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Interaction Effects in
Two-Dimensional Bianisotropic Arrays
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Abstract—Electromagnetic excitation of two-dimensional (2-D)
arrays of bianisotropic particles by plane waves is considered.
Arrays (grids) are assumed to be infinite and the particles to be
small compared to the wavelength, so that the dipole approxima-
tion is possible. The elecromagnetic interaction between all the
particles changes the properties of these particles (in particular,
chiral and omega particles are studied). The analytical model
under consideration allows to express the electric and magnetic
moments induced in each particle through the incident wave
fields in terms of collective polarizability dyadics (CPD’s). The
proposed method to evaluate these dyadics combines numerical
and analytical parts. The results of the calculations of the induced
electric and magnetic moments by plane waves are presented for
a planar arrangement of omega patrticles.

Index Terms—Bianisotropic particles, dipole model, grid plane,
interaction dyadics, particle interaction.

I. INTRODUCTION

HE modern electromagnetics literature contains many
papers devoted to artificial bianisotropic media (see, e.g.,
[1]). At microwaves, we usually deal with composites of
conductive inclusions embedded into dielectric matrices. These (b)
inclusions often have the shape similar to that of helices (chigy 1. (a) chiral particles and (b) omega particles planar arrangement.
particles) or to the shape of capital Greek letferlomega
particles) [2]. Such particles have four polarizabilities: electric, _ )
magnetic, electromagnetic, and magnetoelectric. The polarig€ Use of the so-called wire-and-loop model [3], [4]. It is

abilities are dyadic functions of frequency and geometric@ @nalytical model for single bianisotropic particles (BAP).
parameters [1], [2] Following [3], [4] we can write for a chiral particle

p=d. E+Gon H Tee = age ToTo + alf Tozo + alizoTo + alizozo + a?yoyo
m :Enze -F + Ernrn -H. (1) aenl = a:::lxoxo + a:zz%xo
= _ _ arz . -4
Here, £ and H are the local electric and magnetic fields_ame = 7 GemT0T0 T (e 070

amplitudes at the point where the particle is located. It @mm = @GmmToTo- (2a)

important to note that the magnetoelectric properties of sugfere the axis: is directed alond the particle axis (see Fig. 1).
composites are essential only for frequencies near the partiglsr an omega particle with the stems oriented along:thgis
resonance when the full length of the particle wire is abofee Fig. 1(b)] we can write

one half of the wavelength (see, e.g., [1]-[4]). It means that
the stretched particle lengthl is small compared to the _
wavelengthX (about)/8) and the dipole approximation of a Gem = — GmeZ0L0
particle is available. Often, studies of the polarizability dyadics Ume = UmeT020

of individual omega and chiral particles are carried out with

Tee = aPoYo + ai 2020

irnrn = AmmToL0- (Zb)

Manuscript received May 26, 1998; revised December 15, 1998. This wofihe scalar coefficients in these relations are given in [4].

was supported in part by the Russian Fund for Basic Research under Granft s clear that the question of electromagnetic coupling
96-02-18410 and by an INTAS-RFBR under Grant Project 95-821. f BAP's i . L B h .
C. R. Simovski, M. S. Kondratjev, and P. A. Belov are with the PhysicQ $ In composite structures Is important. But there Is

Department, St. Petersburg Institute of Fine Mechanics and Optics, 197100, complete theory that would take into account the electro-

St. Petersburg, Russia. . magnetic interaction effects for such particles. The existing
S. A. Tretyakov is with the Radiophysics Department, St. Petersburg State . . .

Technical University, 195251, St. Petersburg, Russia. apalytpal [5] and numerical [6] are appllcable for t_hree'
Publisher Item Identifier S 0018-926X(99)07067-2. dimensional (3-D) (volume) mixtures and cannot be directly

0018-926X/99$10.001 1999 IEEE



1430 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 47, NO. 9, SEPTEMBER 1999

(b)

Fig. 2. (a)a = 10 mm, Re(FYY) andRe(al?). (b) Im(FZY) andIm(a??). Horizontal axis—frequency in gigahertz.

used for planar two-dimensional (2-D) arrangements of par-Grids of BAP’s under consideration (such as in Figs. 1

ticles. Maxwell Garnett approach [5] is available only foand 2) are placed in free-space. Let us choose among the

dilute volume mixtures of particles with 3-D distributions oBAP’s an arbitrary particle named belorgference particle

inclusions. Papers [6] and [7] present an approach to solvibhgt us place the origin of the Cartesian coordinate system at

the problem of mutual coupling for chiral and some planats center and denote the amplitude of the incident electric

particles. But they give no analytical solutions being based @ield at the pointzr = ¥y = z = 0 as E, and the electric and

the numerical modeling of scatterers within the frame of theagnetic dipole moments of the reference particlepas,,

multiple scattering method. respectively. For the field of the incident wave with the wave
vector k&, we have for the points belonging to the grid plane
(time dependence is in the foraxp (—iwt))

Il. FORMULATION OF THE PROBLEM .

In this paper, a 2-D array (planar grid) of chiral and omega Eine = Eo expi(kyy + k.2). ®)

BAP’s with a rectangular cell: x b is studied. In this case, | et ys denote the amplitudes of the electric and magnetic fields

the electromagnetic coupling is an important factor. We afgoduced by all the BAP's of the grid except the reference-

interested in the cases when the particle slzés two or particle at the point: = y = » = 0 as E’, H'. The local field

more times smaller compared to the space periods of the gfifat exciting the reference particle) equals

a, b. Strong electromagnetic interaction is expected for the case

when2l = \/8,a = A/4---A/2 (resonant particles and rather E=F +E,

dense grids). So, it is possible to use the dipole approximation H=H +H,. (4)

of BAP’s in our analytical study. Of course, it is a serious

problem to take into account the practical sizes and shapedPefriodicity of our problem allows us to assume that for an

the particles in studying mutual coupling of adjacent particlearbitrary element of the array (with the numbersn of

This question is considered in Appendix A. the cell corresponding to th@Y, OZ axes, respectively) the
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following relations hold: component of the incident electric or magnetic fields with unit

P, = expi(kyma + k.nb) amplitudes and phases given by (5).

My, =1 expilkyma + kznb). ) lIl. | NTERACTION DYADICS
Assumption (5), which means that the phases of the induced EVALUATION —SERIES REPRESENTATION

dipoles vary accordingly to the incident wave phase, prc)t""‘bl3’Electric and magnetic fields of electric and magnetic dipoles

cannot be strictly proven for bianisotropic particles. Howevegl,t a point displaced from these dipoles by distaRcare given
in most cases (5) is obviously correct, so we make th@ the well-known formulas

assumption K2 [Rxglx K] ) .
= = _ K X plx v ikR

E/ :éee'p'i‘fkrn'm Ep_47f(:(:0 R3 <1+E_k2R2>C

H = Ape P+ Appr - M. (6) 12 R(R i P) i 1 R
To find the dyadicsi.., Acn, Ame, Amm, We have to calculate 2reeq  R3 "R T RR)C
the sums of the electric and magnetic fields produced by the k2 [R x p] i iR
electric and magnetic dipoles with the unit amplitudes and the H» = arJecono R <1 + @)C (10a)
phases given by (5), which are placed at the centers of the 12 (R x m] p
grid cells. These sums do not include contributions from the E,, = 2m <1 + L)e”“R
reference-particle dipoles. These fields are calculated at the dmyfecoppo R kR
pointz = y = z = 0. We will call these dyadicinteraction ~ , _ k> [[Rx m]x R] TN T WY
dyadics S ™ A g R3 ER k2R?

Let us denote byF .., Fenm, Fe, Frnm the dyadics that k?  R(R-m) i 1 "R (10b

relate the electric and magnetic momemptsand m of the 27 pufto R3 " kR + 2R /)¢ (10b)

reference particle with the incident wave fields amplitudes _ _ _ —
E, and H,, and call themcollective polarizability dyadics It is instructive to rewrite (10) using three dyadidgz, y, z),

(CPDs) B(,y,2), and C(z,y, 2)
-7 . 7z . k2 kR /__
Y4 iee EO+-F;771, HO Ep: € , <A(.’L',y,2’)
m:Frne 'EO+Frnrn 'HO' (7) 471'660 R
. ) i 1 \=
After some diadlc algebra_we fEd_IrOT (2), (6), and (7) + <_ﬁ + W)C(x,y,z)) p
Foo=(W. -V, - W, -Vt 12 kR i \—
= — H=-—"__"_(1+—|B 7) -
@ee + Vo Wy *me) " dr e B2 (14 2B 2
Fe,rn, = (We - Vrn, . Wrn N Ve)_l k2 eikR q — ( )
= = =-1 = E'rn = 1 pe— E Y, <)
’ (aern + Vrn ’ Wrn ’ arnrn) ) 47&/660/1/10 R2 < + kR) (:I: 4 7) m
Frne —(Wrn - Vﬁ N Wp N Vrn) — k c Z(x Y 7)
_ — :_1 m 47rl,Ll,L0 Rg ) 9~
me V€ W €e .
e B e L1z
Frn,rn, (Wrn - Vﬁ N Wp N Vrn,)_l + —ﬁ + IfQRQ C($7 Y Z) - (llb)
= :_1
(@ + Ve W, - Gem) (8) The matrix form is more convenient to analyze the following
dyadics:
where
W@ :? - 6ee . jee - iern . jrne Z(‘/L'? Y, Z)
Wrn :? - irnrn . jrnrn -a e " jern _(y2 - 22) ( Qxy 2) e
Ve = Gmm * Arne + Qe - Aee 2 2
Vrn, :aee N Aern, + aern, N Arn,rn,- (9) 5
o .= B(z,y,z)
The polarizability dyadicsz;; for our BAP’s are known (see 0 -2 oy
above) a_nd the interaction dyadics;; of our_grid of the =]z 0 - (12b)
general kind we calculate below. The problem is, hence, to find z 0
the CPD’s for grids of chiral and omega BAP’s as functions
of the interaction dyadics and polarizability dyadics. O, y,2)
The dependence on the polarization of the incident wave [—2z% 4 y* + 2 Ty Tz
is included in the structure of CPD’s dyadics because eack xy 2y? + 2% + 22 yz
component of these is a Cartesian component of an electric or Tz yz —22% + 2% 4y

magnetic moment induced in the reference-BAP by a certain (12¢c)
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For generality, let us consider here the interaction dyadicsAll the series in (16) absolutely converges and can be easily
of a general periodic translationary invariant structure efalculated numerically (terms decreasel A& or faster). But
scatterers including those that are 3-D, where the periodiciye convergence of the series in (15) is so slow that they cannot
condition (5) is assumed to hold. From (5) and (11) we havgs calculated without using special methods. Such methods are

= k2 = ) 1 known in the theory of microwave scanning antenna arrays

Ace = dreco Z Alws 95, 2) + <_ kR; + k2R2 formed by horizontal electric or magnetic dipoles [9]. We
770 have applied the method of imaginary screen [9] in numerical
(13a) calculations of series (15) to validate our analytical approach

_ ik R;+ik-R;
- Cl@j,95,25)

Rf’ given below. This method is convenient for this goal but it
- k2 i \— is not realistic for detailed numerical study, because it still
Aem = dr oo > <1 + IR )B(%aijzj) requires too much calculation time which increases with the
370 grid density and it is complicated as such.
cikR;+ik-R;
Rf (13b) V. INTERACTION DYADICS. INTEGRAL REPRESENTATION
= k2 i \= Let us take into account that all the scatterers of our grid
Ape =——— Z 1+ — B(a:j,yj,zj)
4m . /ecofifto kR; are located in the plang = 0. In this case, the matrlces
CikRij.RjJ# B, and C have the form
T (13C) _ —(y + z ) 0 0
i Alz,y,2) = 0 22 yz (17a)
= k2 = i 1 0 yz =y
Arnrn = A JrYj5,%5 R 7902
A7 g ; (5,3 7J)+< kR; + kQRf) B 0 -z vy
! o B(z,y,2)=| 2z 0 0 (17b)
— CZkRj+Zk~Rj . 0 0
Oz, 45, %) R (13d) Y
J o 2 + 22 0 0
Here, j numbers particles in the 2-D array. It is evident that  C(xz, y, ) = 0 2% + 22 Yz . (17¢)
jee = 1Ho jrnrnv Aern = jrne» (14) 0 yz _2Z2 + y2
€0 Let us introduce the notations presenting the interaction
The dyadmsAee,Amm are symmetric andAem,Ame are dyadics in the matrix form
antisymmetric. We evaluateee and A.,, and use (14) to find B A 0 0 _ 0 A A”
the other interaction dyadics. A.=[0 A A |, Agn=|-4 0 0
Let us separate two terms in relations (10). The first term 0 Ay A —A 0 0
describes the wave-zone field (wave-field) of these dipoles (it (18)

decreases ab/R) and the second one is the near-zone field

(which includesl/R? and1/R? terms). We name this secondln this section, we will take into account in all the components
term in (10a) and (10b) asear-zoneThe representation of theof dyadics (18) only the wave terms given by (15). Let

interaction dyadics with separated wave terms and near-zargereplace the sums in (15) by the corresponding integrals

terms_is B B (validity conditions discussed in Appendix B)
Ace em,me,mm = Z:;,em,me’mm + Z::,ern,rne,rnrn / 2 +o0 +oo i
Whe:ri 2 — Gk R ik R; r=- dm/ecopiio or s _Zo v+ 22
¢ = Lreeo j; A(xjvijzj)T? (15a) Y e e )] dy dz (19a)
=w k2 — cikR;+ik-R; 5 +oo 4oo
A, :WTW ; B(a:j,yj,zj)T? (15b) A :% v.p. / / rj{%
and near-zone terms are , o T b2y dy ds (19b)
A = 47r1660 Z <-;Tkj + %)5(%’%%) ot
AR R, A= g Zo ZO No
T? (16a) _ei(k\/m-i-kzz'i'kyy) dy dz (19¢)
=nz ik = +o0 400
A, = Inyeaonr ; B(x;,y;,7;) PR / /
GikR;+ik-R; 7“60 R \/m

(16b)

R}o? . ei(k\/m"'k"‘"'kyy) dy dz (19d)
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oo Ao (term M is zero for noninteracting particles as well as
A = / / a¥z*¥ a®v. o¥% ). Also the terms describing the interactions
47r66° o VYR +72 electric dipole—electric dipoland magnetic dipole—magnetic
i 4k oAk, y) dipole, enter K and N with the minus (it corresponds
¢ oo 4 dy dz (19€) to decreasing of electric and magnetic polarizabilities as
it is discussed below), whereas the interactietectric
Az = 47r660 / 53 dipole—-magnetic dipoldeads to the term entering with
e e VYR z the plus sign, which is responsible for the new frequency
R e ) dy dz. (19f) dependence ofyy component of the electric polarizability

(also see the next section).
Here,n = 1/ab is the surface concentration of particles and

the meaning of symbal.p. is that we exclude from the plane
OXY an area of the reference-particle cell (principal value
of the integral) VI. NUMERICAL STUDY OF A PLANAR OMEGA GRID

is given in Appendix B. Finally, we obtain for the wave termg pjanar omega grid. "This structure is probably the easiest
of the interaction dyadics and cheapest to manufacture variant of bianisotropic arrays.
It is shown in several investigations (for example, [8]) that

= _ ik*n {x kke + k3 + kﬁy ” planar omega layers with finite depth (which can be obtained
" Dpeco |0 (k+ky)2 7070 with a few planar 2-D omega arrays) possess very interesting
kk, + k2 + ki Ky k. properties. We consider here a grid with square dells- b)
WZOZO - m where the incidence plane is bisectorial with respect to octant
OXYZ andk, =k, = k.. We show only the results where
- (Yoo + zoyo)} (20a) the numerical results for the interaction dyadics obtained
as described above practically coincide with our analytical
=v __ ik’n ks _ calculations.
Aern 2% (yO"”.O .'L'()yo) .
/i Lk + ks Figs. 2-5 present the frequency dependence of the compo-

k, nents of the excitation and polarizability dyadics for the grid
%+ ka (%020 — ZO‘”O)}' (20b)  with the cell sizex = 10 mm. The polarizability dyadics com-
ponents are marked as 1, the CPD’s components are marked
We can see that using this method we can calculate of§ 2 if the near-zone terms are included into the interaction
the imaginary parts of of all the wave terms of the interactiofyadics, and as 3 if they are neglected. Componéfffsand
dyadics. Numerical validation shows that this limitation hak:.¢ have no analogues in the particle’s polarizability dyadic
little importance for dense gridg:a, kb < 2), where the real being results of the electromagnetic interaction of particles. As

part of each component of the interaction dyadics is practicallylS seen, considerable cross-polarizing effect is observed in
that of its near-zone term. the reflected and transmitted waves. In this example, perfectly

conducting omega particles have the following geometrical
parameters! = 1.5 mm, Ry = 1.5 mm, ro = 0.05 mm,
V. AN ExAmPLE OF CPD’s FOR where! is the length of one stem of the particle (one half of
ARRAYS OF OMEGA PARTICLES the straight portion length)R, is the loop radius, and, is
Consider the omega particles orientation presented in Fig.t2e wire radius. The frequency band of the analysis includes
The polarizability dyadics are given by (2b). After some dyadi®e individual particle resonance. Note that resonances that

+

algebra the CPD’s are found in the form correspond to various periods in the grid cannot be seen in
the case of small distances between the partities. A/2),
= K oM M N which is studied here. Also, the reflection coefficient at that
Fee =al < YoYo — 6l Yo%o — ac A 2%+ e A%0%0  resonances becomes practically zero (since the resonance
7 y Gmm M N interaction, which has been studied separately corresponds to
em = T e~ A JoT0 T Gme A Z0%0 the sharp mutual depression of the dipoles).
— A M N The CPD’s components frequency behavior is considered
Frne = f,a KiﬂoyoJrame A Yozo in comparison with the corresponding components of the
_ i polarizability dyadics. Whem < 6 mm and smaller, it turns
Frm = amm A Fo%o, (21) out that the results become obviously incorrect since the
negative values of the imaginary partsiaf., F',,,,, and of the
where K = 1 — ¢ Az + 2a,me A" — @y A, M = a. A' —  real part ofF,,,, become large. In the same cases the correction

aZAz, N =1—a¥A;,A = KN + (a¥/a?)M?. This shows terms obtained in Appendix B for the dipole moments of the
the role of the interaction terms in the polarizability dyadicseference particle become essential, too. It can be understood
Due to this interaction the new components appears in the that the dipole model of interaction is not available for
magnetoelectric, electromagnetic and electric polarizabilitissch small distances.
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(b)

Fig. 3. (@)a = 10 mm, Re(F%). (b) Im(F%). Horizontal axis—frequency in gigahertz.

The general rule is that the electromagnetic interactiatectric field along the same axis. For noninteracting particles,
decreases the resonant values of all the components of CPi&s particle as a whole is not excited lydirected electric
compared to their analogues in the polarizability dyadics, buéctor [4]. Therefore, the resonance peak is absent and the
increase the components having no such analogues. Thateaesitation model is quasi-static. The interaction leads toghat
creasing especially concerns the imaginary parig,gf,, F.., directed incident electric field produces (for oblique incidence
and the real part of ,,,.. Their analogues for noninteractingonly) the magnetic dipoles which are induced pylirected
particles are responsible for particle radiation losses in tgéectric ones. These magnetic dipoles via the term with
theory of bianisotropic bulk composites. Small shift of thenteringK in (21) are responsible for the resonance peak that
resonance frequency increases with the grid density and #joears.
incidence angle, but it does not exceed 5-7%. Fig. 3 demonstrates another interesting phenomenon. For

We have studied separately the influence of the near-zame individual particle z-directed electric field does not excite
fields produced by our grid elements on the excitation of ti#e y-directed electric dipole moment. However, interaction
zero element. When we neglect these fields in the interacti@ads to nonzero interaction, which again has a resonance
dyadics, all the resonance peaks of the CPD’s become matethe resonant frequency of the interacting scatterer. Fig. 4
pronounced. The electromagnetic and especialy near-zone gaiews the effect of mutual depression mentioned above. It
ticles interaction decreases the resonance properties, radiatéispecially refers to the imeginary part of this main component
losses, and bianisotropy of particles. of the polarizability (the real part also decreases but not

In Fig. 2, the polarizability component describes excitatiothat sharply). That demonstrates transition to a continuous
of electric dipole moment in the loop (along in response to surface, where no scattering loss exist. Similar phenomena
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Fig. 4. (a)a = 10 mm, Re(FZ?), andRe(a??). (b) Im(F7?) andIm(a??). Horizontal axis—frequency in gigahertz.

can be observed in analysing the magnetic components of that are responsible for the radiation losses in bulk
CPD’s Fig. 5 corresponds to that magnetoelectric component composites.
of CPD’s which appears also as the result of the interacgjon ( 3) Comparing to noninteracting particles, collective po-
polarized external electric field excites the magnetic dipoles). larizability dyadics contain more nonzero components
whose amplitude increases with the grid density.
4) The dipole approximation applied here is valid when the
VII. CONCLUSION cell size is at least twice the particle size.

The analytical model of excitation of planar arrays of 5) Interaction Iead_s to new resonances of polaringility
bianisotropic particles has been developed. All the results are  cOmPonents which can be described by the quasi-static
in agreement with the reciprocity conditions and they are phys-  Model in the noninteracting case.
ically sound in the limiting cases. The following conclusions
regarding the electromagnetic interaction of omega particles APPENDIX A

in 2-D arrays can be made. Let us consider a planar omega grid. At first, we should note
1) The resonance frequency shift increases with the intiat since the stretched size of the particle is abol# and
dence angle and the grid density, but it is rather smalthe grid period under consideration is aboy®6 - - - A/3, the
2) Bianisotropy and magnetic susceptibility of particledipole model is not available to describe the electromagnetic
decrease, which especially refers to the componenigeraction only for adjacent particles.
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Fig. 5. (@)a = 10 mm, Re(F%). (b) Im(F;;,%). Horizontal axis—frequency in gigahertz.

As to the particles located around the reference one, tfi2]. The periodicity condition (5) allows
distance from the reference particle to them has the same order I
that their sizes. So, the field produced by these particles is L ik (22)
nonuniform over the reference particle. Contribution of that 1o

field to the electric and magnetic dipole moments induced {fhere is the radius-vector of the 1 particle’s center (where

the reference particle can be described in terms of the so-caligé origin is the 0 particle’s center). The mutual impedance
additional impedance. This impedance (referred to the particlg, can be presented as

center) produced by an arbitrary particle with the number 1 in
a particle with the number 0 can be presented as [11], [12] Zior = Ziww + Zw1 + 211 (23)

where Z is the mutual impedance of two straight wire
Zadd = Zord1 /1o portions of interacting particlesZ,, is one of the wire and
the loop portions, and’y, is one of their loops. The last term

where Zy; is the mutual impedance of particles 0 and 1 anl(q (23) can be estimated as

Iy, I, are the current amplitudes at the centers of the 0 and 1 Zn = jwM
particles, respectively.

To calculate the mutual impedances, we use the well-knowrhere A7 is the well-known (see [10, eq. (5.41)]) mutual
method of induced electromotive forces (EMF) by Brillouininductance of coplanar loops, which is very small compared
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to the self-intuctancé whend > 3R, (whereR, is the loop between these terms results

radius).

Iadj = IfarG

The mutual impedance of the loop and the straight wire

antennas has been studied in [11]. It was shown that at #{Bere

1

frequencies which are about that of the main resonance (or !

less) Z,, is also small compared to the loop and the wire

proper impedance#,, and Z,. The termZ,, has the same

order thatZ,, since the stems of omega particles are parallel.
Practically, Z,,, is the only term to be taken into account

in (26) For Z,, we have from [12]

where
RVVVV

n/2m

and

ZWW = RWW + jXVVVV

=2ci(kd) — ci(kd')c — ci(kd")

+ 0.5 sin 2kl(2si(—kd") — 2si(kd')
+ si(kdy) + si(kdz)) + 0.5 cos 2KkI(2ci(kd)
— 2ci(kd’) — 2ci(kd") + ci(kdy) + ci(kdy))

= — 2si(kd) + si(kd')e + si(kd")

+ 0.5 sin 2kl(2ci(kd”) — 2ci(kd’) + ci(kdy)
+ ci(kdy)) + 0.5 cos 2kl(—2si(kd) + 2si(kd’)
— 2si(kd") — si(kdy) + ci(kda))

d =1+\12+ a2
d'=1— 2 +d&?
dy =21+ /A2 + &2
dy =21 — /A2 + 2.

Z e_j(krrna'l'kynb)ZOrnn/ZO

m,n=—1
I .
! (ke .
1— Z e J(kwrna-l—kynb)ZOrnn/ZO

mn=—1

G =

With these equations we can expreg$ via pt
XY =pa (25a)
p. =p2Y +p. (25b)
To find pf™ we have to substract the terms with numbers
m,n = 0,41 from the series (13) describing the interaction
dyadics. These reduced interaction dyadics being substituted
into (8) and (7) give the vectgr™ with the ~ componenp®.
Substitutingpt® into (25), we obtain an appreciate value of
p. Where the real wire-and-loop shape of the omega particle is
taken into account within the frame of the impedance model.
This result can be compared with that of the dipole ap-
proximation given by (7), (8), and (13). Such a numerical
comparison being made for an array described in Section VI
shows that the dipole model is available if the distance between
particles is greather thati (that is, the double stretched length
of one patrticle). This result is the same as that of [13] in which
the interaction of two chiral particles is considered.

APPENDIX B

To evaluate all the integrals in (19), we rewrite them
in polar coordinates and obtain a tabulated integral over
the polar radius. The estimations have been made for the
contribution of a small domain with the dimensianx &
around the origin. In these estimations, this rectangular area

Here si and ci are the integral sine and cosine functionsyas heen replaced by a circle with the radius- b)/2. In the
respectively.
There are eight adjacent particles around the referenggh be replaced by integrals (19),b ~ A\/3---1/6), the
particle (which is named below 0 particle since its arrayontribution of this domain does not exceed the error given
numbers aren = n = 0) and we have to determine onlyby such an approximation itself. Therefore, this contribution

case when the dipole approximation is valid and sums (15)

three mutual impedances of the reference particle and of oweh be neglected and the marlp. can be dropped.
the particle with numbers: = 0,n = 1 (denoted below as Integrating along the polar radius from 0 40 we obtain

Zoo1); 2) the particle with numbers: = 1, = 0 (Zo10); and ) k2
. . _ _ = Iz'b
3) the particle with numbers: = 1,n = 1 (Zy11). The other Ir Jeeonio ¢

five mutual impedances are equivalent to these as results from
the problem geometry.

27w
cos wdp

Let us preseljt the EMF induceq in the zero—particle as the I = / ki + b, cos ¢ + ky sin g (262)
sum of EMF’s induced by the adjacent particlgs..q;) and 0
that induced by the far sources (the distant particles and the w kn I
incident Wave)(_Efar). We have_ in these term&;,, +_Eadj = - 4\ /ecopitio ut
IyZy where I is the current in the reference particle center o
and 7, is its proper impedance evaluated in [11]. Also, from I = / sin pdyp (26b)
(22) we yield Y ) k+k.cose+kysing

1
. 2
Eadj _ IO Z/ e—j(kl-rna-l—kynb)Zornn. (24) A= k°n Ii
m,n=—1 47T660

Here the prime means that the tenm= »n = 0 is excluded. T de

Let us present the curreii§ as a similar suniy = It; + Lg;, / F T ko cosg T Iy sing (26c¢)

whereli,, = Epay /Zo, Tnaj = Eaqj/Zo. From (24) the relation 0
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