-
undetectable atX-band and that is the reason for usintlve propagation constant of a random medium is influenced

%)I){ the size, shape, orientation distribution, volume fraction,
styrofoam pedestals as target supports. However, around the

forward scattering direction, the bistatic response of styrofoaprf’%1 rticle arrangement, and permltt|y|ty O.f the constituent parti-
cles. The measurements reported in this paper were conducted

objects is significant and perhaps comparable tq that ofaspa\érvs,% the following objectives in mind: 1) examination of the
the test medium as predicted by EFA is smaller than that ?pendeqce OK on the physpal and eIecFrlcaI .parameters; 2).
. . characterization of the scattering mechanisms in random media
a typical styrofoam. Thus, the effect of styrofoam scatterin ) . ; - .
a function of particles’ volume fractions; and 3) generating a

must be removed from the measured bistatic response of Gfabase as a benchmark for further comparisons with existin
spheres embedded in the styrofoam sphere. The mean bistf its u par with existing

scattering response from a pure styrofoam sphere identica t(?orfrt]'ical modrelf. ndom media with spherical particl f
those used as hosts for the metallic spheres, was meaSLfreHd S pa%ed,. Ia t9 et at sP (_ed cadpi cles Olt
using the proposed CBSM technique and is shown in Fig. pied siz€ and dielectric constant are considered. AS a resutl,

The measured effective propagation constant of styrofoaorﬂg ttr?e g_ﬁ?th _Of the \t/oll:m;atfr:actlon,tgam(ile a?alngeme;:,
was found to beK,yw = (10197 + j0.0097)k,, which and the dielectric constant of the constituent particles on the

corresponds toeyro = 1.0397 + j0.0198. Then, bistatic effective propagation constant are studied. Teflon spheres of

measurements were conducted on each of the ten spherﬁjt%grneterh6'35 r?rg_a(/)\o :60'01 at 9.5 _GHZ) :’:md gsgdg::me
clusters (styrofoamt+ metallic spheres). Additional indepen-g ass sp gres of diameter d mm/“a._ 0.095 at d 2) f
dent measurements were obtained by rotating each spherY(‘fﬁTe use t‘? construct random media over a wide range o
cluster ten times. Overall, 100 independent measureme}ﬁ?éume fr_actlons (10-60%). _Permlttlwty of the Teflon a”“_'
were collected at each bistatic angle. The measured averdf#S Particles were characterized experimentally by measuring
incoherent power of the bistatic scattered field is shown [HE Pistatic scattering response of solid Teflon and glass
Fig. 5 and compared with those obtained from the numericiheres. The dielectric constants of glass and Teflon were
simulation. Then the bistatic scattered fields of the styrofoaifund {0 becglass = 6.93 + j0.10 and cier = 2.10 + j0.00L,
sphere were subtracted coherently from the mean bistdffSPECtively. The large contrast between permittivity of the
scattered fields of the sphere embedded styrofoam Sphgqggtltuent part'lcles are chosen. to demonstrate the effect of
(styrofoam+ metallic spheres). The remainder represents tRaltiple scattering on the effective propagation constant. In
mean bistatic scattered fields of the test medium (metalfv@luation of K of constructed dense random media, the
spheres). These quantities were then used in (1) to evaluatedfolarized responsed’{” and HH) of 100 independent
effective propagation constaft,..... of the test medium. The spherical clusters of the medium were measured at six bistatic

measured effective propagation constant of the test medigffittering angles (10, 20, 30, 40, 50, and °}8énd 18

iS Kineasr = (1.0099 + j0.003)k, and shows a very good frequency points within 0.5 GHz bandwidth centered around
agreement with the effective propagation constant estimated%? .GHZ- )
EFA. The bistatic scattered responses of the styrofoam spher®ifferent methods were used to construct random media
and the sphere-embedded styrofoam sphere and the subtraf& different volume fractions. To construct the 10% volume
bistatic response along with the best Mie solution fit are shoifction, a styrofoam sphere was used as a host for the

in Fig. 6 as function of the bistatic scattering angle. scattering particles. In this case, similar to the case of 1%
volume fraction the location of particles were determined using

the random number generator described before. For higher
IV. EXPERIMENTAL STUDY OF THE EFFECTIVE volume fractions, a hollow styrofoam shell with spherical inner
PROPAGATION CONSTANT OF DENSE RANDOM MEDIA and outer surfaces was used to hold the random cluster of
In this section, the effects of various electrical and physictiie constituent particles. The inner and outer diameters of the
properties of dense random media on its effective propagatistyrofoam shell were 7.62 cmr(A, = 1.21 at 9.5 GHz)
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Fig. 6. Comparison between the measured bistatic responses of the styrofoam sphere, the sphere embedded styrofoam sphere and the coledently subtrac
bistatic scattering response (metallic spheres) along with the best Mie solution fit.

rotation angle (realization number) must be computed. As an
example, the normalized correlation function of the bistatic
scattered incoherent power of the 40% packed glass particles,
measured afl = 20°, is plotted in Fig. 8(a). Fig. 8(a) clearly
shows that rotating the cluster of particles in the prescribed
manner produces an independent realization of the random
a7 The techn i et § dia with i medium. It is well known that the statistics of the magnitude
T T o dechnie used lor consuetng rando medis i et he scatere field from a statistically homogeneous randorn
into the hollow styrofoam shell. medium can be described by the Rayleigh probability density
function, provided that the medium includes a sufficiently large
number of independent scattering centers [13]. Fig. 8(b) shows
TABLE | the histogram of the magnitude of the incoherent component
AVERAGE NUMBER OF FREE AND SPACED GLASS PARTICLES REQUIRED TO FiLL of the bistatic scattered field of the 40% packed glass particles.
THE STYROFOAM SHELL (r = 3.81 cm) FOR DIFFERENT VOLUME FRACTIONS . L K .- .. . .
] In this figure, a Rayleigh probability distribution function (pdf)
volume fraction || 20% | 30% | 40% | 50% | 60% with the same mean as the histogram is also shown. The
M 170 | 431 | 697 | 962 | 1240 Rayleigh pdf agrees well with the histogram of the measured
Ne 240 | 183 | 123 | 64 0 scattered field which implies that the measured samples of
dense media were large enough to include many independent
scattering centers. The incoherent bistatic RCS of the cluster
and 10.16 cm, respectively. In order to achieve the desirgthe second moment of the bistatic scattered field which
volume fraction 10%), a mixture of particles embeddedePresents the fluctuations around the mean bistatic scattered
into styrofoam disks (spaced particles) and free particles wi@ld and can be used to determine the uncertainty in the
poured into the styrofoam shell as shown in Fig. 7. THevaluation of the mean field.
styrofoam disks were 1.0 cm in diameter and 0.6 cm in Search routines for the minimization of the nonlinear error
thickness. The average number of fré¥ f and spacedX,) function given by (1) may arrive at an incorrect value for
particles required to fill the styrofoam shell are listed in TableXX unless certain physical constraints on valuestofare
for five different volume fractions used in this experiment. Thignposed. In particular, it is required theffy = K’/k, > 1 and
number of spaced particles was chosen such that the spherital = K”/k, > 0, which set the lower limits of the search
shell would be fully packed with the mixture of free and space@utine. An appropriate selection of the upper limit fiof;
particles. is the index of refraction of the constituent particles. Another
Independent realizations of the dense random medium wérgortant issue is an appropriate choice of the initial guess
generated by rotating the cluster of particles in all directiorigr the search routine. As will be shown later, the Polder—Van
in increments of 20. In general, the incoherent componenBanten mixing formula provides an accurate estimate of the
of the bistatic scattered field for any realization must beal part of the effective index of refraction of the random
mutually uncorrelated with that of other realizations. To exnedium regardless of the volume fraction. Therefore, the
amine whether independent measurements can be realizedPbider—Van Santen mixing formula is used to provide the
simply rotating the cluster, the cross correlation between thtial guess in the search routine. Using the constrained
incoherent components of the bistatic field as a function eéarch algorithm, the effective indexes of refraction of the
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Fig. 9. The measured mean bistatic radar cross section and the copolarized
phase difference of 40% packed glass particles are compared with the theo-
retical responses of a homogeneous sphere (7.62 cm in diameter) computed at

aforementioned random media were accuratelv ch . 9.8 GHz withneg = 1.6457+50.0704 derived from the inversion algorithm.
y characterized.

Fig. 9(a) and (b) demonstrates the magnitude and phase of the
bistatic scattered field of the random medium constructed from
glass spheres with 40% volume fraction and a homogenedugction (QCA-PY), and Polder—Van Santen mixing formula
sphere Withneg = 1.6457 + j0.0704 obtained from the search@s functions of the volume fraction. It is observed that for
routine. A similar result is shown in Fig. 10 where the bistatigoth dielectric materials, the mixing formula can reasonably
RCS of the random medium constructed from Teflon spher@gtimate the real part of.;. None of the discussed models
with 10% volume fraction and the equivalent homogeneo@§d, in particular the QCA-PY, were able to predict correctly
sphere withner = 1.04736 + j0.00155 as function of the imaginary part ofr.g for volume fractions above 10%.
frequency for five bistatic angles are shown. These figure®mparing Figs. 11(b) and 12(b), it can be seen that the
demonstrate the accuracy of the search routine in obtainigeattering losses in media constructed from glass spheres are
the effective index of refraction of the random media used uch higher than those of the media constructed from Teflon
these experiments. spheres. This is due to stronger scattered fields generated by

The measured effective index of refractiom4 = K/k,) the glass spheres with higher permittivity contrast than the
for the various dense random media considered in this papgeflon spheres.
are summarized in Figs. 11 and 12. In both figures, theAs the volume fraction of a random medium increases, it
measuredh.x are compared with theoretical predictions basdd expected that the internal fields of the scatterers within
on EFA, QCA under the Percus—Yevick pair distributiothe random medium become correlated and, therefore, the
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Fig. 11. The effective index of refraction (a) real part and (b) imagina:gig' 12. The effective index of refraction (a) real part and (b) imaginary
part of random media constructed from Teflon particles as function of volurfi@'t of random media constructed from glass particles as function of volume
fraction. The measured effective index of refraction is compared with thof@ction. The measured effective index of refraction is compared with those
computed using EFA, QCA-PY, and Polder—Van Santen mixing formulas. computed using EFA, QCA-PY, and Polder-Van Santen mixing formulas.

volume fractions (15-50%) the scattering loss in both glass and
incoherent scattered field be reduced. Based on this argum@aflon media is more than what is predicted by the EFA. This
one may deduce that the scattering loss predicted by the EFAkgnomenon can be explained by examining the particle
an upper limit. However, as our experimental results indicatgrangement at these intermediate volume fractions. In these
[see Figs. 11(b) and 12(b)], this is not the case. At intermediatases, the probability of finding two or more connected par-
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ticles is rather high. The connected particles may be vieweld] K. Sarabandi and E. S. Li, “A microstrip ring resonator for soil moisture

as a larger particle whose scattered field is much higher than Measurements,|EEE Trans. Geosci. Remote Sensingl. 35, pp.
o 1t field from isol les which in., 1223-1231 Sept. 1007.
the sum of the scattered field from isolated particles which ifs; E."Nyfors and P. Vainikainen|ndustrial Microwave Sensors.Nor-

turn produces higher incoherent scattered power in the random wood, MA: Artech House, 1989.
media [6] C. E. Mandt, Y. Kuga, L. Tsang, and A. Ishimaru, “Microwave prop-
' agation and scattering in a dense distribution of nontenuous spheres:

Experiment and theory Waves in Random Mediapl. 2, pp. 225-234,
V. CONCLUSION 1992.

A techni f . th fecti ti r{7] M. T. Hallikainen, F. T. Ulaby, and M. Abdelrazik, “Dielectric proper-
new technique tor measuring the efieclive propagatio ties of snow in the 3-37 GHz rangdEEE Trans. Antennas Propagat.,

constant of dense random media is presented. In this technique, vol. AP-34, pp. 1329-1340, Nov. 1986. _
the mean bistatic scattered fields of a cluster of randor$! J: L. Zhou and A. L. Tits, “User's guide for FSQP Version 3.3b: A

. . . . FORTRAN code for solving constrained nonlinear (minimax) optimiza-
medlum,_conflned ina khown geometrical boundary, are mea- o, problems, generating iterates satisfying all inequality and linear
sured using a monostatic radar and a rotatable ground plane. contraints,” Elect. Eng. Dept., Inst. Syst. Res., Univ. Maryland, College

i ; ; ; Park, MD, 1993.
Then.the.measured mgan bistatic scattered fields are fltted. T K. Sarabandi and A. Nashashibi, “A novel bistatic scattering matrix
the bistatic scattered fields of a homogeneous lossy material measurement technique using a monostatic ratBEE Trans. Antennas
with the same geometrical boundary. The accuracy of the] PrOPagat.,Izlol. 44, pp. 4t—50, Jan. 1996. § b d
; ; ; : : G. T. Ruck, D. E. Barrick, W. D. Stuart, and C. K. KrichbauReadar

new technique in measuring the effec_tl_ve propagatlon_ constatft Cross Section HandbookNew York: Plenum, 1970.
of a dense random medium was verified both experimentaft\] c. F. Bohren and D. R. Huffmambsorption and Scattering of Light by
and numerically in the low volume fraction limiting case. It _ Small Particles. New York: Wiley, 1983. _ _
. | hown that using this technique. the permittivit &]12] K. Sarabandi and P. Siqueira, “Numerical scattering analysis for two
IS a SF’ S W . 9 que, p y dimensional dense random media: Characterization of effective permit-
low dielectric materials such as styrofoam can be measured tivity,” IEEE Trans. Antennas Propagatpl. 45, pp. 858-867, May
very accurately. Measurements of the effective propagati 1997. _ - L )

y y . p. pag 1% K. Sarabandi, “Derivation of phase statistics from the Mueller matrix,”
constants of dlffer_ent den_se ran(_jom_medla Comprlsed of_ 0~ Radio Sci.vol. 27, no. 5, pp. 553-560, Sept./Oct. 1992.
mogeneous spherical particles with different packing densities
are reported and compared with existing analytical models.

It is shown that none of the existing analytical models are

able to predict the extinction accurately at volume fractio
beyond 10%. It is also shown that the Polder-Van Sant
mixing formula can be used to predict the real part fof

with reasonable accuracy.
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