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Scattering of Plane Waves by an
Anisotropic Dielectric Half-Plane
Arslan Yazici, Member, IEEE,and A. Hamit Serbest,Senior Member, IEEE

Abstract— Scattering of plane waves by a semi-infinite
anisotropic thin dielectric layer is investigated, which can be
considered as an example for electromagnetic energy absorbing
materials. A pair of second-order boundary conditions is used to
simulate an anisotropic thin dielectric layer as an infinitesimally
thin sheet. Formulation is based on the Fourier integral
transform technique, which reduces the scattering problem
to two decoupled scalar Wiener–Hopf equations. Diffracted,
reflected, and transmitted field terms are evaluated by using the
Wiener–Hopf solutions that is obtained by the standard method.
The uniqueness of the solution is satisfied by imposing an edge
constraint in addition to the classical edge condition.

Index Terms—Electromagnetic scattering by anisotropic media.

I. INTRODUCTION

A S is well known, due to absorbing characteristics of
dielectrics, scattering by such structures has great im-

portance in electromagnetic theory and also scattering by a
dielectric half-plane or strip yields canonical solutions for the
geometrical theory of diffraction (GTD) analysis of dielectric
covered complex structures. Diffraction problems have been
considered by various authors via simulating the dielectric slab
by different types of approximate boundary conditions. Early
studies are due to Senior [1] and Anderson [2] where half-
plane diffraction problem was considered by using standard
resistive sheet boundary conditions, which holds only electric
current on the sheet and provides an effective simulation under
many circumstances. Regarding the decrease in accuracy at
oblique angles of incidence when the electric vector has a
component perpendicular to the layer, Senior and Volakis [3]
had introduced a modified conductive sheet in addition to the
resistive one to improve the simulation. On the other hand, a
pair of boundary conditions was introduced byİdemen [4] to
simulate a special type of anisotropic dielectric layer that is
homogenous and isotropic with respect to the directions paral-
lel and perpendicular to the plane, while the half-spaces lying
beneath and above the layer are homogenous and isotropic
media as shown in Fig. 1. The boundary conditions on an
infinitesimally thin anisotropic dielectric sheet placed in free-
space are as follows:

grad

(1)
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Fig. 1. Anisotropic dielectric layer thickness2h.

and

grad

(2)

for a layer of thickness with denoting the unit vector
normal to the layer; and, also it is assumed that where

is the wavelength. The constant coefficients in (1) and (2) are

(3)

where the index and denote the tangential and normal
components of the field and the constitutive parameters while

and signs denote the limit values of the field when
approaching to the sheet from upper and lower sides, respec-
tively. The constitutive parameters are defined as

where are the dielectric permittivity, magnetic
permeability, and electric and magnetic conductivities of the
layer in the direction parallel to the plane and
are the parameters in the direction normal to the plane.

In this paper, the scattering of electromagnetic waves by
an anisotropic dielectric half-plane is investigated, where the
simulation is done by the second-order boundary conditions
given in (1) and (2). These conditions have the same math-
ematical form with higher order boundary conditions, which
involve second-order derivatives and they can be considered
as finite-order approximations of generalized transition con-
ditions (GTC) [5]. The physical interpretation of the factors
appearing in the expressions of the two type of conditions are
different and anisotropic dielectric layer conditions provide an
additional facility to consider the constitutive parameters in
the directions parallel and perpendicular to the layer as being
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Fig. 2. Geometry of the equivalent boundary-value problem and incident field.

unequal to each other [6]. The formulation of the boundary-
value problem is based on the Fourier transform technique and
is reduced to two decoupled scalar Wiener–Hopf equations
and the solution is obtained by the classical Wiener–Hopf
procedure. Since the order of the highest derivative appearing
in the boundary conditions is two, the solution involves two
unknown constants as expected. One of them is determined by
the application of the standard edge conditions, and the second
unknown is obtained by imposing the additional transition
condition introduced by Senior (see [5]). Finally, the field
analysis is derived and numerical results for the solution are
presented.

II. THE BOUNDARY-VALUE PROBLEM

The boundary-value problem involves an infinitesimally thin
half-plane with the anisotropic dielectric layer conditions being
imposed and an -polarized plane wave incident in the plane
perpendicular to the edge (see Fig. 2)

(4)

where . The time dependence is assumed
as and suppressed throughout the analysis. As
known, according to Maxwell’s equations, the other nonzero
components of the incident field are and .
For the sake of analytical convenience, it is assumed that
the surrounding medium is slightly lossy and consequently
the wave number has a small positive imaginary part. After
completing the analysis, the results corresponding to the
lossless case can easily be obtained by writing Im
in the solution.

The boundary conditions given by (1) and (2) are written
as follows for the -polarized case:

(5)
and

(6)

Fig. 3. Regularity bandIm(k cos �0) < Im(�) < Im(k) in complex
�-plane and integration lineL.

where (5) and (6) are in forms of first- and second-order GTC,
respectively, and the parameters are given by

and

(7)

Since the boundary conditions do not involve the coefficient
in (3), it is expected that magnetic permeability and conduc-
tivity in the direction normal to the layer will not be effective
in polarization. The total field is written as the sum of the
incident and scattered fields for all

(8)

and the following integral representation is introduced for the
scattered field:

(9)

which satisfies the radiation condition for . Here,
and are the spectral amplitudes to be determined,

and the integration line given in (9) is any line which is
parallel to the Re axis in the regularity band Im
Im Im . The square-root function
is defined in the cut complex-plane such that (see
Fig. 3).
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By inserting (4) and (9) into the boundary conditions for
and continuity conditions for and inverting the

resulting integral equations, the following set of equations are
obtained:

(10)

(11)

(12)

(13)

The functions and are unknown functions
where are regular in the upper complex-plane for

and are regular in the lower
complex -plane for Im . Elimination of
and yields a 2 2 matrix Wiener–Hopf system which
can easily be written explicitly as two scalar Wiener–Hopf
equations

(14)

and

(15)

where

(16)

By following the standard Wiener–Hopf procedure, the solu-
tion is obtained as [6]

(17)

and

(18)

Here and denote the Wiener–Hopf factors
of which are regular in the upper and lower-
planes, respectively. The explicit expressions in terms of
Maliuzhinetz’s function for the factorization of a similar
function was first given by Senior [1]. By replacing

in with it can easily be seen that the function
given by Senior (see (6) in [1]) is identical to . Also,
it is obvious that is composed of the product of two
functions of type. The main steps of the factorization
of such a function in terms of Maliuzhinetz’s function is
outlined in [7]. The split factors of have the same
analytical properties as and their explicit expressions
are .

As is seen, edge conditions are not sufficient to determine
the unknowns; the solution still involves an unknown constant
after the application of the classical edge conditions. Although
several approaches have been introduced by various authors
[8], [9] for determining the unknowns which arise from the
higher order derivatives involved by the approximate boundary
conditions, Senior [10]–[12] has given a systematic method for
determining the unknown constants using constraints imposed
on the currents or the scattered fields. This method implies
that the normal component of the electric current vanishes at
the edge which leads to certain continuity requirements on the
field components at the edge. This approach is also used in
the present study, and the unknown constant is derived as

(19)

with which completes the solution of the
Wiener–Hopf problem given by (14) and (15).

III. FIELD ANALYSIS

The scattering field analysis, based on the integrals in
(9), requires to determine the spectral coefficients and

, which can easily be obtained from (12) and (13)

and

(20)

Now, by substituting and expressions into (9),
the scattering field integrals can be found as

(21)

where the upper and the lower signs in (21) correspond to
the integrals for regions and , respectively. By
applying the standard saddle-point method, the diffracted field
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Fig. 4. Variation of reflection coefficient in decibels with�0

tr
= 1: �0 = 45

� for H polarization.

expressions are obtained as

(22)

with

(23)

The pole contributions at give the reflected
and transmitted fields which are present for and

regions, respectively (see Fig. 2). The reflection and
transmission coefficients are derived easily as

(24)

and

(25)

where the superscripts and denote the terms correspond-
ing to diffraction, reflection and transmission, respectively.
This concludes the analysis of the field giving the total field

as follows:

(26)

Although the analysis is carried out for the-polarized
case, the field expressions can easily be obtained by duality for

polarization. By substituting
and due to the duality principle the following:

(27)

is obtained for the diffraction coefficient where the upper and
lower signs correspond to the and regions,
respectively. The reflection and transmission coefficients are

(28)

and

(29)

where the total field is obtained as given by (26).
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Fig. 5. Variation of diffraction coefficient in decibels with�0

tr
= 1; ��

0
and � = 100

� for H polarization.

Fig. 6. Variation of transmission coefficient in decibels with�0

tr
and �0 = 45

�.

IV. NUMERICAL RESULTS

By using the definitions of the constitutive parameters

are obtained for the polarized case. In the nonmagnetic
case ( ), the following simplifications

can be made and from
(23)–(25)

(30)
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Fig. 7. Variation of reflection and diffraction coefficient in decibels with�0
nr

= 3; �0

tr
= 1, and2h=� = 0:05 for H polarization.

Fig. 8. Variation of reflection and diffraction coefficient in decibels with�0
nr

= 3; �0

tr
= 1, and2h=� = 0:05 for H polarization.

for and , respectively, and with

(31)

and

(32)

Some numerical examples for the nonmagnetic case under
polarization is obtained for reflection, transmission and

diffraction coefficients given as
and , respectively. The diffraction coefficients
involve the split functions and which are
written in terms of the Maliuzhinetz’s function. By using

the approximate formulas given by Volakis and Senior [13],
Maliuzhinetz’s function is expressed in a form convenient
for numerical computation and, hence, the diffracted field
coefficient is computed for different values of the constitutive
parameters and for different thicknesses of the anisotropic
layer.

First investigation is accomplished with respect to the
thickness of the anisotropic dielectric layer in order to reveal
the effectiveness of the simulation. From Figs. 4 and 5 it can
be deduced that the optimum values of should be chosen
between 0.05 and 0.15 to simulate the layer effectively with
anisotropic dielectric layer boundary conditions. Also, it is
seen that reflection and diffraction mechanisms are enhanced



1482 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 47, NO. 9, SEPTEMBER 1999

Fig. 9. Variation of diffraction coefficient in decibels with pure imaginary�0
tr

= 3; �0

tr
= 1; = 1; �0 = 45

�, and2h=� = 0:05 for H polarization.

Fig. 10. Variation of diffraction coefficient in decibels with complex�0
tr

for �nr = 3; �0

tr
= 1; �0 = 45

� and 2h=�.

for cases, which means that the effect
of is dominant. Fig. 6 shows the variation of the
transmission coefficient, and its comparison with Figs. 4 and
5 verifies the interpretation of reflection and diffraction with
respect to and ; so, transmission is stronger for smaller

values. On the other hand, almost all of the incident
wave is transmitted through the layer for ,
while the reflected and diffracted field components take very
small values, as expected.

A second investigation is done with respect to the physical
parameters of the anisotropic dielectric layer. As is seen
from and expressions given by (31) and (32),
respectively, may become maximum for
certain value of while may yield a
maximum value for , which correspond to resonances in the
layer. Fig. 7 denotes the variation of reflection and diffraction
coefficients for and . For
these parameter values with

yield , and as expected, Im corre-
sponds to a resonance value both for reflection and diffraction.
Also, reflected and diffracted fields are strengthened asis
increased for and Im . On the other
hand, Fig. 8 shows that diffraction and reflection are decreased
as is increased for and .
Note that the curve corresponding to the variation of the
diffraction coefficient with respect to coincides with
the reflection coefficient curve.

A third group of investigation consists of variation of
diffraction coefficient with respect to the observation angle
for various values of physical parameters. From Fig. 7 it
is obvious that minimum reflection and diffraction effects
correspond to the case when . Since, for en-
gineering applications, it is of interest to minimize these
effects, the variation of diffraction coefficient with respect
to observation angle for very small negative and positive
values of is investigated. Due to the symmetry, only
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Fig. 11. Variation of diffraction coefficient in decibels with�0

tr
= 1; �0 = 45

o
2h=� = 0:05 in H polarization case for�0

nr
= 1:05 and�0

nr
= 3.

Fig. 12 Variation of diffraction coefficient in decibels with�0

tr
= 1; �0 = 45

�, 2h=� = 0:05 in H polarization case for�0
nr

= 1:05 and�0
nr

= 3.

variation for is shown in Figs. 9–12. As is
expected, diffraction effects are suppressed at all observation
angles while for a small angular section around the
attenuation is much higher corresponding to a considerable
amount of energy absorption (see Fig. 9). Another interesting
observation is that diffraction coefficient becomes minimum
for a certain value of in this angular section. The
location of the region of depression depends on the constitutive
parameters of the dielectric layer. This behavior is displayed
in Fig. 10 by inserting a small real part to and varying

in the range where the diffraction coefficient passes
through a minimum. On the other hand, the interdependence
of and on effecting the diffraction mechanism is
explicitly seen from Figs. 11 and 12. Although the depression
region is present for larger values of when

, it disappears when is increased (see Fig. 11). The
comparison of the graphs in Fig. 11 shows that diffraction is
gradually decreased as is increased while it is strengthened
for negative values of due to the resonance effect. It

is seen from Fig. 12 that the magnitude of is dominantly
effective when . But an interesting influence is
observed with an increase in , and the stronger field values
of the previous case are depressed, while the weaker ones are
enhanced for .

The diffraction coefficients given in (23) and (27) are not
uniform and it is expected that the field will take very large
values in the transition regions which are determined by the
incidence angle as and .

For the nonmagnetic isotropic case ,
the reflection and transmission coefficients given in (31) and
(32) are reduced to the following:

(33)

and

(34)
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where the reflection coefficient is identical to (29) in [3]. It
can easily be shown that the boundary conditions given by (1)
and (2) for simulating an anisotropic dielectric layer can be
reduced to the modified resistive sheet and conductive sheet
conditions for the isotropic case [3].

V. CONCLUSIONS

In this paper, the problem of an anisotropic thin dielectric
layer illuminated by an -polarized plane wave has been
solved and a nonuniform expression for the edge diffraction
coefficient has been derived. The solution was accomplished
by using a pair of boundary conditions to model an anisotropic
thin dielectric layer as an infinitesimally thin sheet. This leads
to a pair of uncoupled Wiener–Hopf equations whose solution
can be expressed in terms of Maliuzhinetz’s function. The
uniqueness of the solution is achieved by using an edge
constraint in addition to the classical edge conditions. The
results are compared with the previously obtained ones for

and and it has been shown that they
are in good agreement. As a consequence, the electric and
magnetic characteristics of the anisotropic dielectric layer in
normal and parallel directions can be considered to be different
from each other, this can give a lot of freedom to the designer.
For example, it can be possible to consider the dielectric
constants of the layer in parallel and perpendicular directions
as different or vice versa. It has been determined numerically
that the simulation by anisotropic dielectric layer boundary
conditions is effective for . Also, it has
been shown that the effect of on scattering mechanism is
dominant compared to that of .
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