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Scattering of Plane Waves by an
Anisotropic Dielectric Half-Plane

Arslan Yazici, Member, IEEE,and A. Hamit SerbesiSenior Member, IEEE

Abstract— Scattering of plane waves by a semi-infinite by
anisotropic thin dielectric layer is investigated, which can be
considered as an example for electromagnetic energy absorbing «h e, U
materials. A pair of second-order boundary conditions is used to

Et ' En ,Ot Al

simulate an anisotropic thin dielectric layer as an infinitesimally
thin sheet. Formulation is based on the Fourier integral
transform technique, which reduces the scattering problem —
to two decoupled scalar Wiener—Hopf equations. Diffracted,

reflected, and transmitted field terms are evaluated by using the
Wiener—Hopf solutions that is obtained by the standard method. ~-h €, M
The uniqueness of the solution is satisfied by imposing an edge . ) o . )
constraint in addition to the classical edge condition. Fig. 1. Anisotropic dielectric layer thickness:.

Index Terms—Electromagnetic scattering by anisotropic media.

and

. INTRODUCTION ix (Bt — E7)=C(H + H ) + Dii x grad EX + E)

S is well known, due to absorbing characteristics of (2)

dielectrics, scattering by such structures has great im- ) ) ) .
portance in electromagnetic theory and also scattering by & layer of thicknessh with 7 denoting the unit vector
dielectric half-plane or strip yields canonical solutions for thB0rmal to the layer; and, also it is assumed thfat A where
geometrical theory of diffraction (GTD) analysis of dielectric* IS the wavelength. The constant coefficients in (1) and (2) are
covered complex structures. Diffraction problems have been A= —iwhle — it /

- - o ; - : = —wh(ey —€),  B=—h(p, — po)/ 1y
considered by various authors via simulating the dielectric slab , , , ,
by different types of approximate boundary conditions. Early = wh(uy = po), D = —h(e, = co)/e, (3)

studies are due to Senior [1] and Anderson [2] where hal}(\/here the index and n denote the tangential and normal

plane diffraction problem was considered by using standaty,,nents of the field and the constitutive parameters while

resistive sheet boundary conditions, which holds only electr, ¢y and (—) signs denote the limit values of the field when
current on the sheet and provides an effective simulation un(i?;) roaching to the sheet from upper and lower sides, respec-

) X : P
many circumstances. Regarding the decrease in accuraqﬁ\%t'y_ The constitutive parameters are defined as

obligue angles of incidence when the electric vector has a
component perpendicular to the layer, Senior and Volakis [3] €, =6 +ioy fw, € =e, +ioy/w
had introduced a modified conductive sheet in addition to the
resistive one to improve the simulation. On the other hand, a
pair of boundary conditions was introduced llemen [4] to wheree,, 1, o;, 7, are the dielectric permittivity, magnetic
simulate a special type of anisotropic dielectric layer that germeability, and electric and magnetic conductivities of the
homogenous and isotropic with respect to the directions parkyer in the direction parallel to the plane aad .., op, 7n

lel and perpendicular to the plane, while the half-spaces lyiage the parameters in the direction normal to the plane.
beneath and above the layer are homogenous and isotropitn this paper, the scattering of electromagnetic waves by
media as shown in Fig. 1. The boundary conditions on a&m anisotropic dielectric half-plane is investigated, where the
infinitesimally thin anisotropic dielectric sheet placed in freesimulation is done by the second-order boundary conditions
space are as follows: given in (1) and (2). These conditions have the same math-

ematical form with higher order boundary conditions, which

fix (Ht — H™) = A(Ef + E; )+ Bii x grad H} + H_) involve second-order derivatives and they can be considered
as finite-order approximations of generalized transition con-

N; :Nt+iTt/wa /vL;L :un+LTn/w

1 o T .
(1) ditions (GTC) [5]. The physical interpretation of the factors
appearing in the expressions of the two type of conditions are
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Fig. 2. Geometry of the equivalent boundary-value problem and incident field.

unequal to each other [6]. The formulation of the boundary- Aim (@) .,
value problem is based on the Fourier transform technique and r

is reduced to two decoupled scalar Wiener—Hopf equations +) /
and the solution is obtained by the classical Wiener—Hopf '// L
procedure. Since the order of the highest derivative appearing _ 1~ _ _ £k Cos¥e _ _ | _

in the boundary conditions is two, the solution involves two 5 »Re (Of)
unknown constants as expected. One of them is determined by yd
the application of the standard edge conditions, and the second / =)
unknown is obtained by imposing the additional transition 7)ok Y T
condition introduced by Senior (see [5]). Finally, the field //
analysis is derived and numerical results for the solution are

presented. Fig. 3. Regularity bandm(kcosfp) < Im(a) < Im(k) in complex
«-plane and integration liné..

Il. THE BOUNDARY-VALUE PROBLEM where (5) and (6) are in forms of first- and second-order GTC,

The boundary-value problem involves an infinitesimally thinespectively, and the parameters are given by
half-plane with the aniS(_)tropic dielectric Igye_r con_ditions being Y1y = — (1 4iC/kDZy)
imposed and at -polarized plane wave incident in the plane 4y, = —1/ikD
perpendicular to the edge (see Fig. 2) q REE

an
H(x, y) = exp{—ik(x cos b + ysinfp)} 4 vy =1/AZ,. (7)

§ince the boundary conditions do not involve the coefficignt

where 0 < 6y < 7. The time dependence is assume 3) it | ted that i bilit d d
as exp(—iwt) and suppressed throughout the analysis. AQ .( ).’ It IS expecte at magnetic permeability and conduc-
ivity in the direction normal to the layer will not be effective

Iég(r)nvgg’nzﬁfs?g‘lr:rg]et?n,::/:gzmell:(asl deg:%té(a):n?) tgﬁ dogl(?; n;)nze%rq H polarization. The total field is written as the sum of the
. ot 2 e I incident and scattered fields for al

For the sake of analytical convenience, it is assumed tha% 4

the surrounding medium is slightly lossy and consequently H.(z,y) = H(z, y) + H:(, y) 8

the wave number has a small positive imaginary part. Aftand the following integral representation is introduced for the

completing the analysis, the results corresponding to theattered field:

lossless case can easily be obtained by writingklm— 0

i(@)y—iaz
in the solution. /LM(CY)@ do, y>0

The boundary conditions given by (1) and (2) are written Hi(w, y) = i ©)
as follows for theH-polarized case: /LN(C%)@_Z (y=ior do, <0
[Hf —H. |+ LE[HZL +H]=0, x>0 (5) Which satisfies the radiation condition fog| — co. Here,
and iky dy M («) and N(«) are the spectral amplitudes to be determined,
d it B 1 and the integration lind. given in (9) is any line which is
B_U[HZ —HI]+ T+ ) parallel to the R&x) axis in the regularity band I cos 6p) <

5 Im(a) < Im(%k). The square-root functiol(«) = VA% — o?
. [_ — -2(7172)} [Hf + H ] =0, x>0 (6) |Fs dezl;i)ned in the cut complex-plane such thaf(0) = k& (see
ig. 3).
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By inserting (4) and (9) into the boundary conditions foin K («) with () it can easily be seen that the functi&i(¢)
x > 0 and continuity conditions fox < 0 and inverting the given by Senior (see (6) in [1]) is identical t&;(«). Also,
resulting integral equations, the following set of equations aiteis obvious thatK>(«) is composed of the product of two

obtained: functions of K («) type. The main steps of the factorization

of such a function in terms of Maliuzhinetz’s function is

&[ } M(a) — N(a)] outlined in [7]. The split factors ofi'(«) have the same

k () analytical properties aKfo(a)and their explicit expressions

() — sin 6o (10) arel*(a) = Vita

imy(a — kcosfp) As is seen, edge conditions are not sufficient to determine
[1“( ) I'2(q) N E(v172) } (M(a) + N(a)] the unknowns; the solution still involves an unknown constant
@ ki +72) (11 + ) @ @ after the application of the classical edge conditions. Although

several approaches have been introduced by various authors
(11) 8], [9] for determining the unknowns which arise from the

higher order derivatives involved by the approximate boundary
conditions, Senior [10]-[12] has given a systematic method for

o) (12) determining the unknown constants using constraints imposed
= (a). (13) on the currents or the scattered fields. This method implies
that the normal component of the electric current vanishes at

The functions®F () and ®(a) are unknown functions the edge which leads to certain continuity requirements on the

where® ,(«) are regular in the upper complexplane for field components at the edge. This approach.is aIsp used in
Tm(e) > Im(k cosfo) and & ,(a) are regular in the lower the present study, and the unknown constant is derived as
complex a-plane for Infa) < Im(k). Elimination of M (a)

and N(«) yields a 2x 2 matrix Wiener—Hopf system which k(71 +72)c

can easily be written explicitly as two scalar Wiener—Hopf

E(v1y2 + sin® fp)

= (@) + i (y1 + v2) (e — kcos bp)

k(v + v2) S (50)]” — y2[l* (s0)]

; = kcosby+ s
equations RO )G (o) + el (s0) 2
r T i 19
(a) 1(04)_(1)17(06):_. sin By (14) (19)
E Ki(o) imy(a — k cos 6)
and with s2 = k(1 + v1v2) which completes the solution of the
(r172)  D(e) @F(a) o Wiener-Hopf problem given by (14) and (15).
. . — a
Gt kKo 2
k(7172 + sin® 6o)
= - (15)
tm(y1 4+ v2){(a — kcosfp) [ll. FIELD ANALYSIS
where The scattering field analysis, based on the integrals in
i 17t (9), requires to determine the spectral coefficiebféx) and
Ki(a) = [m + ;} N(«), which can easily be obtained from (12) and (13)
k 1 k 1 -t M 1 (I>+ ot T
Ky(a) =4 |— + —| - |— +—| ¢ . (16) (a) =5[®7 (@) + &3 (@) /T(a)]
M) ") [T ™ and
By fqllowing the standard Wiener—Hopf procedure, the solu- N(a)= — %[(1)4—( ) — F () /T ()] (20)
tion is obtained as [6]
B+ o) — ksin 6y Kt (o) K (kcosbp) Now, by substitutingM («) and N(«) expressions into (9),
(@)=~ iy  TH(a) T—(kcosbp) the scattering field integrals can be found as
1
(o — kcos ) an H(r,0) = F L / KT (o) K7 (K cosfo)
and = 2 I'*(a) T—(kcosbo)
o (a) = — 1 k(n +72) K () Ky (kcosbo)  sinfp K (o) K (kcosbo)
2 ir (mv2) I'*(a) I~ (kcosto) Y(aw — kcosbp)  Tt(a)(e) T~ (kcosbo)
k(172 + sin” 6p) 1 (12 + sin? 6p)
— +c|. 18 . _
(71 + 72)(a — kcosby) (18) Y2 [ (¢ — kcosfy) Feln + 72)} }
Here Ki",(«) and K ,(«) denote the Wiener—Hopf factors T (y=iow oy (21)

of K, 2( ) which are regular in the upper and lower

planes, respectively. The explicit expressions in terms where the upper and the lower signs in (21) correspond to
Maliuzhinetz’'s function for the factorization of a similarthe integrals for regiong > 0 andy < 0, respectively. By
function was first given by Senior [1]. By replacird/y) applying the standard saddle-point method, the diffracted field
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Fig. 4. Variation of reflection coefficient in decibels wiilf,, = 1.6y = 45° for H polarization.
expressions are obtained as as follows:
ikr Hi(r, 0)+H(r, 6) + H(r, 6)
dy. . _ d c z\"» z\"» z\"
HZ(r, 8, 60) = D(8, 90)ﬁ (22) 0<6<(m—6p)

Hi(r, 0) + H(r, 6)
H}/ - 9 — zZ\'>» z\"»
(1 9) (m—6p) <8 < (m+8o)
‘ ~ ~ H(r, 0) + HL(r, 0)
DO, bo) = 6m/4{ 1 Ky (kcoso)Ky (kcosh) (7w +6p) < 0 < 2m7.
0 V2r L2 V1 —cosfy/1— cosf
| e+ sin” 6y
(cos @ + cosbp)
K| (kcosBo) K, (kcos8) AZysin by sin9}
V1= cosfy/1—cosf, (cos®—+cosby) ]|
(23)  D(6, 60) =

with (26)

Although the analysis is carried out for thé-polarized

+ (71 + 72)0} case, the field expressions can easily be obtained by duality for
E polarization. By substitutind’ — H, H — —F, €, < i},

ande,,. < pf,,. due to the duality principle the following:

6”/4{ 1 K5 (kcosfp)Ky (kcos8)

V21 L2 V1= cos@y/1 = cos by
The pole contributions at = # F 6y give the reflected { Y172 + sin? 6o + +72)c}
and transmitted fields which are present for> 0 and (cos 6 + cos fp)
y < 0 regions, respectively (see Fig. 2). The reflection and ig K (kcoso)K| (kcosf)
transmission coefficients are derived easily as Zy /1 —cosb/1—cosby
. sin g sin 6
T (6o) = ﬁ% (cos B + cos o) } 27)
OC _ f?kDZO cos? B, is obtailjed for the diffraction coefficient where the upper and
T O~ Zosinby — kD 7y cos? by lower signs correspond. to thg > 0 and;g <0 regions,
(24) respectively. The reflection and transmission coefficients are
and TM(fg) = — [ AZO. kD ?OSQ bo 5
T(t)(ﬁo) _ 1 AZy —i-.sm 0y + kB cos? 8y
14+ AZysinfy 1 C'sin 6y } 28)
C — ikDZycos® 8 Csinfy — 7y
O = Zysinby — ikDZg cos? 6, and ,
(25) T®(6y) = » . sin 90‘ _
0 + sin 6y + ik B cos? 8
where the superscripts r, andt denote the terms correspond- C'sin o (29)
ing to diffraction, reflection and transmission, respectively. Zo— Csinfy

This concludes the analysis of the field giving the total fieldthere the total field is obtained as given by (26).
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Fig. 5. Variation of diffraction coefficient in decibels with;, = 1, 5 and6 = 100° for H polarization.
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Fig. 6. Variation of transmission coefficient in decibels wijtf). and 8, = 45°.

IV. NUMERICAL RESULTS are obtained for thed polarized case. In the nonmagnetic
By using the definitions of the constitutive parameters a5€ [t = 1), the following simplificationsC' = 0, so =
0, (v1 + v2)c = cosby, 172 = —1 can be made and from
ikh 23)—(25
A:_Z_O(ggr_l) (23)—(25)
C =ikhZo(py, — 1) y
o /T K (kcos 00) K5 (kcos 6
D= — hgnr 1 ‘Dd(e7 90) — _ |: 2 ( 0) 2 ( )
€, V2r | /1 —cospy/1— cost
6;”,(/127, _ 1) + (G;Lr _ 1) . cos § cos by
Mz == o —1 (cosf + cos )
i€, K (kcosby) K (kcosb)
Yty =~ kh’i +
(er. — 1) V1 = cos89v/1 — cosf

i AZysinfgsin b
=1/AZy= ————— —_——— 30
v =1/4% kh(e,,. — 1) (cos @ + cos 90)} (30)
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for y > 0 andy < 0, respectively, and with

T(1) _ AZO sin 90 _ ikD COS2 90 (31)
1+ AZysinfy  sinfg + kD cos? 6,
and
5 2
T® 1 tkD cos® 6y (32)

1+ AZysinfy  sinfg + ikDcos? 6y

the approximate formulas given by Volakis and Senior [13],
Maliuzhinetz’s function is expressed in a form convenient
for numerical computation and, hence, the diffracted field
coefficient is computed for different values of the constitutive
parameters and for different thicknesses of the anisotropic
layer.

First investigation is accomplished with respect to the

H polarization is obtained for reflection, transmission anite effectiveness of the simulation. From Figs. 4 and 5 it can

diffraction coefficients given a20log;, |7|, 201og,, [T

be deduced that the optimum value2é§/ A should be chosen

and 20log,, |D‘¥|, respectively. The diffraction coefficientsbetween 0.05 and 0.15 to simulate the layer effectively with
involve the split functionsKi () and Ki(a) which are anisotropic dielectric layer boundary conditions. Also, it is
written in terms of the Maliuzhinetz’s function. By usingseen that reflection and diffraction mechanisms are enhanced
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Fig. 10. Variation of diffraction coefficient in decibels with complel. for e, = 3, pj, = 1, 60 = 45° and 2h/A.

for Re(e},.) > Re(e,,.) cases, which means that the effecyield ¢;,, = 1 — 9, and as expected, I#,) = —9 corre-

of Re(e,,.) is dominant. Fig. 6 shows the variation of thesponds to a resonance value both for reflection and diffraction.
transmission coefficient, and its comparison with Figs. 4 aidso, reflected and diffracted fields are strengthened, ass

5 verifies the interpretation of reflection and diffraction withincreased forRe(e;,.) > 1 and Ime,,.) > 0. On the other
respect ta},. ande!,..; so, transmission is stronger for smallehand, Fig. 8 shows that diffraction and reflection are decreased
Re(¢},.) values. On the other hand, almost all of the incidemats (¢/,,.) is increased folRe(¢),,.) > 1 and |lm(e,,.)| > 0.
wave is transmitted through the layer fgr. = ¢/, = 1.05, Note that the curve corresponding to the variation of the
while the reflected and diffracted field components take vedjffraction coefficient with respect t®e(¢),,.) coincides with
small values, as expected. the reflection coefficient curve.

A second investigation is done with respect to the physical A third group of investigation consists of variation of
parameters of the anisotropic dielectric layer. As is sedgdiffraction coefficient with respect to the observation angle
from 7 and T expressions given by (31) and (32)for various values of physical parameters. From Fig. 7 it
respectively, (1 + AZysinfy) may become maximum for is obvious that minimum reflection and diffraction effects
certain value of¢},. while [sin 6y + ikD cos? §p] may yield a correspond to the case whéke(c,,.) ~ 1. Since, for en-
maximum value fok/,,., which correspond to resonances in thgineering applications, it is of interest to minimize these
layer. Fig. 7 denotes the variation of reflection and diffractioeffects, the variation of diffraction coefficient with respect
coefficients fore),, = 3, uj,. = 1 and 2h/A = 0.05. For to observation angle for very small negative and positive
these parameter values with = 45, (1 + AZysinfy) = 0 values oflm(e},.) is investigated. Due to the symmetry, only
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variation for# € (0°, 180°) is shown in Figs. 9-12. As is is seen from Fig. 12 that the magnitude<f. is dominantly
expected, diffraction effects are suppressed at all observataffective whene,,, = 1.05. But an interesting influence is
angles while for a small angular section arouhe- 30° the observed with an increase )., and the stronger field values
attenuation is much higher corresponding to a consideraloiethe previous case are depressed, while the weaker ones are
amount of energy absorption (see Fig. 9). Another interestirghanced for;, = 3.

observation is that diffraction coefficient becomes minimum The diffraction coefficients given in (23) and (27) are not
for a certain value oflm(e},.) in this angular section. The uniform and it is expected that the field will take very large
location of the region of depression depends on the constituti@lues in the transition regions which are determined by the
parameters of the dielectric layer. This behavior is displayd@cidence angle aér — 6y) and (7 + 6o).

in Fig. 10 by inserting a small real part ), and varying  For the nonmagnetic isotropic casg,, = 1, ¢;, = ¢;,,.),
Im(¢;,) in the range where the diffraction coefficient passdfe reflection and transmission coefficients given in (31) and
through a minimum. On the other hand, the interdepender{&2) are reduced to the following:

of ¢, and ¢,. on effecting the diffraction mechanism is

explicitly seen from Figs. 11 and 12. Although the depression

region is present for larger values fin(¢,.)| whené,, = 7o) - _AZosinG  AZ cos® by (33)
1.05, it disappears whew,,. is increased (see Fig. 11) The 14+ AZpsinby e, sinbo + AZo cos? by
comparison of the graphs in Fig. 11 shows that diffraction and )

gradually decreased &s,. is increased while it is strengthened T — 1 AZy cos” by (34)

for negative values ofm(c},) due to the resonance effect. It 1+ AZgsinby e, sinbly + AZy cos® by
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where the reflection coefficient is identical to (29) in [3]. It [7]
can easily be shown that the boundary conditions given by (1)
and (2) for simulating an anisotropic dielectric layer can be
reduced to the modified resistive sheet and conductive sheet
conditions for the isotropic case [3].

E)
V. CONCLUSIONS

In this paper, the problem of an anisotropic thin dielectrigo]
layer illuminated by anH-polarized plane wave has beerlll
solved and a nonuniform expression for the edge diffraction
coefficient has been derived. The solution was accomplishid]
by using a pair of boundary conditions to model an anisotrop'f3
thin dielectric layer as an infinitesimally thin sheet. This Ieaofs ]
to a pair of uncoupled Wiener—Hopf equations whose solution
can be expressed in terms of Maliuzhinetz’'s function. The
unigueness of the solution is achieved by using an edge
constraint in addition to the classical edge conditions. The
results are compared with the previously obtained ones
¢, = ¢, and . = i, and it has been shown that the
are in good agreement. As a consequence, the electric
magnetic characteristics of the anisotropic dielectric layer
normal and parallel directions can be considered to be differg
from each other, this can give a lot of freedom to the design
For example, it can be possible to consider the dielect
constants of the layer in parallel and perpendicular directio
as different or vice versa. It has been determined numericaﬂg
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