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Interaction Effects in
Two-Dimensional Bianisotropic Arrays
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Abstract—Electromagnetic excitation of two-dimensional (2-D)
arrays of bianisotropic particles by plane waves is considered.
Arrays (grids) are assumed to be infinite and the particles to be
small compared to the wavelength, so that the dipole approxima-
tion is possible. The elecromagnetic interaction between all the
particles changes the properties of these particles (in particular,
chiral and omega particles are studied). The analytical model
under consideration allows to express the electric and magnetic
moments induced in each particle through the incident wave
fields in terms of collective polarizability dyadics (CPD’s). The
proposed method to evaluate these dyadics combines numerical
and analytical parts. The results of the calculations of the induced
electric and magnetic moments by plane waves are presented for
a planar arrangement of omega particles.

Index Terms—Bianisotropic particles, dipole model, grid plane,
interaction dyadics, particle interaction.

I. INTRODUCTION

T HE modern electromagnetics literature contains many
papers devoted to artificial bianisotropic media (see, e.g.,

[1]). At microwaves, we usually deal with composites of
conductive inclusions embedded into dielectric matrices. These
inclusions often have the shape similar to that of helices (chiral
particles) or to the shape of capital Greek letter(omega
particles) [2]. Such particles have four polarizabilities: electric,
magnetic, electromagnetic, and magnetoelectric. The polariz-
abilities are dyadic functions of frequency and geometrical
parameters [1], [2]

(1)

Here, and are the local electric and magnetic fields
amplitudes at the point where the particle is located. It is
important to note that the magnetoelectric properties of such
composites are essential only for frequencies near the particle
resonance when the full length of the particle wire is about
one half of the wavelength (see, e.g., [1]–[4]). It means that
the stretched particle length is small compared to the
wavelength (about ) and the dipole approximation of a
particle is available. Often, studies of the polarizability dyadics
of individual omega and chiral particles are carried out with
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Fig. 1. (a) Chiral particles and (b) omega particles planar arrangement.

the use of the so-called wire-and-loop model [3], [4]. It is
an analytical model for single bianisotropic particles (BAP).
Following [3], [4] we can write for a chiral particle

(2a)

Here the axis is directed alond the particle axis (see Fig. 1).
For an omega particle with the stems oriented along theaxis
[see Fig. 1(b)] we can write

(2b)

The scalar coefficients in these relations are given in [4].
It is clear that the question of electromagnetic coupling

of BAP’s in composite structures is important. But there is
no complete theory that would take into account the electro-
magnetic interaction effects for such particles. The existing
analytical [5] and numerical [6] are applicable for three-
dimensional (3-D) (volume) mixtures and cannot be directly
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(a)

(b)

Fig. 2. (a)a = 10 mm, Re(F yy

ee ) andRe(ayyee ). (b) Im(F yy

ee ) and Im(ayyee ). Horizontal axis—frequency in gigahertz.

used for planar two-dimensional (2-D) arrangements of par-
ticles. Maxwell Garnett approach [5] is available only for
dilute volume mixtures of particles with 3-D distributions of
inclusions. Papers [6] and [7] present an approach to solving
the problem of mutual coupling for chiral and some planar
particles. But they give no analytical solutions being based on
the numerical modeling of scatterers within the frame of the
multiple scattering method.

II. FORMULATION OF THE PROBLEM

In this paper, a 2-D array (planar grid) of chiral and omega
BAP’s with a rectangular cell is studied. In this case,
the electromagnetic coupling is an important factor. We are
interested in the cases when the particle sizeis two or
more times smaller compared to the space periods of the grid

. Strong electromagnetic interaction is expected for the case
when (resonant particles and rather
dense grids). So, it is possible to use the dipole approximation
of BAP’s in our analytical study. Of course, it is a serious
problem to take into account the practical sizes and shapes of
the particles in studying mutual coupling of adjacent particles.
This question is considered in Appendix A.

Grids of BAP’s under consideration (such as in Figs. 1
and 2) are placed in free-space. Let us choose among the
BAP’s an arbitrary particle named belowreference particle.
Let us place the origin of the Cartesian coordinate system at
its center and denote the amplitude of the incident electric
field at the point as and the electric and
magnetic dipole moments of the reference particle as ,
respectively. For the field of the incident wave with the wave
vector , we have for the points belonging to the grid plane
(time dependence is in the form

(3)

Let us denote the amplitudes of the electric and magnetic fields
produced by all the BAP’s of the grid except the reference-
particle at the point as . The local field
(that exciting the reference particle) equals

(4)

Periodicity of our problem allows us to assume that for an
arbitrary element of the array (with the numbers of
the cell corresponding to the axes, respectively) the
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following relations hold:

(5)

Assumption (5), which means that the phases of the induced
dipoles vary accordingly to the incident wave phase, probably
cannot be strictly proven for bianisotropic particles. However,
in most cases (5) is obviously correct, so we make this
assumption

(6)

To find the dyadics , we have to calculate
the sums of the electric and magnetic fields produced by the
electric and magnetic dipoles with the unit amplitudes and the
phases given by (5), which are placed at the centers of the
grid cells. These sums do not include contributions from the
reference-particle dipoles. These fields are calculated at the
point . We will call these dyadicsinteraction
dyadics.

Let us denote by the dyadics that
relate the electric and magnetic momentsand of the
reference particle with the incident wave fields amplitudes

and and call themcollective polarizability dyadics
(CPD’s)

(7)

After some dyadic algebra we find from (1), (6), and (7)

(8)

where

(9)

The polarizability dyadics for our BAP’s are known (see

above) and the interaction dyadics of our grid of the
general kind we calculate below. The problem is, hence, to find
the CPD’s for grids of chiral and omega BAP’s as functions
of the interaction dyadics and polarizability dyadics.

The dependence on the polarization of the incident wave
is included in the structure of CPD’s dyadics because each
component of these is a Cartesian component of an electric or
magnetic moment induced in the reference-BAP by a certain

component of the incident electric or magnetic fields with unit
amplitudes and phases given by (5).

III. I NTERACTION DYADICS

EVALUATION —SERIES REPRESENTATION

Electric and magnetic fields of electric and magnetic dipoles
at a point displaced from these dipoles by distanceare given
by the well-known formulas

(10a)

(10b)

It is instructive to rewrite (10) using three dyadics ,
, and

(11a)

(11b)

The matrix form is more convenient to analyze the following
dyadics:

(12a)

(12b)

(12c)
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For generality, let us consider here the interaction dyadics
of a general periodic translationary invariant structure of
scatterers including those that are 3-D, where the periodicity
condition (5) is assumed to hold. From (5) and (11) we have

(13a)

(13b)

(13c)

(13d)

Here, numbers particles in the 2-D array. It is evident that

(14)

The dyadics are symmetric and are
antisymmetric. We evaluate and and use (14) to find
the other interaction dyadics.

Let us separate two terms in relations (10). The first term
describes the wave-zone field (wave-field) of these dipoles (it
decreases as ) and the second one is the near-zone field
(which includes and terms). We name this second
term in (10a) and (10b) asnear-zone. The representation of the
interaction dyadics with separated wave terms and near-zone
terms is

where

(15a)

(15b)

and near-zone terms are

(16a)

(16b)

All the series in (16) absolutely converges and can be easily
calculated numerically (terms decrease as or faster). But
the convergence of the series in (15) is so slow that they cannot
be calculated without using special methods. Such methods are
known in the theory of microwave scanning antenna arrays
formed by horizontal electric or magnetic dipoles [9]. We
have applied the method of imaginary screen [9] in numerical
calculations of series (15) to validate our analytical approach
given below. This method is convenient for this goal but it
is not realistic for detailed numerical study, because it still
requires too much calculation time which increases with the
grid density and it is complicated as such.

IV. I NTERACTION DYADICS. INTEGRAL REPRESENTATION

Let us take into account that all the scatterers of our grid
are located in the plane . In this case, the matrices,

, and have the form

(17a)

(17b)

(17c)

Let us introduce the notations presenting the interaction
dyadics in the matrix form

(18)

In this section, we will take into account in all the components
of dyadics (18) only the wave terms given by (15). Let
us replace the sums in (15) by the corresponding integrals
(validity conditions discussed in Appendix B)

(19a)

(19b)

(19c)

(19d)
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(19e)

(19f)

Here, is the surface concentration of particles and
the meaning of symbol is that we exclude from the plane

an area of the reference-particle cell (principal value
of the integral).

Evaluation of all these integrals by the method of residues
is given in Appendix B. Finally, we obtain for the wave terms
of the interaction dyadics

(20a)

(20b)

We can see that using this method we can calculate only
the imaginary parts of of all the wave terms of the interaction
dyadics. Numerical validation shows that this limitation has
little importance for dense grids , where the real
part of each component of the interaction dyadics is practically
that of its near-zone term.

V. AN EXAMPLE OF CPD’s FOR

ARRAYS OF OMEGA PARTICLES

Consider the omega particles orientation presented in Fig. 2.
The polarizability dyadics are given by (2b). After some dyadic
algebra the CPD’s are found in the form

(21)

where
. This shows

the role of the interaction terms in the polarizability dyadics.
Due to this interaction the new components appears in the
magnetoelectric, electromagnetic and electric polarizabilities

(term is zero for noninteracting particles as well as
. Also the terms describing the interactions

electric dipole–electric dipoleand magnetic dipole–magnetic
dipole, enter and with the minus (it corresponds
to decreasing of electric and magnetic polarizabilities as
it is discussed below), whereas the interactionelectric
dipole–magnetic dipoleleads to the term entering with
the plus sign, which is responsible for the new frequency
dependence of component of the electric polarizability
(also see the next section).

VI. NUMERICAL STUDY OF A PLANAR OMEGA GRID

Among all the data, we choose to discuss the results for
a planar omega grid. This structure is probably the easiest
and cheapest to manufacture variant of bianisotropic arrays.
It is shown in several investigations (for example, [8]) that
planar omega layers with finite depth (which can be obtained
with a few planar 2-D omega arrays) possess very interesting
properties. We consider here a grid with square cells
where the incidence plane is bisectorial with respect to octant

and . We show only the results where
the numerical results for the interaction dyadics obtained
as described above practically coincide with our analytical
calculations.

Figs. 2–5 present the frequency dependence of the compo-
nents of the excitation and polarizability dyadics for the grid
with the cell size mm. The polarizability dyadics com-
ponents are marked as 1, the CPD’s components are marked
as 2 if the near-zone terms are included into the interaction
dyadics, and as 3 if they are neglected. Componentsand

have no analogues in the particle’s polarizability dyadic
being results of the electromagnetic interaction of particles. As
it is seen, considerable cross-polarizing effect is observed in
the reflected and transmitted waves. In this example, perfectly
conducting omega particles have the following geometrical
parameters: mm, mm, mm,
where is the length of one stem of the particle (one half of
the straight portion length), is the loop radius, and is
the wire radius. The frequency band of the analysis includes
the individual particle resonance. Note that resonances that
correspond to various periods in the grid cannot be seen in
the case of small distances between the particles ,
which is studied here. Also, the reflection coefficient at that
resonances becomes practically zero (since the resonance
interaction, which has been studied separately corresponds to
the sharp mutual depression of the dipoles).

The CPD’s components frequency behavior is considered
in comparison with the corresponding components of the
polarizability dyadics. When mm and smaller, it turns
out that the results become obviously incorrect since the
negative values of the imaginary parts of , , and of the
real part of become large. In the same cases the correction
terms obtained in Appendix B for the dipole moments of the
reference particle become essential, too. It can be understood
as that the dipole model of interaction is not available for
such small distances.
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(a)

(b)

Fig. 3. (a) a = 10 mm, Re(F yz

ee ). (b) Im(F yz

ee ). Horizontal axis—frequency in gigahertz.

The general rule is that the electromagnetic interaction
decreases the resonant values of all the components of CPD’s
compared to their analogues in the polarizability dyadics, but
increase the components having no such analogues. That de-
creasing especially concerns the imaginary parts of , ,
and the real part of . Their analogues for noninteracting
particles are responsible for particle radiation losses in the
theory of bianisotropic bulk composites. Small shift of the
resonance frequency increases with the grid density and the
incidence angle, but it does not exceed 5–7%.

We have studied separately the influence of the near-zone
fields produced by our grid elements on the excitation of the
zero element. When we neglect these fields in the interaction
dyadics, all the resonance peaks of the CPD’s become more
pronounced. The electromagnetic and especialy near-zone par-
ticles interaction decreases the resonance properties, radiation
losses, and bianisotropy of particles.

In Fig. 2, the polarizability component describes excitation
of electric dipole moment in the loop (along in response to

electric field along the same axis. For noninteracting particles,
the particle as a whole is not excited by-directed electric
vector [4]. Therefore, the resonance peak is absent and the
excitation model is quasi-static. The interaction leads to that-
directed incident electric field produces (for oblique incidence
only) the magnetic dipoles which are induced by-directed
electric ones. These magnetic dipoles via the term with
entering in (21) are responsible for the resonance peak that
appears.

Fig. 3 demonstrates another interesting phenomenon. For
an individual particle, -directed electric field does not excite
a -directed electric dipole moment. However, interaction
leads to nonzero interaction, which again has a resonance
at the resonant frequency of the interacting scatterer. Fig. 4
shows the effect of mutual depression mentioned above. It
especially refers to the imeginary part of this main component
of the polarizability (the real part also decreases but not
that sharply). That demonstrates transition to a continuous
surface, where no scattering loss exist. Similar phenomena
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(a)

(b)

Fig. 4. (a)a = 10 mm, Re(F zz

ee
), andRe(azz

ee
). (b) Im(F zz

ee
) and Im(azz

ee
). Horizontal axis—frequency in gigahertz.

can be observed in analysing the magnetic components of
CPD’s Fig. 5 corresponds to that magnetoelectric component
of CPD’s which appears also as the result of the interaction (-
polarized external electric field excites the magnetic dipoles).

VII. CONCLUSION

The analytical model of excitation of planar arrays of
bianisotropic particles has been developed. All the results are
in agreement with the reciprocity conditions and they are phys-
ically sound in the limiting cases. The following conclusions
regarding the electromagnetic interaction of omega particles
in 2-D arrays can be made.

1) The resonance frequency shift increases with the inci-
dence angle and the grid density, but it is rather small.

2) Bianisotropy and magnetic susceptibility of particles
decrease, which especially refers to the components

that are responsible for the radiation losses in bulk
composites.

3) Comparing to noninteracting particles, collective po-
larizability dyadics contain more nonzero components
whose amplitude increases with the grid density.

4) The dipole approximation applied here is valid when the
cell size is at least twice the particle size.

5) Interaction leads to new resonances of polarizability
components which can be described by the quasi-static
model in the noninteracting case.

APPENDIX A

Let us consider a planar omega grid. At first, we should note
that since the stretched size of the particle is about and
the grid period under consideration is about , the
dipole model is not available to describe the electromagnetic
interaction only for adjacent particles.
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(a)

(b)

Fig. 5. (a) a = 10 mm, Re(Fxyme). (b) Im(F xyme). Horizontal axis—frequency in gigahertz.

As to the particles located around the reference one, the
distance from the reference particle to them has the same order
that their sizes. So, the field produced by these particles is
nonuniform over the reference particle. Contribution of that
field to the electric and magnetic dipole moments induced in
the reference particle can be described in terms of the so-called
additional impedance. This impedance (referred to the particle
center) produced by an arbitrary particle with the number 1 in
a particle with the number 0 can be presented as [11], [12]

where is the mutual impedance of particles 0 and 1 and
are the current amplitudes at the centers of the 0 and 1

particles, respectively.
To calculate the mutual impedances, we use the well-known

method of induced electromotive forces (EMF) by Brillouin

[12]. The periodicity condition (5) allows

(22)

where is the radius-vector of the 1 particle’s center (where
the origin is the 0 particle’s center). The mutual impedance

can be presented as

(23)

where is the mutual impedance of two straight wire
portions of interacting particles, is one of the wire and
the loop portions, and is one of their loops. The last term
in (23) can be estimated as

where is the well-known (see [10, eq. (5.41)]) mutual
inductance of coplanar loops, which is very small compared
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to the self-intuctance when (where is the loop
radius).

The mutual impedance of the loop and the straight wire
antennas has been studied in [11]. It was shown that at the
frequencies which are about that of the main resonance (or
less) is also small compared to the loop and the wire
proper impedances and . The term has the same
order that since the stems of omega particles are parallel.

Practically, is the only term to be taken into account
in (26) For we have from [12]

where

and

Here and are the integral sine and cosine functions,
respectively.

There are eight adjacent particles around the reference
particle (which is named below 0 particle since its array
numbers are ) and we have to determine only
three mutual impedances of the reference particle and of one)
the particle with numbers (denoted below as

) the particle with numbers ( ; and
3) the particle with numbers . The other
five mutual impedances are equivalent to these as results from
the problem geometry.

Let us present the EMF induced in the zero-particle as the
sum of EMF’s induced by the adjacent particles and
that induced by the far sources (the distant particles and the
incident wave) . We have in these terms:

where is the current in the reference particle center
and is its proper impedance evaluated in [11]. Also, from

we yield

(24)

Here the prime means that the term is excluded.
Let us present the current as a similar sum ,
where , . From (24) the relation

between these terms results

where

With these equations we can express via

(25a)

(25b)

To find we have to substract the terms with numbers
from the series (13) describing the interaction

dyadics. These reduced interaction dyadics being substituted
into (8) and (7) give the vector with the component .
Substituting into (25), we obtain an appreciate value of

where the real wire-and-loop shape of the omega particle is
taken into account within the frame of the impedance model.

This result can be compared with that of the dipole ap-
proximation given by (7), (8), and (13). Such a numerical
comparison being made for an array described in Section VI
shows that the dipole model is available if the distance between
particles is greather than (that is, the double stretched length
of one particle). This result is the same as that of [13] in which
the interaction of two chiral particles is considered.

APPENDIX B

To evaluate all the integrals in (19), we rewrite them
in polar coordinates and obtain a tabulated integral over
the polar radius. The estimations have been made for the
contribution of a small domain with the dimension
around the origin. In these estimations, this rectangular area
has been replaced by a circle with the radius . In the
case when the dipole approximation is valid and sums (15)
can be replaced by integrals (19) , the
contribution of this domain does not exceed the error given
by such an approximation itself. Therefore, this contribution
can be neglected and the mark can be dropped.

Integrating along the polar radius from 0 to we obtain

(26a)

(26b)

(26c)
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(26d)

(26e)

(26f)

Using the well-known relation

we find from (23)

(27)

We can evaluate . The other integrals we calculate
using (27). Substituting we obtain

(28)

All the integrands analytically expanded in the complex plane
have poles of the first or second kind at

and the required behavior in the complex infinity. We can
therefore evaluate the integrals in (28) as
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