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A Boundary-Element Solution
of the Leontovitch Problem

Abderrahmane Bendali, M’B. Fares, and Jean Gay

Abstract—A boundary-element method is introduced for solv-
ing electromagnetic scattering problems in the frequency do-
main relative to an impedance boundary condition (IBC) on an
obstacle of arbitrary shape. The formulation is based on the
field approach; namely, it is obtained by enforcing the total
electromagnetic field, expressed by means of the incident field and
the equivalent electric and magnetic currents and charges on the
scatterer surface, to satisfy the boundary condition. As a result,
this formulation is well-posed at any frequency for an absorbing
scatterer. Both of the equivalent currents are discretized by a
boundary-element method over a triangular mesh of the surface
scatterer. The magnetic currents are then eliminated at the
element level during the assembly process. The final linear system
to be solved keeps all of the desirable properties provided by
the application of this method to the usual perfectly conducting
scatterer; that is, its unknowns are the fluxes of the electric
currents across the edges of the mesh and its coefficient matrix
is symmetric.

Index Terms—Boundary elements, boundary integral equa-
tions, impedance boundary condition, Maxwell equations, scat-
tering.

I. INTRODUCTION

SINCE the pioneering work of Leontovitch (see, for in-
stance, [29]), the impedance boundary condition (IBC) has

been extensively used to simplify the formulation involved in
the solution of complicated electromagnetic scattering prob-
lems related to imperfectly conducting scatterers or those
with a rough surface (see [23] for more details concerning
this approach; in [34], two criteria are worked out to define
the range of validity of the IBC for imperfect conductors).
It was recognized later that this type of boundary condition
can be advantageously used to get a more tractable problem
in numerous complex situations of electromagnetic scattering
computations (see for example [1], [2], [14], [17], [19], [31],
[35]). Such a boundary condition also arises as a simple
terminating boundary condition in problems related to the
propagation in a waveguide (cf. [18]). It can also be involved
in a domain decomposition solution of scattering problems
leading in this way to efficient parallel algorithms (cf. [12],
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[13]). Therefore, it is important for practitioners in compu-
tational electromagnetics to have at hand numerical methods
dealing with such a boundary condition as efficiently as for
the usual perfect conductor boundary condition. It is the aim
of this paper to devise such a method.

We sketch the main features of the approach. The total
electric and magnetic fields are represented by the equivalent
magnetic and electric currents on the surface of the scatterer
(cf. [15]). The direct integral boundary equation is obtained
by requiring the resulting field expressions to satisfy the IBC.
Then, using Rumsey’s reaction concept [28], we show how
this integral equation can be expressed in a simple variational
form with testing electric and magnetic currents. The unknown
electric and magnetic currents as well as the electric and
magnetic testing currents are not free, but are linked by
the same relation induced by the IBC. The main trick is to
consider the relation linking electric and magnetic currents as
a constraint and to express it variationally by a vector field
playing the role of a system of Lagrangian multipliers. Both
of the electric and magnetic currents are approximated over
a mesh of the surface in flat triangles by a flux (across the
edges of the mesh) finite-element method (FEM) (cf. [25]).
It has been well known for some time that the flux FEM is
crucial to ensuring the conservation of charges, this property
being decisive for the consistency of any numerical scheme
dealing with these charges (among many others, one can quote
[3], [22], and [25]). The introduction of a suitable finite-
element approximation of the Lagrangian multipliers makes
their elimination possible as well as that of the magnetic
currents at the element level during the assembly process.
The final linear system to be solved exactly mimics the one
corresponding to the electric field integral equation (EFIE) for
the perfectly conducting obstacle. It has as unknowns only the
fluxes of the electric currents across the edges of the mesh and
its coefficient matrix is symmetric.

The plan is as follows. In Section II, we first review some
commonly used boundary integral equations for solving the
IBC. As a result, the motivation of the formulation which is
carried out in this paper is clearly brought out. We further
establish that the formulation is well posed at any frequency
as long as the IBC is relative to an absorbing obstacle.
Section III is devoted to the description of the boundary-
element method (BEM). In the final section, we give some
numerical experiments which validate the approach by com-
paring the calculated radar cross section (RCS) and the exact
one available from the series solution for a spherical scatterer.
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II. BOUNDARY INTEGRAL EQUATION

A. Scattering Problem

Using partly the notation in [15], we refer by to the
region of space embodying the scatterer; its surface is denoted
by and is the unit normal to pointing into the exterior

of .
The determination of the total electromagnetic field

induced within by an impinging incident field
on the impedance scatterer is governed by the following
boundary-value problem:

in (1)

on (2)

and satisfies a Silver-M̈uller radiation
condition (e.g., [15], [32]); time dependence is assumed to be
in . In the previous equations, is the wave number,

is the intrinsic impedance of the vacuum,
and is the relative impedance of the surface scatterer.
The method developed below can handle the case whereis
variable and even a function valued in the class of symmetric
tensors of the plane tangent to. For simplicity, however, we
restrict ourselves to a constant.

We make the scatterer absorbing by requiring that

(3)

Under some further assumptions relative to sufficient smooth-
ness of the surface of the scatterer, the above boundary-value
problem admits an unique solution [9].

B. Review of Some Commonly Used Integral Equations

Before introducing the formulation of interest to us, we
begin with a review of some boundary integral equations
commonly used to solve this problem. We focus on the
formulations based on the determination of the equivalent
currents

(4)

For convenience, we designate the electric and magnetic
charges, respectively, by and where is
the surface divergence of a vector field tangent to(cf. [8]).
Thus the electromagnetic field can be expressed in in
terms of the equivalent currents and charges by the familiar
Stratton-Chu formula (cf. [15])

(5)

(6)

where the respective potentialsand are defined by

(7)

(8)

and is the Green kernel giving the outgoing solutions
to the scalar Helmholtz equation in three dimensions

for in (9)

Using the classical jump relations (e.g., [6], [8]), we can
express the respective limiting boundary tangential values of

and by

(10)

(11)

where the subscript designates the tangential component
of the respective vector field on. In the

above expressions, all integrals exist in the ordinary sense as
improper integrals with a weak singularity except the integrals
of the form

which have to be interpreted for the moment as Cauchy
principal value integrals.

Note that the IBC results in the following relation linking
and :

(12)

The most straightforward formulation consists in directly
expressing the boundary condition (2) using the boundary
values (10) and (11). Then, using relation (12) to eliminate
the magnetic currents , we get

(13)

where is expressed through the incident field by

(14)

Note that the terms involving the unknowns which are not
under the integral sign cancel so that the resulting equation
is a Fredholm equation of the first kind. By now, it is well
established that this type of integral equation has generally
better stability properties than the Fredholm integral equations
of the second kind, which can be obtained from alternative
formulations (cf., e.g., [10], [16], [24]). However, in this form,
this formulation suffers from two main flaws.

• It includes some singular integrals that have meaning
only as Cauchy principal value integrals. Although some
numerical procedures effectively handling such integrals
have recently become available [20], it would be more
efficient to avoid their occurrence in practical computa-
tions.

• Even if the magnetic charges have been expressed in
terms of the electric currents, they remain present in the
formulation. Since the conservation of these charges as
well as the electric ones is crucial to the consistency of
the numerical scheme, the electric currents must fulfill
the following requirement: their tangential as well as their
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normal component must be continuous at each interface
between two elements of the mesh. No finite-element
method is yet available which, while remaining simple
enough, at the same time satisfies such a degree of
continuity constraint and applies to a surface of arbitrary
shape. This explains why, in our opinion, this formulation
has been used only for bodies of revolution (cf. [23], [27],
[30]).

The formulation of interest to us precisely consists in
writing (13) of an equivalent form that overcomes the above
difficulties. Before going further in this direction, we first
consider the second class of formulations usually used to deal
with the IBC. An almost immediate method consists in using
either (10) or (11) to derive an integral equation. The resulting
equations are respectively called the EFIE and the magnetic
field integral equation (MFIE) (e.g., [27]). Let us consider the
EFIE—the MFIE case being similar. Using relation (12), we
obtain

(15)

To the best of the authors’ knowledge, it is in the work of
Harrington and Mautz (e.g., [22]) that a simple variational
procedure removing the Cauchy singular integral from the
expression of was first used. The recipe consists in
doing the following integration by parts on for any testing
surface current :

(16)

Note that as a counterpart, to avoiding the strongly singular
integral, the charges relative to the testing currentsthen join
the formulation. As a result, we get the following variational
equation:

(17)

where the double integrals are given by

(18)

(19)

A main advantage of the previous formulation is that it does
not include the magnetic charges. Hence, it can be solved by
standard boundary flux elements [7]. Note that unlike (13), this
is a Fredholm integral equation of the second kind. Despite its

attractive properties, this formulation also suffers from two
main drawbacks.

• It leads to a final linear system with a nonsymmetric
matrix. Hence, to compute the solution requires about
two times as much work as for the solution of the perfect
conductor boundary condition.

• Spurious solutions can corrupt the results at the interior
frequencies of the perfect conductor cavity even if the
case under consideration is that of an absorbing obstacle
(e.g., [27]).

Clearly, the elimination of the electric currents can similarly
be used to obtain the MFIE from relation (11), which, again,
is subject to the same deficiencies.

To eliminate spurious resonances, the usual procedure is to
make a convex combination of the two previous equations
called the combined field integral equation (CFIE), which can
be symbolically written as

(e.g., [27]). However, the accuracy of the results depends
greatly on an adequate choice for the parameter. For lack
of a theoretical determination of this parameter, this method
is generally impractical for an arbitrary scatterer. At the same
time, eliminating the magnetic currents through relationship
(12), the CFIE involves both electric and magnetic charges
exactly as the direct formulation (13) does hence loosing the
main advantage of either the EFIE or the MFIE.

In fact, there exists another way to devise a robust CFIE that
involves no parameter [21]. Since it uses the same background
as the integral equation, which is considered in this paper, we
will describe it later.

C. Rumsey’s Reaction Concept Formulation

Now we come to the formulation devised in this paper. Let
and be a system of testing electric and magnetic currents

tangential to . Let and designate the respective
electromagnetic fields induced by the equivalent currents
and in the domains . We also denote by and
the limiting boundary values of these fields onfrom their
respective values in . Rumsey’s reaction [28] of the system
of currents on the testing currents in ,
respectively, is given by

(20)

with

(21)
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Likewise, Rumsey’s reaction of the impressed currents, possi-
bly located at infinity when the incident wave is a plane wave,
on the test currents is given by

(22)

On one hand, in view of (10) and (11), the total field can
be written as . Therefore,
the reaction of the currents, impressed and induced, creating
the total field in on the test currents , takes the
following form:

On the other hand, using the IBC (2), we get another expres-
sion for this reaction

Hence, setting , we readily obtain from the two
expressions of the reaction that is solution to the
following variational system:

(23)

for every system of testing currents tangential on
.
Some comments are in order.

• The variational system appears as a constrained varia-
tional equation where the unknownplays the role of a
Lagrangian multiplier.

• It is quite obvious from the derivation procedure of the
previous formulation that any solution to (13) gives a
solution to the variational system (23). Con-
versely, associating with all testing currentsmagnetic
test currents by the relation

(24)

we readily obtain that is a solution to (13). Thus, system
(23) is an equivalent formulation of (13).

The advantage of system (23) comes from two important
properties of the variational formulation. All the involved
integrals are only weakly singular and, hence, are convergent
in the usual sense. The electric and the magnetic currents
are not explicitly linked by relation (12). Thus, the strong
interelement continuity requirement may be omitted at the
level of the discretization process by a boundary-element
method.

Apparently, a serious drawback of this approach is the
tripling of the number of unknowns. However, both the
magnetic currents and the Lagrangian multiplier will be
eliminated at the element level during the assembly process
leaving as unknown only the electric current, exactly as with
the usual perfect conductor boundary condition.

In the same manner, the previously mentioned alternative
form for the CFIE can be written using Rumsey’s reaction
concept as

(25)

We note that there is no explicit relationship linking either the
unknown currents or the testing currents .
Although this is not evident at first sight, the above system is
nothing else but a coupling of the EFIE and MFIE obtained
by leaving implicit the relationship (12) linking the unknown
currents . The drawback of this formulation is that the
order of the final linear system is twice as large as in the
perfect conductor case.

D. Well Posedness of Rumsey’s Reaction Formulation

Since we are insured that system (23) has at least one
solution, it only remains to prove that this solution cannot
be corrupted by any spurious one. Thus, consider a solution

to the variational system (23) corresponding to a
zero incident field. Clearly, the equivalent currents
are linked by relation (12). As above, denoted by ,
the electromagnetic field induced, respectively, in the domains

by the currents . Making use once more of the
classical jump relations (20), we express the limiting boundary
values of on in terms of the currents . Thus,
from the very definition of a solution to (23) corresponding to

, we get

(26)

Associating with any , a tangential field by relation
(24), we readily see that is a solution to the
impedance boundary value problem (1), (2) with
further satisfying the Silver–M̈uller radiation condition. Since
this problem as stated above is well-posed for an absorbing
scatterer [owing to assumption (3)], we obtain
in . Likewise, is a solution to the Maxwell
equations in and their limiting tangential components are
related by the impedance boundary on. A straightforward
application of Green’s formula gives

From condition (3), we conclude and then
. As a result, the jump relations yield .

Equation (26) then permits us to conclude that .
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Remark It worth noting that when is a varying (or even
is an operator valued) function, the previous well-posedness
continues to hold if vanishes in a strict part of the boundary

, as long as it remains strictly absorbing in its complement.

III. B OUNDARY FINITE-ELEMENT METHOD

A. Approximation of the Currents

As stated above, an essential requirement for a finite-
element approximation of the currents is to ensure the conser-
vation of charges. Hence, since the method is intended to deal
with surfaces of arbitrary shape, the only suitable procedure
is to use a flux finite-element method. Let us sketch the main
features of this method (see [25] for more details).

The surface scatterer is meshed by a collection of planar
triangles satisfying the general overlapping conditions for a
finite-element method (e.g., [5]).

The degrees of freedom of the surface currentsare
their fluxes across each edge of the mesh, assuming that a
positive counting for the fluxes has been fixed there. This is
done by labeling the edges and introducing a signed table of
connectivity linking the degrees of freedom to the currents
flowing out of each of the three edges of any triangle as
follows.

• Let designate any triangle of the mesh;
are its vertexes (assumed to have been counted in the
counterclockwise direction in the plane of determined
by the unit normal , which is pointing to the exterior
of the scatterer); is the edge connecting to
(making the usual convention of a circular permutation
of the indexes when the index is greater than 3).

• The table of connectivity of the degrees of freedom is
given by a signed integer for each triangle

so that gives the number of the edge . An
orientation is fixed over each edge of the mesh so that

is positive when this orientation is compatible with
that one relative to the above numbering of the vertices
of and negative otherwise.

• Let be the number of edges of the mesh. The currents
are recovered from the column-wise vector

of the degrees of freedom by

for in (27)

with and is the basis function (see
[25]) given by

where designates the area of triangle.
• In this way, charges do not accumulate on either the edges

or the vertexes and their expression may be obtained
inside each triangle by

for each in

B. Approximation of the Lagrange Multipliers

There is once more one degree of freedom per edge for
the approximation of the Lagrange multiplier. But now, the
latter is chosen to be continuous at each mid-point of any edge
of the mesh and tangential there to that edge. More precisely,
each Lagrange multiplier is characterized by a column-wise
vector giving its degrees of freedom as
follows:

for each in (28)

where designates theth barycentric coordinate of
relative to triangle (also called area coordinates, see e.g.,
[18]).

The above form for the multiplier has the following im-
portant consequence. Since is a quadratic
polynomial in the interior of , it can be integrated exactly
over using the three edge mid-points formula

where is the mid-point of edge
(cf. [11]). But, from the form of the currents (27) and of the
multipliers (28) over each triangle, in the above expression
only the degrees of freedom which are relative to the same
edge are coupled. More precisely, we have

where is the length of the edge and is the unit
normal to this edge in the plane of pointing to the exterior
of . From the very definition (27) of the degrees of freedom
characterizing the currents, we get

(29)

where vector gives the degrees of freedom
characterizing the magnetic currents as above for the electric
currents.

C. Elimination of the Magnetic Currents
and the Lagrange Multipliers

Formula (29) makes it possible to readily express the
degrees of freedom of the magnetic currentsfrom that of
the electric currents . To be specific, pick any edge of
the mesh. Let and be the two triangles sharing this
edge and assume that gives the number of

. Let be the Lagrange multiplier having all of its degrees
of freedom equal to zero except that relative to which is
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taken equal to one. Since vanishes on any triangle except
and , we can write

Formula (29) then yields

thus permitting us to express with only the degrees of
freedom relative to triangles and

(30)

The above expression enables us to explicitly write out the
degrees of freedom of the magnetic currents from that of the
electric currents. Now, for testing currents and having
their degrees of freedom related by (30), the integral involving
the Lagrangian multiplier cancels, namely

and, henceforth, the magnetic currents as well as the La-
grangian multipliers are completely removed from the formu-
lation.

Remark: Note that the above procedure remains valid for a
varying (or even an operator valued) function.

In view of (30), which explicitly expresses and
from, respectively, and at the element level,

the variational system (23) becomes

for each (31)

The symmetry properties of the kernel lead to the
following relation:

which indicates that in fact system (31) can be reduced to a
linear system

(32)

with a symmetric matrix .
Clearly, if vanishes, the expressions and given

by (30) for, respectively, and vanish as well and the
linear system is nothing else but the one corresponding to a
perfect conductor boundary condition on the scatterer.

D. Assembly Process

We only sketch the derivation of matrices and .
The interested reader can consult [4] for the details.

Since matrix is symmetric, only its upper triangular
part is stored. It is obtained by assembling the contribution of
the elementary matrix that describes the interaction of
the currents on the pair of triangles and . It is defined
by the relation

In the previous formula, and according to
(30). Thus, the involved degrees of freedom and
are those relative to the triangles, respectively, sharing with

and a common edge. Matrix is the transpose
of matrix . Matrix is a square matrix of order
nine. In fact, the elimination of the magnetic currents and the
Lagrangian multipliers results in a kind of nonlocalized finite-
element method where every triangle(respectively, ), in
addition to its own degrees of freedom, also involves those of
its adjacent triangles.

Essentially, matrix is determined from the two fol-
lowing matrices defined by

with , , and
.

Clearly, since and ,
only one half of these matrices needs to be computed. The
outer integral is determined by the three-points Gauss quadra-
ture formula. Inner integrals are determined in the same way
if the triangles and are not adjacent. Otherwise, the
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Fig. 1. Bistatic RCS fork = 2 and ~� = 1.

singular part corresponding to the following decomposition
of the kernel:

is performed exactly using the analytical expressions for
single- and double-layer electrostatic potentials created by lin-
ear distributions over planar triangles in the space (e.g., [26]),
the regular one being computed by the previous quadrature
formula.

Matrix is assembled from the elementary matrices
defined by

The above integrals are computed using the previous quadra-
ture formula.

IV. I LLUSTRATIVE RESULTS

To illustrate the present approach, we compute the RCS
of a unit sphere with material properties described by a
scalar constant impedance. We follow the notation in [27]
(from which we have borrowed the cases considered) and set

.
Every mesh of the sphere is quasiuniform; that is, all the

triangles of the mesh are approximately of the same size and
form, and is characterized by the numberof its edges which
is the size of the final linear system to be solved.

The first example is that of an absorbing sphere with .
It is a challenge for the accuracy of a numerical method since
there is then a complete extinction of the backscattering RCS.
Figs. 1 and 2 report the bistatic RCS determined numerically
and exactly by a Mie series expansion for, respectively, a wave
number and . The directions of observation
are in the plane of incidence. Angle 0 corresponds to the

Fig. 2. Bistatic RCS fork = 2:76 and ~� = 1.

Fig. 3. Backward RCS for various surface impedances.

backscattering RCS. The latter wave number is chosen to bring
out the effect of an eigenfrequency for the interior perfect
conductor cavity on the stability of the method. As expected,
the results confirm the theoretical predictions. The values
obtained for the bistatic RCS are in good agreement with the
exact ones for any direction except those very close to the
backscattering direction, even for coarse meshes (see Fig. 3).
No special feature distinguishes the results corresponding to
the regular frequency for from those relative to

. The behavior of the curves obtained numerically
near the extinction direction, in a way, show the stability of
the method and the accuracy which can be reached. Table I
gives the upper bounds of the size of an edge in wavelengths
for the used meshes.

Fig. 3 reports the results obtained for the monostatic RCS
for with the indicated values of . It has
been obtained by a mesh with 4320 edges. The upper bound
of the size of an edge in wavelengths is varying between
0.052 and 0.009. These results show good stability relative
to the magnitude of the surface impedance. Particularly, one
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TABLE I
UPPER BOUNDS FOR THESIZE OF AN EDGE IN WAVELENGTHS

TABLE II
CPU TIMES ON WORSTATION IBM RISC 6000

can observe that even for a surface impedance of very small
magnitude, for which the RCS cannot be distinguished from
that of a perfectly conducting scatterer, the method continues
to give accurate results even at the interior cavity frequency.

Finally, Table II compares the CPU time in seconds used
for solving the boundary integral equation for an IBC and
a perfectly conducting (PC) sphere on an IBM RISC 6000
workstation.

This table shows that for moderate meshes, solving the
impedance scattering problem takes twice as long as for
solving the perfect conductor case. The table also clearly
indicates that the ratio of the former to the latter time is
decreasing as the mesh size increases. Since the CPU time used
for the assembly process and for the linear system solution
is respectively a quadratic function and a cubic function of
the number of edges , this ratio must be nearly one for
meshes of large sizes. However in this case, due to the related
huge CPU time and memory which are required, only an
implementation of the method on parallel machines has proved
to be practicable. The results have been obtained on the CRAY
supercomputers T3D and T3E. The elapsed CPU time and
the repetition of some calculations to efficiently distribute
the amount of the computation on all the processors makes
comparison of the related CPU times meaningless. Thus, we
do not give the above comparison for this case.
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