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Evanescent Waves in PML'’s:
Origin of the Numerical Reflection In
Wave-Structure Interaction Problems

Jean-Pierre Bfenger

Abstract—The theory of general evanescent waves in per- view of optimizing the FDTD PML's. In the present paper,
fectly matched layers (PML's) is presented, both in a continuous e show that the theory of the numerical reflection allows
medium and in a discretized finite-difference medium. It is shown the characteristics of this reflection to be interpreted and
that evanescent waves may be strongly reflected from vacuum- . . . .
PML interfaces in the discretized case. This allows the numerical reproduce_d. The ConC|USIOn. IS that_ the nume”?al reflection
reflection observed in wave-structure interaction problems to be Observed in wave-structure interactions clearly is due to the

interpreted as the reflection of evanescent fields surrounding the evanescent fields that surround the scattering structures.
structures.

Index Terms—Evanescent wave, FDTD, PML, reflection. II. EVANESCENT WAVES IN A PML
As shown by Chew and Weedon [5], the dispersion relation
I. INTRODUCTION in a PML medium is like in a vacuum, with just the wave

pumbersk,, k,, k. divided by the stretching coefficients of

N many problems solv_ed by means _Of finite methoqﬁe PML. In this paper, we consider only the two-dimensional
(such as wave-structure interaction or microwave proble D) TE case, i.e.k. = 0. The dispersion relation is
ek, =0.

evanescent fields are present in the region of interest. Since
L. . 2 2 2

most of these problems are open ones, then requiring absorbing s + Ry _ (epc? = 1) @
boundary conditions (ABC’s) to absorb the outgoing fields, 5285 syshy
the behavior of evanescent waves in perfectly matched lay
(PML’s) is a question of prime importance in numerical .
electromagnetics. This question has been addressed or briefly s, =1— j@, sh=1-— j& (u=uz,y) (2
mentioned in several papers [1]-[3] in the special case of cw P
waves whose direction of evanescence is perpendicular to thewhich ¢ quantities are the PML conductivities. In such
PML. In this paper, we consider more general evanescgr@pers as [5]-[7], only purely traveling waves have been
waves having any direction of evanescence with respectaonsidered, corresponding to part of the wave numbers that
the PML. The behavior of such waves in PML’s is investiallow the 2-D dispersion relation (1), or its three-dimensional
gated both in the theoretical continuous medium and in tif8-D) counterpart, to be satisfied. In the present paper, we
discretized finite-difference time-domain (FDTD) medium. address more general solutions to (1), which yield nonuniform

The first part of the paper shows that general evanescem@ves. In the 2-D TE case, for a waveforp(jwt — jk,o —
waves can exist in continuous PML’s in which they are morg:,y) at angular frequency, the PML equations [6] are
absorbed than _purely traveling waves. In_theory such waves ews, Buo = —kyH.o (3a)
can penetrate into PML’s without reflection from vacuum-

PML interfaces. The second part of the paper investigates ewssEyo = kato (3b)
the behavior of evanescent waves in the discretized FDTD pwsyH w0 = kzEyo (3c)
PML. Then, the properties of the PML may be quite different pwsy H.yo = —kyEqo (3d)

to the ones predicted in the continuous case. The theor .

of the numerical reflection especially shows that evr:mescé{Yﬁere Ezo, Byo, Hao = Hezo + H.yo are the magnitudes

waves may be strongly reflected from vacuum-PML interfacedf the componentd, , £, H. Obviously, this homogeneous
resulting in important consequences to FDTD applications 8YStem Yields (1). As can be easily verified, the following

PML’s. wave numbers satisfy (1):
The Ia_st part of th_e paper is deyoted to the interp_retation_of k, = E@C(% 9) (4a)

the spurious reflection observed in wave-structure interaction 5

problems, which has been empirically investigated in [4], in k, = o /systS(x,0) (4b)
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y First a phase term, second an absorbing term. With the change
Y of coordinates corresponding to the rotatiénthe magnetic
field (6) is left unchanged ifX,Y) coordinates while the

o electric field components become

Exo = jsinhxEy (9&)
FEyo = cosh xFo (9b)

which are nothing but the components of a wave propagating
to +X and evanescent t¢Y in a vacuum. Thus, in a PML
perpendicular te;, i.e., if o, = 0, evanescent waves are as in a
vacuum, with just the adjunction of phase and absorbing terms
Other signs before the four terms in (5) also allow (lih the waveform. Especially, the magnitude of evanescent
to be satisfied. The set (5) has been arbitrarily selecte@dves in PML's decays according to

among height possible solutions that would yield physically .

equivalent waves. Two special cases of (4) are well known. |[PML| = [Pvacuum|e™ 5 x0T, (10)
First, if coshy = 1 thenC = cosf and S = sin 6, yielding

traveling waves [6] propagating in directich with respect . ) -
to the z axis. Second, ifosf = 1 then ¢’ = coshy and differs from that of traveling waves. osh y = 1 the wave

S = —jsinh y, which corresponds to a wave propagating i' a purely traveling wave so that (10) holds as a special

« direction and evanescent in direction, both in a vacuum case traveling waves. What is important to be noticed is that

[8] and in a PML [1]. The general solution (4), with any evanescgnt waves are more absorbed than purely traveling
waves, simply becausssh x > 1. The more evanescent the

and ¢, will yield nonuniform waves having any directions of the | L i ter the ab i If th
propagation and evanescence with respect to the coordinfye (the largercosh ), the greater the absorption. If the
axis and then with respect to the PML which is perpendicul Ilrectlons of evanescence and p_ropagatlon are perpen_d|cular
either tox or y axis. The field components correspondin nd paralle_l o the P.ML' respectlvelye - i7.r/2)’ there is
to wave numbers (4) can be found from system (3) in t 0 absorption, as with traveling waves. This case has been
following form: addressed in [1] in view of waveguide applications of PML’s.

' Equations (7)—(10) can be easily generalized to a PML with

X

Fig. 1. System of coordinatés(, Y) forming an angl® with system(z. y).

Due to the parameteiosh y, the absorbing coefficient in (10)

st botho, ando, conductivities. Then, a second absorbing term
Ero = — ;S(Xv 0)Eo (6a) s present in (10), withr,,sin @, y, in place ofc,,cosé, x.
g Let us now consider an interface between two PML'’s,
E, = ﬁC(X,e)EO (6b) with a nonuniform wave (4)—(6) propagating from medium
Sz 1 toward medium 2. The components of the wave vectors
go- [5E (60) of the incident and transmitted waves must be equal in the
=0 0 interface, i.e.,k,; = ky2. With (4b) ando, = o} = 0
Haoo = HooClx, 6)? (6d) N both media, this yieldsS(x2,62) = S(x1,6:1). Similarly,

the x,. and 8,. parameters of the reflected wave must satisfy

where E, is an arbitrary value homogeneous to an electri€(x,.,#,.) = S(x1,61). By solving for the unknowns, and

field. Equations (4) and (6) characterize a general nonunifofinthe equationS(yx,9) = S(x1,61), which is equivalent to

wave in a PML for the 2-D case considered in this paper. two real equations (real and imaginary parts), we obtain the
Let us now assume that the PML is matched and perpdoHowing two solutions corresponding to the transmitted and

dicular to = direction, with transverse conductivities equal toeflected waves, respectively:

zero, i.e.,s, = s; ands, = s; = 1. From (4), any component

of the wave is of the form x2=x1 t2=0 (11)
”(/) —_ ”(/)Oejw[t_ mﬂ' X (z cos 84y sin 9)—;—”w sinh x sin 6x] Xr = —X1 97’ =7 = 91' (12)
x ¢~ @ sinhx(ycos#—zsind) ,— - coshxcosbz - (7)  Therefore, through PML-PML or vacuum-PML interfaces, the

L i . evanescence coefficienbsh x and the direction of propaga-
By considering the X, Y") system of coordinates forming ano, ¢ are left unchanged. The reflection coefficient can be

angled with respect to thew, y) system (Fig. 1), (7) can be tong by enforcing the continuity of componerf and H.

rewritten as lying in the interface. Using (4), (6), (11), (12), we obtain
= ¢Ocjw[tf@Xf%sinhxsin0w1 the following relationships between thig, quantities of the
o o= sinli XY ,— 22 cosliy cos O ) incident, reflected, and transmitted waves:
Ey; FEo E
where the exponential terms proportional 3 and Y are Eoi — Eo = Eoy > = (13)

. Z;  Z.  Z
exactly the corresponding terms of an evanescent wave propa-

gating to+X and decaying exponentially toY in a vacuum. where 7, Z,., 7, are the ratiosFy/H.o for the three waves.
Two additional terms proportional to and o,, are present. From (6-¢c)Z; = Z,. = Z, so that (13) yieldsEy, = 0.
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In summary, evanescent waves from a vacuum can penetrate

into a PML without reflection from the interface. In the PML PMLL 0 PML2 .
such waves are absorbed according to the coefficient in (10). Ox ? Ou ’
This absorption is added to the natural decrease of evanescent © I © |H
waves and is larger than the absorption of purely traveling x=0 H,
waves.
ll. NUMERICAL THEORY IN A PML Vacuum ; N-cell PML _
i i i (0 (1 (N-1
This paragraph is devoted to the behavior of evanescent o4 2,1(1/2)6( : o c;‘zN—l/Z)
waves in the discretized FDTD medium, with a special em- T
phasize on the reflection from vacuum-PML interfaces. Let us Lo LoNd LiN

: : L0
consider a wave of components,q, £, H..0, H-y0, With

t_lme ang space variations asp(jwt.— Tk o Jkyy)’ Where_ Fig. 2. Interface between two PML’s with uniform conductivities (upper
ky and k, are the wave numbers in the discretized mediurpart) and between a vacuum andNcell-thick PML with nonuniform
By enforcing this wave in the FDTD equations of the 2-D TEonductivity (lower part).

case [6], for a matched PML we obtain

At From (18b) this also yields (11) and (12). Defininhas the

Sy Ewo = —— B, sin 2=V H 14a) ''C e \S2)- .
eoy a0 Ay y ST 0 (142) ratio of the reflected to the incide® fields in the interface,
At  kyAx that is Fo,.C(x,, 6,)/E0;C(x1,61) = —Fo./Eoi, and setting
eXebyo = A—wa S Hzo (14b) 5 = ¢ in the interface, components, and H. in medium 1
At kA can be written as
NEszacO = _Bac sin _xEyO (14C) .7 .7 . .7
AZt /52 A Eyi + Eyp = EgiC(x1, 01)[e™/5" + Re/hnw]eletmikny
L Ry Ry
pEyH 0 = _A_yBy sin yTEmO (14d) _ ) ) ) (20a)
where Az, Ay, At are the space and time steps and H,+H., = \/EEOi[ej’“wl“f — Rekarm)eiwt—ikny,
] 1— A,
A, = oA/e B % (w=uz,y) (15) (20b)
IWAL/2 _ A o—dent/2 In the FDTD procedure, the continuity &, is retained in the
u= 25 (u=z,y). (16) interface @, nodes) in whichE,; + E,. = E,;. From this,
System (14) is analogous to (3) with the changes using (11) and (20) the transmitted wave can be written as
bo oS w=ey) @79 Eye = (14 R)EyClox, 6,) 5 7as (21a)
u . .7 .7
. T - Ho= () Sy,
=s o g (=) (17b) "

so that the solutions of (3) give the solutions of (14). Fdnserting the above three waves into the FDTD equation
instance, the equation of dispersion (1) is valid with changeé the interface [6], which involvest),(z = 0), H.(z =
(17) and (4) gives the wave numbers in the FDTD medium—A4z/2), H.(x = Azr/2), we obtain

sin k’”QA == %QxO(X,e) (18a) (L+R)C(xu, o)
k Ay cAy = Amo(l + R)C(Xl, 91)6_]wAt/2
in —-" = —= 0, A -
S T A i) (80) - tA Byo[(1 + R)e™/ke20/2
where VEpAz ) )
S — (eHhrde/2 _ gemikade/n) - (22)
Q, = (u =z,y). (19) s

By By solving for R and eliminating the exponentials &p using

Notice that (18) yields (4) if the space and time steps vanisii8a), the reflection coefficient at a PML-PML interface is then

The components (6) are also valid with the changes (17), so
that the ratioF/ H.o equals the impedance of a vacuum—as

in the continuous PML.

A. Reflection from a Vacuum-PML Interface

Let us now consider the transmission and reflection of a
wave at a PML-PML interface, with uniform conductivities

2§00 + Ao — § Qa2 — Ay —
R=—2ra0 T a2 TJ%e2 e TIel o3y
2JQTO + Arn? - jQTQ + Arnl - jQTl

where

1 c2 A2
Ay = —-Q2.. 23b
\/ OO0 a2 S (2%0)

0,1 ando,z in the PML’s ando, in the interface (Fig. 2). Notice that R depends on the conductivities,, 02, 00
As in the continuous case, tiig wave numbers must be equalthrough €.1,Q.2,Q,0. As can be shown, (23) holds as a
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B. Reflection from adv-Cell-Thick PML

coshyl =1

o ~ We now consider an incident wave of parameters
20 - - -~ coshyl =10 ky1,x1,01, and a PML of ¥V cells in thickness with a
— — coshyl =100 nonuniform conductivity, i.e., a conductivity depending on
0 . %%S:XIZIOOO the mesh indexl. (Fig. 2). The wave transmitted into the
g -2 _—St-ron—glye;a;eszen‘tv;vgs PML is of the form (6) and at each interfade,, x, @ are
g left unchanged, so that, = k,1, x = x1, and§ = 6y, in
g 40 - eI the whole of the PML. The incident and reflected waves
- T e can be written as with a single interface (20). Denoting by
S A T(L) unknowns quantities at row&, let the electric field
_% BO e E, be written as
E:_J 0 Traveling wave [ At=0.1ns I [ Ax=Ay=5¢cm l EU(L) = EOiT(L)C(Xlael)ejwt_]kyly
120 L (L=1,---,N-1). (27)
[01=—md | [ox1=0 ox2=1.1e-3S ox0=ox2/2 |
140 |, . . Similarly, at rowsL + 1/2, using (6) let the magnetic field

1 L 1 1)
1 3 10 30 100 300 1000 be written as
Frequency (MHz)

Fig. 3. Numerical reflection from an interface located between a vacuum and Hz(L + 1/2) = \/jEOiT(L + 1/2)€J“t IRy
an infinite PML for various values of the evanescence paranetér y . H
(L=0,--,N—1) (28a)

special caséC = cos 6;) the reflection coefficient given in Heo(L+1/2) = Olx1, 61) Ho(L +1/2)

[2] and [3]. (L=0,---,N—1). (28b)
An important simplification of (23) is obtained in the Cas‘f:inally at the end of the PML

when the parametetosh y; of the incident wave is large '

(strongly evanescent wave). By assuming thatt < 1 and E,(N)=0. (29)

o:At/e < 1 for all the conductivities, two assumptions tha}nserting (20) and (27)~(29) into th¥ FDTD equations of the

?hsgﬁlr% thgfl(gr;‘:’Mth, aiéjln\(;zctlé)uir:f-ilr?::ﬂLclgrgetr)fsédegr?v: dogas advance on time ak, and into theV equations of the advance
cosiixa y of H,,, fromL =0to L = N — 1, we obtain a set 02N

jos0/ew equations for the N unknownsR,T(1/2),---,T(N —1/2).
Reo = T= jore/ow (24)  After eliminating the incident wave number with (18a), this
B set can be written in the form
An example of reflection? from (23) is shown in Fig. 3, for R 1%
the incidence; = —n/4 and cosh x; in the range 1-1000. T(1/2) aD(1/2)
Notice that#, is negative in order that the incident wave is M- (1) _ 0 (30)
evanescent toward the PML [for a given physical problem, : :
the sign off depends on the choice of the signs in (5)]. From T(N o 1/2) 0

traveling wavegcosh y; = 1) to strongly evanescent waves . - .
(large values of:osh 1), R grows up toR... In accordance Where M is the tridiagonal matrix

with (24), the strongly evanescent waves are totally reflected EAY (0 F .
(R = —1) at frequencies far smaller than cutoff

vee—aD(L) 1 aD(L) i,

_ Tx0 M =
fc—%~ (25) ....—aD(L—i—%) 1 aD(L—i—%)....
For a vacuum-PML interface, with,o of the order ofo,o Moo —aD(N-3) 1
(sayo.o0 = gx2 OF 0,9 = 0,42/2), One can easily show thdt and
is close to its limitR,, for f < fc¢, as long as cA? 1 1
=————: D(L)= ——+—
e “T Az Clx, 00) (£) 2j0.(L)
cosh x1 > s (26) 1 WAt
@2 U=14aD0)[vV/1-Q?—3Q]; Q= —sin 5
(87

Condition (26) can be interpreted by considering the absorp- , 3,

tion coefficient in (10). Sincas — x, from (11), if (26) holds  * — T “POIV1 =@+l

the evanescent wave transmitted into the PML must be totaystem (30) can be solved recursively for the unknown of
absorbed upon a range shorter than the FDTD cell&izd.e., interest R. For strongly evanescent waves, i.e.,cifsh x1
within one cell. This cannot be achieved, resulting in a strong large enoughgn vanishes and (30) also yields the limit
numerical reflection. As can be seen in Fig. 3 and predicted By, (24) with validity condition (26) forf < f., with just
theory, atf > f. smaller values ofosh x; makeR., valid. o¢,(L = 0) in place ofo,o ando,s in (24) and (26).
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E(f) v

Strong reflection waves surrounding the scatterer. Let us consider a scatterer
Cutoff frequency whose largest size i&. In the surrounding space, the evanes-

/ Oscillations cent fields decay as
[ — < sinh xd (31)

(&

whered is the distance from the scatterer. At a distance of
the order of the sizev, these fields are negligible or at least
small. This can be written as

— % sinh xw

=00 ﬁ f ¢ =’ (32)
27, Resonance wherep could be in the range 1-4 corresponding to coefficient
Reference solution (32) between 0.36 and 0.02. For our purpose, the exact value
Fig. 4. Typical shape of the normal electric field on the surface of a scatteri§ P 1S Of little importance. What is important is the frequency
structure surrounded by a close PML. dependence ofosh x. From (32) we obtain
pQCQ
V. INTERPRETATION OF THENUMERICAL REFLECTION coshy =14/1+ 202 (33)

IN WAVE-STRUCTURE INTERACTION PROBLEMS ) ) ]
. . . . which shows thatoshy is close to unity at the resonance
Wave-structure interaction problems are important appl'cﬁféquency of the scatterer = mc/uw, for instance in the range

tions of numerical methods, in the fields of electromagneticqz 4 o withp in 1-4. Finally, let (33) be rewritten as

compatibility (EMC) and radar cross section (RCS) calcula- ’

tions. To compute acceptable results, it is known that such \/ (cosh? xo — 1) f2
coshy =4/1+ —FF—"—

ABC's as the one-way wave equation or the matched layer 72 0 (34)
must be set some distance from the scattering structure. In
general, the required distance is at least equal to half the lengthere cosh x( is the value ofcosh y at the resonance fre-
of the structure. As early as the initial FDTD tests with thquencyfy,. Notice that the frequency dependence@fh x is
PML method, it appeared that a similar condition holds if thigke in a waveguide.
PML is thin, for instance thinner than five FDTD cells, but An example of calculation of reflectio® with (30) and
does not hold with a thick PML. In the last case, the PML caf34) is shown in Fig. 5, for a PML(4-G10-1), i.e., a four-cell-
be set quite close to the structure, as close as two FDTD cellick PML with a geometrical conductivity [4] of ratio 10
resulting in a wide reduction of the computational domain. and a normal reflection of 1%. The FDTD cell size is 5 cm,
The reflection observed with short structure-PML sep#&equency fo = 150 MHz, coshyg = 1.1 (corresponding
rations has been heuristically analyzed in [4], resulting i p ~ 1.4), and the incidencé is either —45 or —75°.
an optimum profile of conductivity whose parameters havehe upper part showsoshy as a function of frequency,
been found empirically. In all the interaction problems, ththe middle two parts the modulus and phaseRgfand the
frequency-domain electric field on the surface of a scattedewer part quantityl — R. At low frequencies,cosh x is
surrounded by a close PML is shaped as in Fig. 4. This shdpege, (26) holds, frequency is lower thaf (25), so that
is very pronounced with simple scatterers as plates, especidllyis large in accordance with (24). Around and abagfe
in 2-D cases, but is always visible, even with complex 3-IR is smaller but not negligible. Its phase quickly varies in
structures. Below a certain frequencf., depending on this region. As frequency grows the reflection is mainly due
the conductivity implemented in the vacuum-PML interfacto either an electric or a magnetic conductivity, resulting in
0,(0), a strong reflection is observed, i.e., the results strongdyrotating phase of the reflection. As a result, quaritity R
depart from the reference solution computed with a PMascillates betweeh—|R| and1+|R|. We observe that— R in
or any ABC set far away from the scatterer. Frginto the Fig. 5 is shaped as the FDTD results [4] summarized in Fig. 4.
resonance frequency of the structure, the results oscillate abdhis strongly suggests that the numerical reflection observed
the reference solution. And above the resonance frequenabpvey. is due to the reflection of evanescent fields from the
no significant numerical reflection is present. PML. In other words, the result computed on the surface of a
Frequencyf. in Fig. 4 was first found by means of ex-scatterer is the sum of the exact field with evanescent fields
periments such as the ones in [4]. Now, we notice that thieflected from the PML. Notice that the period of the rotation
frequency is exactly the cutoff (25) of the numerical reflectioaf the phase o, and then the period of the oscillations of
of strongly evanescent fields from vacuum-PML interface$.— R, corresponds to a ratio of frequencies equal to the ratio
Therefore, it is clear that the reflection belofiy is due to of successive conductivities in the PML, i.e., the ratio of the
strongly evanescent waves whosesh xy satisfy (26), i.e., geometrical profile of conductivity (ratio of 10 in Fig. 5).
waves that must be absorbed, in theory, within one FDTD Fig. 6 shows an attempt to reconstructing a FDTD result in
cell. We show below that the oscillatory reflection also is duyd] by means of both the theoretical numerical reflection (30)
to the evanescent fields surrounding the scattering structurasd assumption (34). The upper part from [4] gives the normal
To interpret the oscillatory reflection, we should have aglectric field on a 2-D 20-cell-thin plate surrounded by various
order of magnitude of the parametexh y of the evanescent four-cell PML'’s set two cells from the plate. The lower part
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1000 6.
800 ) —— PML(4-G3.16-1)
[ fo=150 MHz 5L N e PML(4-G4.64-1)
=~ 600 . ---- PML(4-G10-1)
< ] s |0 - - - PML{8-G3.16-1)
g 400 | coshy(150 MHz) = 1.1 | —— Reference
200 g3 L
0 w \\
001 003 01 03_ 1 3 10 30 100 300 2.1 7
Frequency (MHz)
1. 1.1 [ FDTD | | 20-cell Plate Resultin [4]
€ | PML(4-G10-1) fc=0.48 MHz |
o 8t 0L L L " N N R L N N "
B 001 003 01 03 1 3 10 30 100 300 1000
5 6t Frequency (MHz)
B 2.
o4l 5
=t
2, 20 8=-60° —— PML(4-G3.16-1)
ST Y oremm—— PML(4-G4.64-1)
=4 0 -~~~ PML(4-G10-1)
. R - - - PML(8-G3.16-1
T 15[ ( )
Frequency (MHz) «
T 1.0
51
Numerical Theory ' l coshy (150 MHz) = 1.1
0 .

0.01 003 01 03 1 3 10 30 100 300
Frequency (MHz)

Phase of reflection R (rd)

Fig. 6. An attempt to reconstructing the normal field computed with the
LY ) - FDTD method at the end of a 20-cell-thin plate [4]. The FDTD steps are
10 30 100 300 Axr = Ay = 0.5 cm andAt = 0.1 ns.

007 003 01 03_ 1 3
Frequency {(MHz)

2.5 in Fig. 6, but it may be far greater depending on the
scatterer and the location on it. As an example, a ratio of 5 can
be seen in [9] on a 100-cell plate. In the oscillatory region,
the effect of termsR?, R3,--- is small or negligible since
R is small (Fig. 5), so that the magnitude of the oscillations
is less dependent on the scatterer and location of interest.
Finally, although a little arbitrary parameters suchcash xq
00T 063 87 03 3 3 10 30 760 300 are of concern, the theory of numerical reflection allows all the
Frequency (MHz) characteristics of the FDTD results to be well reconstructed
Fig. 5.  Numerical reflection from a four-cell-thick PML with a geometricaf’md |n_terp_ret_ed. ThI_S clearly dem_onStrates that the spu.rlous
conductivity. The FDTD steps ardxz = Ay = 0.5 cm andAt¢ = 0.1 ns. reflection in interaction problems is due to evanescent fields
with frequency dependence like (34).

. Although quantity1 — R cannot accurately predict the
fshows'\;{t{anntyl_—};canE)Qru[t)ed liy (ISO,) and (.34).;or tgosoam(?ield on a scatterer, it is well representative of what can be
our s as In the calculation, at incidene * expected in the oscillatory region, which is the main region

The oscillatory region is like that of the FDTD result. Only theyt i arest as making use of PML's. Fig. 7 compates R
magnitude of the oscillations would be modified by changing, yarious incidences and three PML's. The first two PML’s
the incidence (see Figs. 5 and 7). The low-frequency plateage foyr and eight cell thick, with geometrical profiles of
also is like its FDTD counterpart, although its magnitudggtios 10 and 3.16, respectively. As observed in [4], the
which does not depend an(/ = —1 in this region), is lower qsciliations abovef, can be reduced by decreasing the ratio
than the FDTD one. Such a difference in the magnitudes of thesyccessive conductivities. This reduction is more important
plateaus is due to the fact that the field between the scattejsemedium incidences (30—76than at grazing incidence. The
and the PML is not simply — R. There are multiple reflections jower part of Fig. 7 was computed with the modified PML
between the two reflecting surfaces. With an infinite p|a§9resented in [9], denoted by PML-D, which is based on an
and an infinite PML, the normal electric field would be thedditional splitting of the subcomponents in the PML. The
sum of contributions proportional th —2R, 2R?,—2R?, .-,  theoretical reflection from such a PML-D is a generalization
resulting in a field tending to infinity at low frequencies wheref (30) which can be found in [10]. As demonstrated by
R tends to—1. Actually, the cavity formed by the scattereicomparing the upper and lower parts in Fig. 7, the reflection in
and the PML is not without losses, so that the ratio of thiae oscillatory region is dramatically reduced by substituting
plateau to the reference solution is finite. This ratio is onlpML-D to PML, especially at high-incidence angles. PML-D

{ PML{4-G10-1) fc=0.48 MHz

.0
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20 e —ver— o=_75° may be quite different, an important or even total reflection
— 8=-60° ---6=-30° } occurs from PML'’s at some frequencies. This reflection results

i from the rate of decay of the evanescent fields in the PML's,
M which may be so strong that it cannot be properly sampled by
€ o the FDTD mesh. As a consequence, a similar reflection is also
A expected with other finite methods that discretize space [11].
The spurious reflection observed in wave-structure inter-

St A action problems [4] can be clearly interpreted by means of
PML{4-G10-1) the numerical theory. This reflection is due to the strongly

.0 . . L . . L

ST oo 5T 53 : s 3 Teo 300 evanescent fields that surround the structures, which are, in
' ' ' " Frequency (MHz) part or in totality, reflected from the FDTD PML's.
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