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Evanescent Waves in PML’s:
Origin of the Numerical Reflection in
Wave-Structure Interaction Problems

Jean-Pierre B´erenger

Abstract—The theory of general evanescent waves in per-
fectly matched layers (PML’s) is presented, both in a continuous
medium and in a discretized finite-difference medium. It is shown
that evanescent waves may be strongly reflected from vacuum-
PML interfaces in the discretized case. This allows the numerical
reflection observed in wave-structure interaction problems to be
interpreted as the reflection of evanescent fields surrounding the
structures.

Index Terms—Evanescent wave, FDTD, PML, reflection.

I. INTRODUCTION

I N many problems solved by means of finite methods
(such as wave-structure interaction or microwave problems)

evanescent fields are present in the region of interest. Since
most of these problems are open ones, then requiring absorbing
boundary conditions (ABC’s) to absorb the outgoing fields,
the behavior of evanescent waves in perfectly matched layers
(PML’s) is a question of prime importance in numerical
electromagnetics. This question has been addressed or briefly
mentioned in several papers [1]–[3] in the special case of
waves whose direction of evanescence is perpendicular to the
PML. In this paper, we consider more general evanescent
waves having any direction of evanescence with respect to
the PML. The behavior of such waves in PML’s is investi-
gated both in the theoretical continuous medium and in the
discretized finite-difference time-domain (FDTD) medium.

The first part of the paper shows that general evanescent
waves can exist in continuous PML’s in which they are more
absorbed than purely traveling waves. In theory such waves
can penetrate into PML’s without reflection from vacuum-
PML interfaces. The second part of the paper investigates
the behavior of evanescent waves in the discretized FDTD
PML. Then, the properties of the PML may be quite different
to the ones predicted in the continuous case. The theory
of the numerical reflection especially shows that evanescent
waves may be strongly reflected from vacuum-PML interfaces,
resulting in important consequences to FDTD applications of
PML’s.

The last part of the paper is devoted to the interpretation of
the spurious reflection observed in wave-structure interaction
problems, which has been empirically investigated in [4], in
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view of optimizing the FDTD PML’s. In the present paper,
we show that the theory of the numerical reflection allows
the characteristics of this reflection to be interpreted and
reproduced. The conclusion is that the numerical reflection
observed in wave-structure interactions clearly is due to the
evanescent fields that surround the scattering structures.

II. EVANESCENT WAVES IN A PML

As shown by Chew and Weedon [5], the dispersion relation
in a PML medium is like in a vacuum, with just the wave
numbers divided by the stretching coefficients of
the PML. In this paper, we consider only the two-dimensional
(2-D) TE case, i.e., . The dispersion relation is

(1)

where

(2)

in which quantities are the PML conductivities. In such
papers as [5]–[7], only purely traveling waves have been
considered, corresponding to part of the wave numbers that
allow the 2-D dispersion relation (1), or its three-dimensional
(3-D) counterpart, to be satisfied. In the present paper, we
address more general solutions to (1), which yield nonuniform
waves. In the 2-D TE case, for a waveform

at angular frequency , the PML equations [6] are

(3a)

(3b)

(3c)

(3d)

where are the magnitudes
of the components . Obviously, this homogeneous
system yields (1). As can be easily verified, the following
wave numbers satisfy (1):

(4a)

(4b)

where

(5a)

(5b)
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Fig. 1. System of coordinates(X; Y ) forming an angle� with system(x; y).

Other signs before the four terms in (5) also allow (1)
to be satisfied. The set (5) has been arbitrarily selected
among height possible solutions that would yield physically
equivalent waves. Two special cases of (4) are well known.
First, if cosh then and , yielding
traveling waves [6] propagating in direction with respect
to the axis. Second, if then and

, which corresponds to a wave propagating in
direction and evanescent in direction, both in a vacuum

[8] and in a PML [1]. The general solution (4), with any
and , will yield nonuniform waves having any directions of
propagation and evanescence with respect to the coordinate
axis and then with respect to the PML which is perpendicular
either to or axis. The field components corresponding
to wave numbers (4) can be found from system (3) in the
following form:

(6a)

(6b)

(6c)

(6d)

where is an arbitrary value homogeneous to an electric
field. Equations (4) and (6) characterize a general nonuniform
wave in a PML for the 2-D case considered in this paper.

Let us now assume that the PML is matched and perpen-
dicular to direction, with transverse conductivities equal to
zero, i.e., and . From (4), any component
of the wave is of the form

(7)

By considering the system of coordinates forming an
angle with respect to the system (Fig. 1), (7) can be
rewritten as

(8)

where the exponential terms proportional to and are
exactly the corresponding terms of an evanescent wave propa-
gating to and decaying exponentially to in a vacuum.
Two additional terms proportional to and are present.

First a phase term, second an absorbing term. With the change
of coordinates corresponding to the rotation, the magnetic
field (6) is left unchanged in coordinates while the
electric field components become

(9a)

(9b)

which are nothing but the components of a wave propagating
to and evanescent to in a vacuum. Thus, in a PML
perpendicular to , i.e., if , evanescent waves are as in a
vacuum, with just the adjunction of phase and absorbing terms
in the waveform. Especially, the magnitude of evanescent
waves in PML’s decays according to

(10)

Due to the parameter , the absorbing coefficient in (10)
differs from that of traveling waves. If the wave
is a purely traveling wave so that (10) holds as a special
case traveling waves. What is important to be noticed is that
evanescent waves are more absorbed than purely traveling
waves, simply because . The more evanescent the
wave (the larger , the greater the absorption. If the
directions of evanescence and propagation are perpendicular
and parallel to the PML, respectively, , there is
no absorption, as with traveling waves. This case has been
addressed in [1] in view of waveguide applications of PML’s.
Equations (7)–(10) can be easily generalized to a PML with
both and conductivities. Then, a second absorbing term
is present in (10), with , in place of .

Let us now consider an interface between two PML’s,
with a nonuniform wave (4)–(6) propagating from medium
1 toward medium 2. The components of the wave vectors
of the incident and transmitted waves must be equal in the
interface, i.e., . With (4b) and
in both media, this yields . Similarly,
the and parameters of the reflected wave must satisfy

. By solving for the unknowns and
the equation , which is equivalent to

two real equations (real and imaginary parts), we obtain the
following two solutions corresponding to the transmitted and
reflected waves, respectively:

(11)

(12)

Therefore, through PML-PML or vacuum-PML interfaces, the
evanescence coefficient and the direction of propaga-
tion are left unchanged. The reflection coefficient can be
found by enforcing the continuity of components and
lying in the interface. Using (4), (6), (11), (12), we obtain
the following relationships between the quantities of the
incident, reflected, and transmitted waves:

(13)

where are the ratios for the three waves.
From (6-c) so that (13) yields .
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In summary, evanescent waves from a vacuum can penetrate
into a PML without reflection from the interface. In the PML
such waves are absorbed according to the coefficient in (10).
This absorption is added to the natural decrease of evanescent
waves and is larger than the absorption of purely traveling
waves.

III. N UMERICAL THEORY IN A PML

This paragraph is devoted to the behavior of evanescent
waves in the discretized FDTD medium, with a special em-
phasize on the reflection from vacuum-PML interfaces. Let us
consider a wave of components , with
time and space variations as , where

and are the wave numbers in the discretized medium.
By enforcing this wave in the FDTD equations of the 2-D TE
case [6], for a matched PML we obtain

(14a)

(14b)

(14c)

(14d)

where are the space and time steps and

(15)

(16)

System (14) is analogous to (3) with the changes

(17a)

(17b)

so that the solutions of (3) give the solutions of (14). For
instance, the equation of dispersion (1) is valid with changes
(17) and (4) gives the wave numbers in the FDTD medium

(18a)

(18b)

where

(19)

Notice that (18) yields (4) if the space and time steps vanish.
The components (6) are also valid with the changes (17), so
that the ratio equals the impedance of a vacuum—as
in the continuous PML.

A. Reflection from a Vacuum-PML Interface

Let us now consider the transmission and reflection of a
wave at a PML–PML interface, with uniform conductivities

and in the PML’s and in the interface (Fig. 2).
As in the continuous case, the wave numbers must be equal.

Fig. 2. Interface between two PML’s with uniform conductivities (upper
part) and between a vacuum and aN -cell-thick PML with nonuniform
conductivity (lower part).

From (18b) this also yields (11) and (12). Definingas the
ratio of the reflected to the incident fields in the interface,
that is , and setting

in the interface, components and in medium 1
can be written as

(20a)

(20b)

In the FDTD procedure, the continuity of is retained in the
interface ( nodes) in which . From this,
using (11) and (20) the transmitted wave can be written as

(21a)

(21b)

Inserting the above three waves into the FDTD equation
of the interface [6], which involves

, we obtain

(22)

By solving for and eliminating the exponentials on using
(18a), the reflection coefficient at a PML-PML interface is then

(23a)

where

(23b)

Notice that depends on the conductivities
through . As can be shown, (23) holds as a
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Fig. 3. Numerical reflection from an interface located between a vacuum and
an infinite PML for various values of the evanescence parametercosh�1.

special case the reflection coefficient given in
[2] and [3].

An important simplification of (23) is obtained in the case
when the parameter of the incident wave is large
(strongly evanescent wave). By assuming that and

for all the conductivities, two assumptions that
usually hold in PML’s, at a vacuum-PML interface
the limit of as tends to infinity can be derived as

(24)

An example of reflection from (23) is shown in Fig. 3, for
the incidence and in the range 1–1000.
Notice that is negative in order that the incident wave is
evanescent toward the PML [for a given physical problem,
the sign of depends on the choice of the signs in (5)]. From
traveling waves to strongly evanescent waves
(large values of ), grows up to . In accordance
with (24), the strongly evanescent waves are totally reflected

at frequencies far smaller than cutoff

(25)

For a vacuum-PML interface, with of the order of
(say or ), one can easily show that
is close to its limit for , as long as

(26)

Condition (26) can be interpreted by considering the absorp-
tion coefficient in (10). Since from (11), if (26) holds
the evanescent wave transmitted into the PML must be totally
absorbed upon a range shorter than the FDTD cell size, i.e.,
within one cell. This cannot be achieved, resulting in a strong
numerical reflection. As can be seen in Fig. 3 and predicted by
theory, at smaller values of make valid.

B. Reflection from an -Cell-Thick PML

We now consider an incident wave of parameters
and a PML of cells in thickness with a

nonuniform conductivity, i.e., a conductivity depending on
the mesh index (Fig. 2). The wave transmitted into the
PML is of the form (6) and at each interface are
left unchanged, so that , , and , in
the whole of the PML. The incident and reflected waves
can be written as with a single interface (20). Denoting by

unknowns quantities at rows, let the electric field
be written as

(27)

Similarly, at rows , using (6) let the magnetic field
be written as

(28a)

(28b)

Finally, at the end of the PML

(29)

Inserting (20) and (27)–(29) into the FDTD equations of the
advance on time of and into the equations of the advance
of , from to , we obtain a set of
equations for the unknowns .
After eliminating the incident wave number with (18a), this
set can be written in the form

...
...

(30)

where is the tridiagonal matrix

...........................................
..............................................................
.... .....................
.... ....
...............................................................
................................

and

System (30) can be solved recursively for the unknown of
interest . For strongly evanescent waves, i.e., if
is large enough, vanishes and (30) also yields the limit

(24) with validity condition (26) for , with just
in place of and in (24) and (26).
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Fig. 4. Typical shape of the normal electric field on the surface of a scattering
structure surrounded by a close PML.

IV. I NTERPRETATION OF THENUMERICAL REFLECTION

IN WAVE-STRUCTURE INTERACTION PROBLEMS

Wave-structure interaction problems are important applica-
tions of numerical methods, in the fields of electromagnetic
compatibility (EMC) and radar cross section (RCS) calcula-
tions. To compute acceptable results, it is known that such
ABC’s as the one-way wave equation or the matched layer
must be set some distance from the scattering structure. In
general, the required distance is at least equal to half the length
of the structure. As early as the initial FDTD tests with the
PML method, it appeared that a similar condition holds if the
PML is thin, for instance thinner than five FDTD cells, but
does not hold with a thick PML. In the last case, the PML can
be set quite close to the structure, as close as two FDTD cells,
resulting in a wide reduction of the computational domain.

The reflection observed with short structure-PML sepa-
rations has been heuristically analyzed in [4], resulting in
an optimum profile of conductivity whose parameters have
been found empirically. In all the interaction problems, the
frequency-domain electric field on the surface of a scatterer
surrounded by a close PML is shaped as in Fig. 4. This shape
is very pronounced with simple scatterers as plates, especially
in 2-D cases, but is always visible, even with complex 3-D
structures. Below a certain frequency , depending on
the conductivity implemented in the vacuum-PML interface

, a strong reflection is observed, i.e., the results strongly
depart from the reference solution computed with a PML
or any ABC set far away from the scatterer. Fromto the
resonance frequency of the structure, the results oscillate about
the reference solution. And above the resonance frequency,
no significant numerical reflection is present.

Frequency in Fig. 4 was first found by means of ex-
periments such as the ones in [4]. Now, we notice that this
frequency is exactly the cutoff (25) of the numerical reflection
of strongly evanescent fields from vacuum-PML interfaces.
Therefore, it is clear that the reflection below is due to
strongly evanescent waves whose satisfy (26), i.e.,
waves that must be absorbed, in theory, within one FDTD
cell. We show below that the oscillatory reflection also is due
to the evanescent fields surrounding the scattering structures.

To interpret the oscillatory reflection, we should have an
order of magnitude of the parameter of the evanescent

waves surrounding the scatterer. Let us consider a scatterer
whose largest size is. In the surrounding space, the evanes-
cent fields decay as

(31)

where is the distance from the scatterer. At a distance of
the order of the size , these fields are negligible or at least
small. This can be written as

(32)

where could be in the range 1–4 corresponding to coefficient
(32) between 0.36 and 0.02. For our purpose, the exact value
of is of little importance. What is important is the frequency
dependence of . From (32) we obtain

(33)

which shows that is close to unity at the resonance
frequency of the scatterer , for instance in the range
1.05–1.6 with in 1–4. Finally, let (33) be rewritten as

(34)

where is the value of at the resonance fre-
quency . Notice that the frequency dependence of is
like in a waveguide.

An example of calculation of reflection with (30) and
(34) is shown in Fig. 5, for a PML(4-G10-1), i.e., a four-cell-
thick PML with a geometrical conductivity [4] of ratio 10
and a normal reflection of 1%. The FDTD cell size is 5 cm,
frequency MHz, (corresponding
to ), and the incidence is either 45 or 75 .
The upper part shows as a function of frequency,
the middle two parts the modulus and phase of, and the
lower part quantity . At low frequencies, is
large, (26) holds, frequency is lower than (25), so that

is large in accordance with (24). Around and above,
is smaller but not negligible. Its phase quickly varies in

this region. As frequency grows the reflection is mainly due
to either an electric or a magnetic conductivity, resulting in
a rotating phase of the reflection. As a result, quantity
oscillates between and . We observe that in
Fig. 5 is shaped as the FDTD results [4] summarized in Fig. 4.
This strongly suggests that the numerical reflection observed
above is due to the reflection of evanescent fields from the
PML. In other words, the result computed on the surface of a
scatterer is the sum of the exact field with evanescent fields
reflected from the PML. Notice that the period of the rotation
of the phase of , and then the period of the oscillations of

, corresponds to a ratio of frequencies equal to the ratio
of successive conductivities in the PML, i.e., the ratio of the
geometrical profile of conductivity (ratio of 10 in Fig. 5).

Fig. 6 shows an attempt to reconstructing a FDTD result in
[4] by means of both the theoretical numerical reflection (30)
and assumption (34). The upper part from [4] gives the normal
electric field on a 2-D 20-cell-thin plate surrounded by various
four-cell PML’s set two cells from the plate. The lower part
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Fig. 5. Numerical reflection from a four-cell-thick PML with a geometrical
conductivity. The FDTD steps are�x = �y = 0:5 cm and�t = 0:1 ns.

shows quantity computed by (30) and (34) for the same
four PML’s as in the FDTD calculation, at incidence60 .
The oscillatory region is like that of the FDTD result. Only the
magnitude of the oscillations would be modified by changing
the incidence (see Figs. 5 and 7). The low-frequency plateau
also is like its FDTD counterpart, although its magnitude,
which does not depend on( in this region), is lower
than the FDTD one. Such a difference in the magnitudes of the
plateaus is due to the fact that the field between the scatterer
and the PML is not simply . There are multiple reflections
between the two reflecting surfaces. With an infinite plate
and an infinite PML, the normal electric field would be the
sum of contributions proportional to
resulting in a field tending to infinity at low frequencies where

tends to 1. Actually, the cavity formed by the scatterer
and the PML is not without losses, so that the ratio of the
plateau to the reference solution is finite. This ratio is only

Fig. 6. An attempt to reconstructing the normal field computed with the
FDTD method at the end of a 20-cell-thin plate [4]. The FDTD steps are
�x = �y = 0:5 cm and�t = 0:1 ns.

2.5 in Fig. 6, but it may be far greater depending on the
scatterer and the location on it. As an example, a ratio of 5 can
be seen in [9] on a 100-cell plate. In the oscillatory region,
the effect of terms is small or negligible since

is small (Fig. 5), so that the magnitude of the oscillations
is less dependent on the scatterer and location of interest.
Finally, although a little arbitrary parameters such as
are of concern, the theory of numerical reflection allows all the
characteristics of the FDTD results to be well reconstructed
and interpreted. This clearly demonstrates that the spurious
reflection in interaction problems is due to evanescent fields
with frequency dependence like (34).

Although quantity cannot accurately predict the
field on a scatterer, it is well representative of what can be
expected in the oscillatory region, which is the main region
of interest as making use of PML’s. Fig. 7 compares
for various incidences and three PML’s. The first two PML’s
are four and eight cell thick, with geometrical profiles of
ratios 10 and 3.16, respectively. As observed in [4], the
oscillations above can be reduced by decreasing the ratio
of successive conductivities. This reduction is more important
at medium incidences (30–75) than at grazing incidence. The
lower part of Fig. 7 was computed with the modified PML
presented in [9], denoted by PML-D, which is based on an
additional splitting of the subcomponents in the PML. The
theoretical reflection from such a PML-D is a generalization
of (30) which can be found in [10]. As demonstrated by
comparing the upper and lower parts in Fig. 7, the reflection in
the oscillatory region is dramatically reduced by substituting
PML-D to PML, especially at high-incidence angles. PML-D
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Fig. 7. Comparison of the numerical reflection of two PML’s with the
numerical reflection of the modified version PML-D [9]. Parameterspa ands
are defined in [9]. The FDTD steps are�x = �y = 0:5 cm and�t = 0:1 ns.

is very well suited to problems involving evanescent fields
at grazing incidence, as illustrated with waveguides in [10].
In wave-structure interactions, the incidences are smaller so
that the interest of PML-D seems lesser. Actually, in terms
of computational cost, the best choice for a given level of
reflection, either PML or PML-D, depends on such parameters
as the duration of the calculation or the frequency bandwidth
of interest. For a given problem, comparisons as the one in
Fig. 7 could help users in selecting the best PML.

V. CONCLUSION

In theory, evanescent waves are more absorbed than trav-
eling waves in PML’s, without reflection from vacuum-PML
interfaces. Actually, in the discretized FDTD medium things

may be quite different, an important or even total reflection
occurs from PML’s at some frequencies. This reflection results
from the rate of decay of the evanescent fields in the PML’s,
which may be so strong that it cannot be properly sampled by
the FDTD mesh. As a consequence, a similar reflection is also
expected with other finite methods that discretize space [11].

The spurious reflection observed in wave-structure inter-
action problems [4] can be clearly interpreted by means of
the numerical theory. This reflection is due to the strongly
evanescent fields that surround the structures, which are, in
part or in totality, reflected from the FDTD PML’s.
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