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A Boundary-Element Solution
of the Leontovitch Problem

Abderrahmane Bendali, M'B. Fares, and Jean Gay

Abstract—A boundary-element method is introduced for solv- [13]). Therefore, it is important for practitioners in compu-
ing electromagnetic scattering problems in the frequency do- tational electromagnetics to have at hand numerical methods
main relative to an impedance boundary condition (IBC) on an  yeaiing with such a boundary condition as efficiently as for
obstacle of arbitrary shape. The formulation is based on the -, . .
field approach: namely, it is obtained by enforcing the total the usual perfect conductor boundary condition. It is the aim
electromagnetic field, expressed by means of the incident field and Of this paper to devise such a method.
the equivalent electric and magnetic currents and charges onthe  We sketch the main features of the approach. The total
scatterer surface, to satisfy the boundary condition. As a result, g|ectric and magnetic fields are represented by the equivalent

this formulation is well-posed at any frequency for an absorbing maanetic and electric currents on the surface of the scatterer
scatterer. Both of the equivalent currents are discretized by a gnet Ic cu u

boundary-element method over a triangular mesh of the surface (cf. [15]). The direct integral boundary equation is obtained
scatterer. The magnetic currents are then eliminated at the by requiring the resulting field expressions to satisfy the IBC.
e e o 5 o ADroe ropeies mouk gy e, Using Rumsey's eacion concep [25], we show how
tﬁe application of?his method to the usuaﬁ pgrfectly F():onductingy this |nt_egral e.quatlon c_an be express_,ed in a simple variational
scatterer; that is, its unknowns are the fluxes of the electric form with testing electric and magnetic currents. The unknown
currents across the edges of the mesh and its coefficient matrix electric and magnetic currents as well as the electric and
is symmetric. magnetic testing currents are not free, but are linked by
Index Terms_Boundary e|ement5’ boundary integra| equa- the same relation induced by the IBC. The main tI’iCk iS to
tions, impedance boundary condition, Maxwell equations, scat- consider the relation linking electric and magnetic currents as
tering. a constraint and to express it variationally by a vector field
playing the role of a system of Lagrangian multipliers. Both
of the electric and magnetic currents are approximated over
I. INTRODUCTION a mesh of the surface in flat triangles by a flux (across the

INCE the pioneering work of Leontovitch (see, for in_edges of the mesh) finite-element method (FEM) (cf. [25]).

tance, [29]), the impedance boundary condition (IBC) hishas been well known for some time that the flux FEM is
been extensively used to simplify the formulation involved iffucial to ensuring the conservation of charges, this property
the solution of complicated electromagnetic scattering proB€iNg decisive for the consistency of any numerical scheme
lems related to imperfectly conducting scatterers or tho§galing with these charges (among many others, one can quote
with a rough surface (see [23] for more details concernidgl: [22], and [25]). The introduction of a suitable finite-
this approach; in [34], two criteria are worked out to definglément approximation of the Lagrangian multipliers makes
the range of validity of the IBC for imperfect conductors)their elimination possible as well as that of the magnetic
It was recognized later that this type of boundary conditiofrents at the element level during the assembly process.
can be advantageously used to get a more tractable probiEi¢ final linear system to be solved exactly mimics the one
in numerous complex situations of electromagnetic scatterifgrresponding to the electric field integral equation (EFIE) for
computations (see for example [1], [2], [14], [17], [19], [31];he perfectly conducting obstacle. It has as unknowns only the
[35]). Such a boundary condition also arises as a simglegxes of the electric currents across the edges of the mesh and
terminating boundary condition in problems related to thiés coefficient matrix is symmetric.
propagation in a waveguide (cf. [18]). It can also be involved The plan is as follows. In Section IlI, we first review some
in a domain decomposition solution of scattering probleng®mmonly used boundary integral equations for solving the
leading in this way to efficient parallel algorithms (cf. [12]|BC. As a result, the motivation of the formulation which is
carried out in this paper is clearly brought out. We further
establish that the formulation is well posed at any frequency
'\Aﬂanéisccrjiplt rfecei\/_eﬁ <L)Clt)0ber 7, 15:\;3I7F; UMR 5640, CNRS.UPS.INSA as long as the IBC is relative to an absorbing obstacle.
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Il. BOUNDARY INTEGRAL EQUATION andG(z,y) is the Green kernel giving the outgoing solutions
to the scalar Helmholtz equation in three dimensions
A. Scattering Problem giklz—yl

Using partly the notation in [15], we refer bp_ to the Gz, y) == yrp— for w #y in R®. ©)
region of space embodying the scatterer; its surface is denoted
by I' andn is the unit normal td" pointing into the exterior ~ Using the classical jump relations (e.g., [6], [8]), we can
D, of D_. express the respective limiting boundary tangential values of
The determination of the total electromagnetic figktl H) E and H by
induced withinD by an impinging incident fieldEi»¢, Hin<) , 1
on the impedance scatterer is governed by the following — E¢ = E" +ikZ(ZTJ)¢ + (KM)¢ + onx M (10)

boundary-value problem: ) 1
Hy = HPC — (KJ) +ikZ™HTM), — ZnxJ (11)

{v x (E—E™) —ikZ(H—-H"™)=0 inD. (1)
V x (H - H") +ikZ"'(E - E*) =0, * where the subscript designates the tangential component
. E; :=n x (E x n) of the respective vector field dn. In the
nx (Exn)=ikZmxH onl (2) above expressions, all integrals exist in the ordinary sense as

and (E — E°, H — Hi™) satisfies a Silver-Mller radiation improper integrals with a weak singularity except the integrals
pondi;ic:n (e.g., [15], [32]); time dependence is assumed to gE the form

2~ VigJes & e mvingic mpedance of the vacuum. JAR TR R

T e e e oSt WHh e to be erreed for he moment s Cauchy
variable and even a function valued in the class of symmetﬁ)(r:InCIpaI value integrals. : . L
tensors of the plane tangent o For simplicity, however, we Note that the IBC results in the following relation linking

; J and M:
restrict ourselves to a constant
We make the scatterer absorbing by requiring that nxM=ikZnJ. (12)
SIm(n) < 0. (3) The most straightforward formulation consists in directly

Under some further assumptions relative to sufficient smoof%pPressing the boundary condition (2) using the boundary
ness of the surface of the scatterer, the above boundary-vaf@éies (10) and (11). Then, using relation (12) to eliminate
problem admits an unique solution [9]. the magnetic currentd1, we get

B. Review of Some Commonly Used Integral Equations 5 o

) _ ) ) +mx KJ-—k*nnxTnxJ)=F (13)
Before introducing the formulation of interest to us, we

begin with a review of some boundary integral equationshereF is expressed through the incident field by

commonly used to solve this problem. We focus on the

formulations based on the determination of the equivalent F = —(E( — ékZm x H™). (14)
currents Note that the terms involving the unknowns which are not
J:=nxH, M:=-nxE. (4) under the integral sign cancel so that the resulting equation

) ] ) is a Fredholm equation of the first kind. By now, it is well
For convenience, we designate the electric and magn&figaplished that this type of integral equation has generally
charges, respectively, byr - J and Vr - M where Vr - is  petter stability properties than the Fredholm integral equations
the surface divergence of a vector field tangent't(ef. [8]).  of the second kind, which can be obtained from alternative

Thus the electromagnetic field can be expressedin in  formuylations (cf., e.g., [10], [16], [24]). However, in this form,
terms of the equivalent currents and charges by the familigfis formulation suffers from two main flaws.

Stratton-Chu formula (cf. [15]) ¢ It includes some singular integrals that have meaning

E(z) = E™(2) + ikZTJ(z) + KM(z); z € Dy (5) only as Cauchy principal value integrals. Although some
H(z) = H™(z) — KJ(z) +ikZ 'TM(z); =€ D, (6) numerical procedures effectively handling such integrals
have recently become available [20], it would be more

where the respective potentidisand K are defined by efficient to avoid their occurrence in practical computa-

1 tions.

TI(z) 12/ <G($,y)3(y)+ 72 VeGlz,y)Vr « Even if the magnetic charges have been expressed in

r terms of the electric currents, they remain present in the
. J(y)) dl'(y) (7) formulation. Since the conservation of these charges as

well as the electric ones is crucial to the consistency of

KM(z) := / V,G(z,y) x M(y) dl'(y) (8) the numerical scheme, the electric currents must fulfill

r the following requirement: their tangential as well as their
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normal component must be continuous at each interfagtiractive properties, this formulation also suffers from two
between two elements of the mesh. No finite-elementain drawbacks.

method is yet available which, while remaining simple « |t leads to a final linear system with a nonsymmetric
enough, at the same time satisfies such a degree of matrix. Hence, to compute the solution requires about
continuity constraint and applies to a surface of arbitrary  two times as much work as for the solution of the perfect
shape. This explains why, in our opinion, this formulation  conductor boundary condition.
has been used only for bodies of revolution (cf. [23], [27], « Spurious solutions can corrupt the results at the interior
[30]). frequencies of the perfect conductor cauvity even if the

The formulation of interest to us precisely consists in case under consideration is that of an absorbing obstacle

writing (13) of an equivalent form that overcomes the above (e.g., [27]).

difficulties. Before going further in this direction, we first Clearly, the elimination of the electric currents can similarly
consider the second class of formulations usually used to dgalused to obtain the MFIE from relation (11), which, again,
with the IBC. An almost immediate method consists in using subject to the same deficiencies.

either (10) or (11) to derive an integral equation. The resulting To eliminate spurious resonances, the usual procedure is to
equations are respectively called the EFIE and the magnefigke a convex combination of the two previous equations

field integral equation (MFIE) (e.g., [27]). Let us consider thealled the combined field integral equation (CFIE), which can
EFIE—the MFIE case being similar. Using relation (12), wge symbolically written as
obtain

1 1 CFIE — aEFIE + —(1 — a)MFIE

Snd — (T3 +n(Kn x ). = —E".  (15) ik

2 ikZ
To the best of the authors’ knowledge, it is in the work Ofreatly on an adequate choice for the paramateFor lack
Harrington and Mautz (e.g., [22]) that a simple variationajf 5 theoretical determination of this parameter, this method
procedure removing the Cauchy singular integral from thg generally impractical for an arbitrary scatterer. At the same
expression of(7'J), was first used. The recipe consists ifime, eliminating the magnetic currents through relationship
doing the following integration by parts dn for any testing (12), the CFIE involves both electric and magnetic charges

C%e.g., [27]). However, the accuracy of the results depends

surface currentl’”: exactly as the direct formulation (13) does hence loosing the
main advantage of either the EFIE or the MFIE.
/ Vaz </ G(z,y)Vr-I(y) dF(y)) -J'(x) dl(z) In fact, there exists another way to devise a robust CFIE that
T T

involves no parameter [21]. Since it uses the same background
= —/ / G(z,y)Vr - J(y)Vr - Y (x)dl'(y) dl'(x). (16) as the integral equation, which is considered in this paper, we
rJr will describe it later.

Note that as a counterpart, to avoiding the strongly singular

integral, the charges relative to the testing currdhthien join C. Rumsey’s Reaction Concept Formulation

the formulation. As a result, we get the following variational Now we come to the formulation devised in this paper. Let

equation: J’ andM’ be a system of testing electric and magnetic currents
1 tangential tol". Let E. and H. designate the respective
- / nJ-Jdl' — / Ty Y dl' + / KnxJ -pYdl electromagnetic fields induced by the equivalent currgnts
2Jr r r and M in the domainsD_,. We also denote b¥, and H.

/Eitm L3 dr (17) the limiting boundary values of these fields bnfrom their

r respective values iv;. Rumsey’s reaction [28] of the system
of currents{J,M} on the testing current§J’, M’} in D,
respectively, is given by

1
T ikZ

where the double integrals are given by

1
/FTJ 3"l I/F/FG(w,y) <—ﬁVr IV I () /F(Ei -J —Hg-M')dl
+30)- 7)) = (413, M} (7 )
! !

/ KM.Jdr = / / v, G, y) x M(y) with

r rJr
A main advantage of the previous formulation is that it does = ikz/ T Y dl —ikZ™ 1t / TM - M’ dI'
not include the magnetic charges. Hence, it can be solved by r r
standard boundary flux elements [7]. Note that unlike (13), this + / KM -J dI' + / KJ-M dr. (21)
is a Fredholm integral equation of the second kind. Despite its r r
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Likewise, Rumsey’s reaction of the impressed currents, possi-Apparently, a serious drawback of this approach is the
bly located at infinity when the incident wave is a plane wavéijpling of the number of unknowns. However, both the

on the test current$J’, M’} is given by magnetic currentdI and the Lagrangian multiplidk will be
. . eliminated at the element level during the assembly process
/(E“‘C Y —H™ M) dl' = -V{J' ,M'}. (22) leaving as unknown only the electric current, exactly as with
r

the usual perfect conductor boundary condition.
On one hand, in view of (10) and (11), the total field can In the same manner, the previously mentioned alternative
be written ask = E, + E®¢, H = H, + H™. Therefore, form for the CFIE can be written using Rumsey’s reaction
the reaction of the currents, impressed and induced, creatiipcept as
the total field inDy on the test current$J’, M’'}, takes the

following form: (A{J,M},{J’,M’})—i-l/ ikZnJ -J’—;M-M’
2 Jr tkZn
/ (E-J —H.M)dl dr = V{3’ M'}. (25)
r
_ PR We note that there is no explicit relationship linking either the
= (A{J, M} {7, M}) — §/Fn xH unknown currents{J, M} or the testing current$J’, M'}.

-(nx M/ —ikZnd'ydl — V{J M'}. Although this is not evident at first sight, the above system is
' ' nothing else but a coupling of the EFIE and MFIE obtained
On the other hand, using the IBC (2), we get another expras leaving implicit the relationship (12) linking the unknown

sion for this reaction currents{J, M}. The drawback of this formulation is that the
, , order of the final linear system is twice as large as in the
/F(E J'—H-M)dl perfect conductor case.
= /r(Et J —nxH nxM)dl D. Well Posedness of Rumsey’s Reaction Formulation

Since we are insured that system (23) has at least one
solution, it only remains to prove that this solution cannot
be corrupted by any spurious one. Thus, consider a solution
Hence, settind. = ;n x H, we readily obtain from the two {3 M, L} to the variational system (23) corresponding to a
expressions of the reaction thal, M, L} is solution to the zero incident field. Clearly, the equivalent currerts M}

:—/an-(an’—ianJ’)dF.
r

following variational system: are linked by relation (12). As above, denoted By, H.,
(A{J, M}, {3 M'}) + [-L-(n x M/ — ikZnd') dT the electromagnetic field induced, respectively, in the domains
{_ V{7J’ M’} |7f L. (nrx M — ikZnd) dl’ = 0 Dy by the currents{J, M}. Making use once more of the
= ; . =

23) classical jump relations (20), we express the limiting boundary
values ofEL, Hy onT in terms of the current§J, M}. Thus,
. {E™, H"} = 0, we get
Some comments are in order.

» The variational system appears as a constrained varia- /r (Ex-J' —Hy -M)dl
tional equation where the unknovin plays the role of a 1
Lagrangian multiplier. = —/ <L + —J) “(nx M’ —ikZnd')dl. (26)
« It is quite obvious from the derivation procedure of the r 2
previous formulation that any solution to (13) gives associating with anyJ’, a tangential fieldM’ by relation
solution {J, M, L} to the variational system (23). Con-(24), we readily see tha{E,,H,} is a solution to the
versely, associating with all testing curredismagnetic impedance boundary value problem (1), (2) WitB,, H,}
test currentsM’ by the relation further satisfying the Silver—Rler radiation condition. Since
nx M = ikZnd' (24) this problem_as stated aboye is well-posed for an absorbing
scatterer [owing to assumption (3)], we obtdin = H, =0
we readily obtain thal is a solution to (13). Thus, systemin D,. Likewise, {E_,H_} is a solution to the Maxwell
(23) is an equivalent formulation of (13). equations inD_ and their limiting tangential components are
The advantage of system (23) comes from two importafflated by the impedance boundary BnA straightforward
properties of the variational formulation. All the involved@PPlication of Green's formula gives

integrals are only weakly singular and, hence, are convergent

in the usual sense. The electric and the magnetic currents %m/mn x H_[*dl' = 0.

are not explicitly linked by relation (12). Thus, the strong r

interelement continuity requirement may be omitted at tHerom condition (3), we concluda x H_ = 0 and then

level of the discretization process by a boundary-elemeff ). = 0. As a result, the jump relations yiell=M = 0.
method. Equation (26) then permits us to conclude that 0.
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Remark It worth noting that whem; is a varying (or even B. Approximation of the Lagrange Multipliers
is an operator valued) function, the previous well-posednessriare is once more one degree of freedom per edge for
continues to hold if; vanishes in a strict part of the boundanyhe apnroximation of the Lagrange multiplier But now, the
I', as long as it remains strictly absorbing in its complemengyer js chosen to be continuous at each mid-point of any edge
of the mesh and tangential there to that edge. More precisely,
each Lagrange multiplie is characterized by a column-wise
vector {L} = {L;}'={" giving its degrees of freedom as
follows:

As stated above, an essential requirement for a finite- 3
element approximation of the currents is to ensure the conser- [,(;) = Z EIKL|nK| (1- 2)\{3;2(3;)) (al’il — al’")7
vation of charges. Hence, since the method is intended to deal =1 !

I1l. BOUNDARY FINITE-ELEMENT METHOD

A. Approximation of the Currents

with surfaces of arbitrary shape, the only suitable procedure for eachz in K (28)
is to use a flux finite-element method. Let us sketch the main i _ . _
features of this method (see [25] for more details). where \[* () designates théth barycentric coordinate of

The surface scatterer is meshed by a collection of plarf&@lative to triangleX (also called area coordinates, see e.g.,
triangles satisfying the general overlapping conditions for [48])-
finite-element method (e.g., [5]). The above form for the multiplier has the following im-
The degrees of freedom of the surface currefiteare portant consequence. Singg(x) - n x M(z) is a quadratic
their fluxes across each edge of the mesh, assuming thdtodynomial in the interior ofK, it can be integrated exactly
positive counting for the fluxes has been fixed there. This @€r K using the three edge mid-points formula

done by labeling the edges and introducing a signed table of )
connectivity linking the degrees of freedom to the currents /’L (z) -nx M(z) dK
flowing out of each of the three edges of any triangle as : K| 3
follows. K oK K
= L'(a -nx M(a
+ Let K designate any triangle of the mestf;, j = 1,2,3 3 ; (2i1/:) (2i1/:)

are its vertexes (assumed to have been counted in the X X X ) ) ] ,
counterclockwise direction in the plane &f determined Whereay,, , := (a;" +aj},)/2 is the mid-point of edgeX;
by the unit normaln, which is pointing to the exterior (cf. [11]). But, from the form of the currents (27) and of the

of the scatterer)k is the edge connecting’ to a{il multipliers (28) over each triangle, in the above expression
(making the usual convention of a circular permutatioﬁ”ly the degrees of freedom which are relative to the same

of the indexes when the index is greater than 3). edge are coupled. More precisely, we have
. T_he table of conn.ectivityrof the degrees of frgedom is 1/ (az’il/Q) n X M(a{im)
given by a signed integer;*, [ = 1,2, 3 for each triangle g X st X
K so that|n{| gives the number of the edgk]. An = L|n;<|(az+1 —a;') xn-M(az, )
orientation is fixed over each edge of the mesh so that =l |K)|L K|M(a{i1/2) v

ni is positive when this orientation is compatible with
that one relative to the above numbering of the vertic%eremﬂ is the length of the edgé’} and v/ is the unit

of K and negative otherwise. normal to this edge in the plane & pointing to the exterior

* Let N, be the number of edges of the mesh. The currerds i, From the very definition (27) of the degrees of freedom
J are recovered from the column-wise vectps} = characterizing the currents, we get
{Jj}jjfe of the degrees of freedom by

3
K
3 / L'(z) -n x M(z)dK = % ZL/nKlMlnlf(l (29)
I@) =) el S Bf(z), forzink  (27) : =1
=1

where vecto{ M} := {M;}=1'" gives the degrees of freedom
with e/ = n</|nf| and BY is the basis function (see characterizing the magnetic currents as above for the electric
[25]) given by currents.

K K

1 Lo .
Kz) = 2E] (x _ al+2) C. Elimination of the Magnetic Currents

and the Lagrange Multipliers

where| K| designates the area of trianglé. Formula (29) makes it possible to readily express the
« In this way, charges do not accumulate on either the edgéggrees of freedom of the magnetic currehisfrom that of

or the vertexes and their expression may be obtain#te electric currentd. To be specific, pick any edgk” of

inside each triangleés by the mesh. LetK+ and K~ be the two triangles sharing this
3 edge and assume that= n" = —nX " gives the number of
Vr - J(z) = |_1| Zg{‘fjl K| for eachz in K K'. LetL/ be the Lagrange multiplier having all of its degrees
K nl 7 N
=1

of freedom equal to zero except that relative 6 which is
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taken equal to one. Sinde’ vanishes on any triangle exceptD. Assembly Process

K and K=, we can write We only sketch the derivation of matricds/} and {V'}.
The interested reader can consult [4] for the detalils.
/L’-an dr :/ L’-andK++/ L'nxMdK . Since matrix{Z} is symmetric, only its upper triangular
r K+ K- part is stored. It is obtained by assembling the contribution of

the elementary matriz - that describes the interaction of
the currents on the pair of trianglgs and L. It is defined
by the relation

Formula (29) then yields

K+ B,
3 n ' T 7KL
{Jit 255}
:ikZ(/ nL’-JdK++/ nL/-JdK_) :ikZ//G(a:y)
K K= KJL ’
1
thus permitting us to expresd/,, with only the degrees of <J(y) () - 2 VrdWvr -J'(w)) dL(y) dK (x)

freedom relative to triangle&+ and K~

~ikz [ [ e (M) M@

3L/€Z + .
Mn K WK L/ . BIS dK—|—
[KH[+ K- IZ{ *'/m” ! - EVF M(y )VF-M'(x)>dL(y) dK ()
bl e [ B ax ] (30) + [ 94660 x 30) M @) d) dx ()
KJL

The above expression enables us to explicitly write out the ~ + // V,G(z,y) x I'(y) - M(z) dL(y) dK ().
degrees of freedom of the magnetic currents from that of the KL
electric currents. Now, for testing currents and M’ having |n the previous formuldy = DJ andM’ = DJ’ according to
their degrees of freedom related by (30), the integral involvingo). Thus, the involved degrees of freeddoi, } and {.J }

the Lagrangian multiplier cancels, namely are those relative to the triangles, respectively, sharing with
L and K a common edge. Matri{.J5-} T is the transpose
/L (n x M —ikZnd')dl =0 of matrix {Ji }. Matrix Z.KiL is a square matrix of order

r nine. In fact, the elimination of the magnetic currents and the

_ Lagrangian multipliers results in a kind of nonlocalized finite-
and, henceforth_, the magnetic currents as well as the léement method where every triangle(respectively,k), in
grangian multipliers are completely removed from the formuddition to its own degrees of freedom, also involves those of

lation. its adjacent triangles.
Remark: Note that the above procedure remains valid for a Essentially, matrixZ*-* is determined from the two fol-
varying (or even an operator valued) functign lowing matrices defined by

In view of (30), which explicitly expressedl = DJ and

M’ = DJ’ from, respectivelyJ andJ’ at the element level, N
the variational system (23) becomes [y J5 JSTF gy
J3
A{J, DI} {J DIV =V{),DJ", for eachJ’. (31
(A{ 5o =" } (31) // xu( J/()_EVF
K
The symmetry properties of the kernél(z,y) lead to the ,
following relation: ~J(W)Vr - I (z) JdL(y) dK (z)
J1
(A{J,D3},{¥,DI") = (A{Y,DI'},{3,DI}) (M M, MjDSF [J2]
J3
which indicates that in fact system (31) can be reduced to a )
linear system :/1 /V G(z,y) x I(y) - M'(z) dL(y) dK ()
39
{ZHJ} ={V} (32) with J(z) = 7, iBE(), ¥'(2) = ¥, J[Bf(«), and
M'(z) = 3, M{Bf(x).
with a symmetric matrix{ Z}. Clearly, sinceS%:t = (SLK)T and DXL = (DEE)T,

Clearly, if n vanishes, the expressiodsJ and DJ’ given only one half of these matrices needs to be computed. The
by (30) for, respectivelyM and M’ vanish as well and the outer integral is determined by the three-points Gauss quadra-
linear system is nothing else but the one corresponding tduwsie formula. Inner integrals are determined in the same way
perfect conductor boundary condition on the scatterer. if the triangles K and L are not adjacent. Otherwise, the
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Fig. 1. Bistatic RCS fork = 2 andrp = 1. Fig. 2. Bistatic RCS fork = 2.76 andn = 1.

singular part corresponding to the following decomposition 20 ' * '
of the kernel:
1 Ghlz—ul _q

G =
(@) dr|z — 9| + dr|z — 9| 100 |

is performed exactly using the analytical expressions for
single- and double-layer electrostatic potentials created by ling
ear distributions over planar triangles in the space (e.g., [26])2 0.0 -
the regular one being computed by the previous quadratu
formula.

Matrix {V} is assembled from the elementary matrices

Exact:y=1

defined by -0 - ! ]
K] _ gt 1310
VEl . . r O(Ialcuiayud: y=10"
gy B\VEE | = [ B 3@ di)
VE ?{S i s 20005 o 20 30 40
VH{( T Wave Number
[M{ M) M|VHE | = H™(y) - M/(z) dK(z). Fig. 3. Backward RCS for various surface impedances.
VHE K
The above integrals are computed using the previous quadvackscattering RCS. The latter wave number is chosen to bring
ture formula. out the effect of an eigenfrequency for the interior perfect
conductor cavity on the stability of the method. As expected,
IV. ILLUSTRATIVE RESULTS the results confirm the theoretical predictions. The values

To illustrate the present approach, we compute the r@8tained for the bistat'ic RF:S are in good agreement with the
of a unit sphere with material properties described by gact ones.for any gllrectmn except those very close t9 the
scalar constant impedanee We follow the notation in [27] backscatltermg dll‘eCtI.OI'.], even for coarse meshes (see E|g. 3).
(from which we have borrowed the cases considered) and g special feature distinguishes the results correspondmg to
o= ik, the regular frequenc_y fok = 2 from tho_se relatlve_to

Every mesh of the sphere is quasiuniform; that is, all tife = 2.76. The behavior of the curves obtained numerically
triangles of the mesh are approximately of the same size diRfir the extinction direction, in a way, show the stability of
form, and is characterized by the numbBémnf its edges which the method and the accuracy which can be reached. Table |
is the size of the final linear system to be solved. gives the upper bounds of the size of an edge in wavelengths

The first example is that of an absorbing sphere wita 1.  for the used meshes.

It is a challenge for the accuracy of a numerical method sinceFig. 3 reports the results obtained for the monostatic RCS
there is then a complete extinction of the backscattering RO8r 7 = (1 + ¢) with the indicated values ofy. It has

Figs. 1 and 2 report the bistatic RCS determined numericaligen obtained by a mesh with 4320 edges. The upper bound
and exactly by a Mie series expansion for, respectively, a wagk the size of an edge in wavelengths is varying between
numberk = 2 and k = 2.76. The directions of observation0.052 and 0.009. These results show good stability relative
are in the plane of incidence. Angle 0 corresponds to tie the magnitude of the surface impedance. Particularly, one
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TABLE |
UPPER BOUNDS FOR THESIZE OF AN EDGE IN WAVELENGTHS
Number of Edges | k =2 | k£ =2.76
480 0.103 0.075
1470 0.060 | 0.043
3000 0.042 | 0.030
9720 0.023 | 0.017
TABLE I
CPU TiMes oN WoRrsTATION IBM RISC 6000
Number of Edges 480 1080 1920 3000
Problem PC|IBC | PC|IBC| PC|IBC | PC | IBC
Assembly Process | 13 | 57 | 66 | 292 | 207 | 916 | 305 | 2220
Solution 5 5 51 | 51 | 285 | 285 | 1105 | 1105
Total 18 | 62 | 117 | 343 | 492 | 1201 | 1520 | 3324
Ratio (IBC/PC) 3.44 2.93 2.44 2.18

(2]

(3]

(4]
(5]

(6]
(7]

(8]

(9]

(20]

(1]

can observe that even for a surface impedance of very smnia#f
magnitude, for which the RCS cannot be distinguished from
that of a perfectly conducting scatterer, the method continugs;
to give accurate results even at the interior cavity frequency.

Finally, Table Il compares the CPU time in seconds us
for solving the boundary integral equation for an IBC an

4]

a perfectly conducting (PC) sphere on an IBM RISC 6000

workstation.

[15]

This table shows that for moderate meshes, solving the
impedance scattering problem takes twice as long as for
solving the perfect conductor case. The table also cIeaH’;f’]
indicates that the ratio of the former to the latter time is
decreasing as the mesh size increases. Since the CPU time lis&dP- L. Huddleston and D. S. Wang, “An impedance boundary condition
for the assembly process and for the linear system solution
is respectively a quadratic function and a cubic function gfg

the number of edgesV, this ratio must be nearly one for 19
meshes of large sizes. However in this case, due to the related

huge CPU time and memory which are required, only an

implementation of the method on parallel machines has providl
to be practicable. The results have been obtained on the CRAY
supercomputers T3D and T3E. The elapsed CPU time and

the repetition of some calculations to efficiently distribu

the amount of the computation on all the processors ma

2y

comparison of the related CPU times meaningless. Thus, we

do not give the above comparison for this case.

ACKNOWLEDGMENT

The authors would like to thank the first reviewer for hi
thorough reading. His suggestions have contributed sign

cantly to improve the final appeareance of this paper.

REFERENCES

[1] M. Artola and M. Cessenat, “Diffraction d’une ondéectromagatique
par un obstacle boéa permittivié et perngabilite élevees,”C. R. Acad.
Sci. Paris, &fie | (in French with abridged English versiorBitfraction

Electromagn. Wave by Body with High Permittivity and Permeabijlity

vol. 314, pp. 349-354, 1992.

[22]

[23]

2

[25]

[26]

[27]

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 47, NO. 10, OCTOBER 1999

J. S. Asvestas, “Scattering by an indentation satisfying a dyadic
impedance boundary condition,JEEE Trans. Antennas Propagat.
vol. 45, pp. 28-33, Jan. 1997.

A. Bendali, “Numerical analysis of the exterior boundary value problem
for the time-harmonic Maxwell equations by a boundary finite-element
method—Part 2: The discrete probleniMath. Comput. vol. 43, pp.
47-68, 1984.

A. Bendali and M'B. Fares, “The CERFACS electromagnetic solver
code,” Tech. Rep., CERFCAS, Toulouse, France, 1998.

P. G. Ciarlet, “Basic error estimates for elliptic problems,’'Handbook

of Numerical Analysis, Finite Element Methods (Part B) G. Ciarlet
and J. L. Lions, Eds. Amsterdam, The Netherlands: Elsevier, North-
Holland, 1991, vol. Il, pp. 17-351.

G. Chen and J. ZhowBoundary Element Methods New York: Aca-
demic, 1992.

L. Chety, F. Clerc, and W. Tabbara, “Surfagquivalente radar d’'objets
compogs de conducteur et deétdiectrique de forme arbitraires&nn.
Télecommun (in French); “Radar cross section arbitrary shaped con-
ducting dielectric bodies,” vol. 45, pp. 419-428, 1990 (English).

D. Colton and R. Kresdntegral Equation Methods in Scattering Theory
New York: Wiley, 1983.

D. Colton and R. Kress, “The impedance boundary value problem for
the time harmonic Maxwell equationsMath. Meth. Appl. Sci.vol. 3,

pp. 475-487, 1981.

M. Costabel and W. L. Wendland, “Strong ellipticity of boundary
integral operators,J. Reine Angew. Mathvol. 372, pp. 39-63, 1985.

G. Dahlquist andA. Bjorck, Numerical Methods Englewood Cliffs,

NJ: Prentice-Hall, 1974.

B. Despgs, P. Joly, and J. Robert&, Domain Decomposition Method
for the Harmonic Maxwell’'s Equations Amsterdam, The Netherlands:
North-Holland, 1992, pp. 475-484.

S. Ghanemi, F. Collino, and P. Joly, “Domain decomposition method for
harmonic wave equations3th Int. Conf. Math. Numer. Aspects Wave
Propagat, Mandelieu, France, Apr. 1995, pp. 663—672.

P. M. Goggans and T. H. Shumpert, “A new surface impedance function
for the aperture surface of a conducting body with a dielectric-filled
cavity,” IEEE Trans. Antennas Propagatiol. 39, pp. 960-967, 1991.

G. C. Hsiao and R. F. Kleinman, “Mathematical foundations for error
estimations in numerical solutions of integral equations in electromag-
netics,” IEEE Trans. Antennas Propagatol. 45, pp. 316-328, Mar.
1997.

G. C. Hsiao and W. L. Wendland, “A finite element method for some
integral equations of the first kind,J. Math. Anal. Appl.vol. 58, pp.
449-481, 1977.

approach to radiation by uniformly coated antenndgtlio Sci. vol.

24, pp. 427-432, 1989.

J. Jin, The Finite Element Method in ElectromagneticdNew York:
Wiley, 1993.

W. Jingguo and J. D. Layers, “Modified surface impedance boundary
conditions fo 3-D eddy currents problemdEEE Trans. Magn. vol.

29, pp. 1826-1829, 1993.

G. Krishnasamy, F. Rizzo, and T. Rudolphi, “Hypersingular boundary
integral equations: Their occurrence, interpretation, regularization, and
computation,” in Developments in Boundary Elements Methods Adv.
Dynamic AnalysisP. K. Banerjee and S. Kobayashi, Eds. Amsterdam,
The Netherlands: Elsevier, 1991, vol. 7, pp. 207-252.

V. Lange, “Equations ir@grales espace-temps pour leguations de
Maxwell, Calcul du champ diffraét par un obstacle dissipatif,” Ph.D.
dissertation, Univ. Bordeaux |, France, 1995.

J. R. Mautz and R. F. Harrington H-field, E-field, and combined-
field solutions for conducting bodies of revolutiomtch. F. Electron.
Ubertragungstech., Electron. Commurol. 32, pp. 159-264, 1978.

L. N. Medgyesi-Mitschang and J. M. Putnam, “Integral equation for-
mulations for imperfectly conducting scattererEEEE Trans. Antennas
Propagat, vol. AP-33, pp. 206-214, Feb. 1985.

J. C. Necklec, “Integral equations with nonintegrable kernelstegral
Equation Operator Theorwol. 5, pp. 561-572, 1982.

S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic scattering
by surfaces of arbitrary shapelEEE Trans. Antennas Propagatol.
AP-30, pp. 409-418, May 1982.

S. M. Rao, D. R. Wilton, A. W. Glisson, and B. S. Vidula, “A simple
numerical solution procedure for statics problems involving arbitrary-
shaped surfaces,/EEE Trans. Antennas Propagatvol. AP-27, pp.
604-607, Sept. 1979.

J. R. Rogers, “Moment-method scattering solutions to impedance bound-
ary condition integral equations|EEE AP-S Int. SympBoston, MA,
1984, pp. 347-350.



BENDALI et al.: BOUNDARY-ELEMENT SOLUTION OF THE LEONTOVITCH PROBLEM

[28] V. H. Rumsey, “Reaction concept in electromagnetic theoBAys.
Rev, vol. 94, pp. 1483-1491, 1954.

[29] T. B. A. Senior, “Impedance boundary conditions for imperfectly
conducting surfaces,Appl. Sci. Res.Section B, vol. 8, pp. 418-436,
1960.

[30] B. Stupfel, R. Le Martret, P. Bonnemason, and B. Scheurer, “Combin:
boundary-element and finite-element method for the scattering proble
by axisymmetrical penetrable objectdylathematical and Numerical
Aspects of Wave Propagatio6. Cohen, L. Halpern, and P. Joly, Eds.,
Strasbourg, France, Apr. 1991, pp. 332-341.

[31] I. P. Theron and J. H. Cloete, “On the surface impedance used to mo# E .
the conductor losses of microstrip structuremst. Elect. Eng. Proc. numerical techmques
Microwave Antennas Propagatvol. 142, pp. 35-40, 1995. integral equation.

[32] J. Van BladelElectromagnetic Fields New York: McGraw-Hill, 1964.

[33] A. Van Herk, “Three dimensional analysis of magnetic fields in record-
ing head configuration,"EEE Trans. Magn. vol. 5 MAG-16, pp.
890-892, Sept. 1980.

[34] D.-S. Wang, “Limits and validity of the impedance boundary conditior
on penetrable surfaceslEEE Trans. Antennas Propagatol. AP-35,
pp. 453-457, Apr. 1987.

[35] K. W. Whites, E. Michielssen, and R. Mittra, “Approximating the
scattering by a material-filled 2-D trough in an infinite plane using th
impedance boundary conditionfEEE Trans. Antennas Propagatzol.

41, pp. 146-153, Feb. 1993.

Abderrahmane Bendali was born October 31,
1949, in Ain-Beida, Algeria. He received the
degree in mathematics and Ph.D. (Doctorat de
3eme Cycle) degree from the University of Algiers,
Algeria, in 1971 and 1975, respectively, and the
Doctorate in applied mathematics (Doctorat d’Etat
Es-Sciences) from the University of Paris VI,
France, in 1984.

From 1979 to 1984, he was an appointed
Researcher at the Center of Applied Mathematics
of Ecole Polytechnique, France. He was a Professor
of applied mathematics at the University of Technology, Algiers, from 1984
to 1990, and at the University of Pau, France, from 1990 to 1995. Since 1995,
he occupies the same position at the National Institute of Applied Sciences
at Toulouse, France, and is a Project Leader at the European Center of High
Performance Computing (CERFACS), Toulouse. His main areas of research
are in boundary element methods, analysis of boundary integral equations of
electromagnetic scattering, boundary impedance conditions for modeling thin
dielectric coating, and mixed finite-element methods for structural mechanics.

1605

M'B. Fares was born 1954 in Agadir, Morocco.
He received the Ph.D. degree in numerical analysis
from the University of Grenoble, France, in
1982.

From 1982 to 1987, he was appointed Assistant
Professor in the Department of Numerical Analysis,
University of Casablanca, Morocco. Since 1992
he has been a Senior Research Scientist at the
CERFACS (European Center for Research and
Advanced Training in Scientific Computation),
Toulouse, France. His research interests include
in computational electromagnetic methods based on

Jean Gaywas born June 1, 1934, in Pau, France.
He received the Degree in mathematics from the
University of Toulouse, France, in 1959, and the
Eng. degree from the high engineering school EN-
SEEIHT, Toulouse, in 1960.

From 1962 to 1972, he was at CEA-CELV (a
center of the French atomic agency), Limeil, France.
Since 1972, he is at CEA-CESTA (another center
of the French atomic agency), Bordeaux, France.
His research interests are in numerical analysis and
computer electromagnetics with emphasis on finite-

element and boundary-element methods.



