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Abstract—The method of matched pursuits is an algorithm by
which a waveform is parsed into its fundamental constituents
here, in the context of short-pulse electromagnetic scattering,
wavefronts, and resonances (constituting what we have called
wave-basedmatched pursuits). The wave-based matched-pursuits
algorithm is used to develop a codebook of features that are
representative of time-domain scattering from a target of interest,
accounting for the variability of such as a function of target-
sensor orientation. This codebook is subsequently used in the
context of a hidden Markov model (HMM) in which the probabil-
ity of measuring a particular codebook element is quantified as a
function of target-sensor orientation. We review the wave-based
matched-pursuits algorithm and its use in the context of an HMM
(for target identification). Finally, this new wave-based signal
processing algorithm is demonstrated with simulated scattering
data, with additive noise.

Index Terms—Electromagnetic scattering, target identification.

I. INTRODUCTION

T HE use of scattered fields to infer the identification of
a distant or concealed target constitutes a problem of

longstanding interest. In the context of wide-band or time-
domain scattering, there has been significant interest in the
use of late-time resonances [1]–[4] as a means of target
identification. Such research has been motivated by Baum’s
[1] singularity expansion method (SEM), which represents the
late-time scattered fields in terms of a sum of resonances, each
of which has an excitation independent resonant frequency
(although the modal excitation strengthsareaspect dependent).

The resonant frequencies of many targets are very low Q
and, hence, difficult to extract from noisy data. Therefore,
researchers have investigated detection and identification al-
gorithms based on wavefronts scattered from localized target
scattering centers [5]–[10]. The time of arrival of consecutive
wavefronts yields important information on the target size,
while the frequency dependence of the wavefronts can be
used for scattering-center identification [6]–[10]. In particular,
from the geometrical theory of diffraction (GTD) [5], the
frequency dependence of many canonical scattering centers
(edges, corners, finite plates,etc.) have been catalogued [6]
and can therefore be used to identify features on the tar-
get, with the cumulative information from multiple scattering
centers yielding information about the global target itself.
This approach has been investigated by several authors, using
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model-based or “super-resolution” algorithms [6], [8]–[10],
and Cramer–Rao bound studies have quantified the (relatively
high) signal-to-noise ratio (SNR) required to make such an
approach viable [6].

Wide-band electromagnetic scattering from most realistic
targets cannot be characterized by wavefronts or resonances
independently, but rather by a combination of wavefronts and
resonances, with the relative importance of each dependent
on the target and the target-sensor orientation. Therefore, the
SEM and GTD algorithms discussed above are each only
applicable to a subclass of possible wave phenomenology.
Consequently, of late, several investigators have considered
time-frequency algorithms [11]–[19]. Such algorithms repre-
sent wavefronts as features with narrow support in time and
wide support in frequency while representing resonant wave
objects in a complementary manner. In the context of time-
frequency algorithms, researchers have considered windowed
Fourier transforms [11], [13], [15], wavelet transforms [12],
[16], [17], and matched pursuits [18]. The matched-pursuits
algorithm with a Gabor dictionary has been used to parse
wide-band scattering data into its wavefront and resonant
constituents—the former used subsequently to form an inverse
synthetic radar (ISAR) image (devoid of resonant artifacts) and
the latter used for resonant-feature identification [19].

In the research described here, we present a new strategy
by which wavefronts and resonances are usedsimultaneously
to effect target identification. In particular, instead of using
matched pursuits with a Gabor dictionary [20], we utilize our
understanding of the underlying physics to constitute a wave-
based dictionary [18] composed of wavefronts and resonances
[2]. Moreover, we utilize the wave-based matched-pursuits
algorithm in the context of a hidden Markov model (HMM)
to effect target identification. The utilization of an HMM
framework is motivated by the extensive use of the HMM
paradigm in speech processing (word identification), where it
has been applied with notable success [21]–[29].

It is well known that the fields scattered from a general
target are a strong function of the target-sensor orientation.
However, there are generally angular sectors over which the
scattering physics is slowly varying. For example, consider a
hollow conducting sphere, with a hole in the sphere allowing
access to the internal cavity. At target-sensor orientations for
which electromagnetic energy is efficiently coupled into the
internal cavity, the scattered fields may be dominated by
resonant scattering (depending on the excitation bandwidth
and the cavity resonant frequencies). At the other target-
sensor orientations, for which there is weak coupling, the
scattered fields will be dominated principally by wavefront
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(nonresonant) scattering. Moving from this simple example
to scattering from a general target, we similarly can divide
the target-sensor orientations into angular sectors over which
a particular class of physics dominates. We term each such
angular sector a target “state.” The number of states required
to characterize scattering from a given target is dependent on
the target complexity and sensor bandwidth.

Assume that the fields scattered from a target are measured
from multiple target-sensor orientations, due to sensor
motion, target motion, or both. The target identity and
orientation are assumed unknown. Within the context of the
above terminology, the multiple scattered waveforms sample
multiple states of the target under interrogation, where the
same state may be sampled more than once and other states
not at all, depending on the details of the target-sensor
motion (the particular states so sampled are “hidden,”
because the target is assumed concealed or distant). Let
represent the state sampled on theth measurement. We
demonstrate in Section III that for such measurements,
the sequence of sampled states can be
modeled statistically as a Markov chain.

The -scattered waveforms are parsed into a set of
features via wave-based matched pursuits, where
represents the feature vector for theth scattered waveform.
The ensemble of scattered waveforms associated with state

are characterized by a corresponding ensemble of feature
vectors, with representing one realization of such. The
selection of from that ensemble can also be viewed as
a random process. Hence, the extraction of thesequence
of feature vectors is representative of a
doubly stochasticprocess: 1) sampling of multiple target
states with such treated statistically due
to the unknown target orientation and 2) for each state so
sampled, extraction of particular feature vectors yielding
the sequence . Note that the same state
sequence can yield distinct realizations of
the feature vectors . Further, in practice we
only have access to the feature vectors ,
with the associated state sequence
“hidden.” Consequently, as demonstrated in Section III,
such a doubly stochastic process is well characterized via
a hiddenMarkov model (HMM).

Note that the basicidentification strategy invoked here is
based on viewing target scattering from multiple (hidden)
target sensor orientations, with the consequent multiple wave-
forms characterized by an HMM. This multi-aspect target
identification strategy is consistent with mammalian identi-
fication of prey [30]–[32] and is also consistent with the
multi-aspect data implicitly utilized in SAR [33], ISAR [34],
and inverse scattering [35]. Finally, we note that in addition to
accounting for the underlying wave phenomenology, the HMM
construct involves a “training” phase, forming astatistical
link between the wave physics and the variability of such
in actual target scattering. In this connection, the HMM is
related to neural networks [36], which also exploit a training
phase. However, while neural networksimplicitly account for
the wave physics during training, here, in the context of
physics-based HMM’s, this connection is madeexplicit.

The remainder of the text is organized as follows. In
Section II, we give a brief review of the wave-based matched-
pursuits algorithm [18], [37], which provides data parsing
during both training and testing. The HMM framework is
detailed in Section III, in which we elucidate codebook gen-
eration, formulation of associated states, as well as various
associated statistical measures. Example results are presented
in Section IV, followed by conclusions in Section V.

II. WAVE-BASED MATCHED PURSUITS

A. Algorithm Basics

The matched-pursuits algorithm [20] utilizes a dictionary of
fundamental elements , where represents the associated
vector parameters. The dictionary is initially discretized into

normalized vectors , where the represent
realizations of the general parameter vector. Given a sampled
waveform , we form the inner product with each
discretized element in the finite-size dictionary .
The inner product of vectors and is defined as

where superscript represents the
Hermitian transpose and . We select that
for which . A gradient
search in the space is then performed in the vicinity of
from which we find the that maximizes the inner product

defining the associated vector. We now have the
representation

(1)

where is the remainder after the first iteration (
). This process is now repeated, but instead of operating on
, we perform inner products of the elements inwith

followed by the associated gradient search in thespace. After
such matched-pursuits iterations, we have

(2)

where . Moreover, we have the energy balance

(3)

If the vectors represented by with the associated gradient
search constitute a complete set, then as .
However, for our purposes we are not interested in a complete
decomposition of the signal , rather, we wish to use a
relatively small number of iterations to extract the principal
constituents most representative of. As discussed further
below, in the context of the HMM for the data we have
considered here, we typically use on the order of two or
three.

B. Wave-Based Dictionary

The algorithm discussed above can be utilized with a general
dictionary , Gabor basis functions representing a popular
choice [20]. However, for electromagnetic scattering applica-
tions, it is natural to tailor the dictionary to the underlying
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wave physics. To this end, we introduce the discrete-time
dictionary elements

(4)

where for and for
represents the number of samples in the data under investi-
gation, is the nominal number of meaningful (nonzero)
time samples in the incident pulse and represents the
largest expected length for a resonant waveform (typically we
utilize ). In (4), and take on integer values and,
therefore, the logarithms and quotients in (4) are rounded off
accordingly, if necessary. The sampling paradigm for and

is analogous to that applied in [20] for a Gabor dictionary,
but here in the context of our wave-based dictionary, we assure
that the minimum envelope width is no smaller than the width
of the incident excitation and the maximum width is consistent
with the longest-duration resonance that may be realistically
excited. Note that (4) is in its unnormalized form, while in the
actual matched-pursuits implementation all vectors inare
normalized appropriately.

For the finite dictionary used in the initial matched-
pursuits search (before performing gradient optimization of
the parameters), we utilize thecomplexvectors

(5)

where . In a manner similar to that discussed in
[20], the phase is estimated while forming inner products
with the initial coarsely sampled and then and (i.e.,
the parameters ) are refined subsequently via the gradient
search [performed using thereal vectors in (4)].

III. H IDDEN MARKOV MODEL FORMULATION

A. Codebook Development and Vector Quantization

The first issue of interest in the HMM algorithm is char-
acterizing the statistical distribution of the state-dependent
feature vectors . Various time-frequency algorithms have
been investigated for generation of feature vectors [38], [39],
but here in the context of electromagnetic scattering, we
invoke the wave-based matched-pursuits algorithm outlined in
Section II. In particular, after matched pursuits iterations
on a given scattered waveform, we extract the parameter
vector .
This vector stores the angular frequency and decay constant
extracted on each matched-pursuits iteration ( and

), as well as the timing ( ) relative to . The
parameters correspond to the wave-object occurring
earliest in time, while correspond to the wave-
object occurring latest. The remaining parameters inare
arranged consecutively with time. Inwe utilizerelativetimes
because such are only dependent upon the target geometry

Fig. 1. Illustration of features in a general 2-D phase space, extracted via
matched pursuits (MP). The solid and open circles are representative of
different “states” (target-sensor orientations, denoted here S1 and S2), in
which the underlying physics is different. The “X” symbols identify possible
codebook elements, which collectively seek to model the distribution of
extracted features in the phase space. This figure is only “illustrative” (not
representative of real data); in general, the number of clusters associated with
a give state is problem dependent.

(and the target-sensor orientation), while the absolute arrival
times are dependent on the (variable) target-sensor distance.
The vector essentially represents a parsing of the scattered
waveform in terms of the wavefront-resonance dictionary
discussed in Section II. This compact representation, in terms
of 3 parameters, should be contrasted with storage
of the original waveform of samples (in most examples

). Moreover, in the actual HMM implementation
we may utilize only a subset of these components (those
that are less susceptible to noise, for example).

The vector resides in the dimensional space.
To determine the regions in that space most representative
of scattering from a given target, we perform wave-based
matched pursuits on all available scattered waveforms from
said target (sampling the range of target-sensor orientations
expected in practice). For observation angles, we obtain

vectors , which constitute the distribution
of the parameters for the target of interest. The
statistics of the continuous feature vectors
are generated via a discrete approximation. In particular,
we define a finite number ( ) of vectors in the
parameter space, with the discrete feature vectors termed a
“codebook,” and each individual element is called a “codebook
element.” Each continuous feature vectoris mapped, in
a nearest-neighbor sense, to a particular codebook element.
The probability distribution of the continuous feature space is
quantified approximately via a discretized histogram, defined
as the probability of witnessing each codebook element (after
nearest-neighbor mapping), for the target of interest. The
number of codebook elements is designed such that

. This procedure is demonstrated schematically in Fig. 1, for
a two-dimensional (2-D) slice in the dimensional space
(this figure is purely for illustrative purposes).

This discretization of the continuous feature space is termed
vector quantization (VQ). A simple VQ example is discussed
for clarity. Assume that the voltage output of some device is
known to range between zero and . Further, we wish to
quantize the output voltage in terms of discrete values. For
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a given , the objective is to determine which discrete
voltage values are best used for this quantization problem.
We can start by defining discrete voltages, uniformly dis-
tributed between zero and (this is our initial “codebook”).
During the “training” phase, many voltage measurements are
performed. Using a nearest-neighbor mapping, we associate
each training voltage with the discrete voltage (ofpossible)
to which it is closest. This is the “clustering” phase. For the
cluster of training voltages associated with a given codebook
element, we update the corresponding codebook element as
the average of all voltages in the respective cluster. This
is done for all initial codebook elements. Using the
same training data, the process is then repeated, with the
iterative process terminated after the set of codebook elements
achieve convergence (the change in the codebook is below a
specified threshold). Subsequently, in the “testing” phase, each
measured voltage is mapped to one of the discrete codebook
elements, again in the nearest-neighbor sense. The probability
of achieving a voltage from zero to is approximated
via a histogram using the training data and the discrete set of
codebook elements.

Focusing again on the target-classification problem of inter-
est here, there are two related issues that need be addressed:
1) determination of the optimal codebook
for representation of the training data (from

observation angles) and 2) after the codebook is so defined,
the mapping from a general measured parameter vector
to the appropriate codebook element. Issue 1) is termed
“populating the codebook” [38], [39], implemented during the
training phase and 2) addresses how each codebook element
is assigned, during the testing phase (i.e., when the scattered
waveform from an unknown target is used in the context of
target identification). There is a vast VQ literature [38]–[40],
while here, for completeness, we only address the fundamental
issues in VQ as well as the particular VQ algorithm applied.

We begin by defining a distortion or distance metric ,
where we utilize the Mahalanobis distance [41]

with
(6)

where is the covariance matrix and (each
of which we estimate through averaging over the available
vectors ). The expression in (6) is termed a distortion measure
because it represents the perturbation to a measured vector

when it is quantized to . While (6) is the most popular
such metric, there are several alternatives in the literature
[40]. Moreover, from our discussion of the matched-pursuits
algorithm, the vectors and in (6) are assumed to be of
length . However, as mentioned previously, one could
utilize a subset of the matched-pursuits parameters if
desired.

For a codebook of vectors , VQ is effected
via the quantization operator , where

iff (7)

which is essentially a “nearest-neighbor” mapping. While this
solution to issue 2) is relatively straightforward and intuitive,
there are several different algorithms available for generation

of the codebook itself. The interested reader is referred to [40]
for an excellent summary of the various methods available
for codebook generation, while we focus on the particular
algorithm applied here, referred to as the-means [39] or
Linde, Buzo and Gray (LBG) [39] algorithm. The algorithm
is implemented via the following four steps: a) define an
initial codebook of vectors, which provides a reasonable
starting point; b) using the metric in (7), cluster (associate)
each of the training vectors with a particular
codebook element with representing the cluster of training
vectors associated with theth codebook element; c) update
the codebook elements by defining the new codebook vector

associated with cluster , where

(8)

is the cluster centroid, with representing the number of
training vectors in ; and d) with the updated codebook,
compute the average distortion for all training vectors, relative
to the codebook to which they are assigned. If the distortion
(or change in distortion) is below a prescribed value, the
codebook generation is complete, if not, return to b). The
detailed mathematical characteristics of this algorithm have
been examined extensively [39], [40]. With regard to step a)
in which the starting codebook is defined, one can spread
the initial codebook entries uniformly within the parameter
space or, based ona priori knowledge (of the target and
underlying scattering physics), the initial codebook can be
linked to anticipated wave phenomenology.

B. Hidden Markov Model (HMM) Implementation

Above we have introduced the concept of a codebook
for quantization of the continuous feature space. For target
identification, we are interested in the probability of realizing
each codebook element, for targets of interest. This issue is
complicated by the fact that, as discussed in the introduction,
the wave physics is generally a strong function of the target-
sensor orientation. Therefore, for a given target, the probability
of witnessing particular codebook elements is also target-
sensor-orientation dependent. This issue, as discussed below, is
handled within the context of a hidden Markov model (HMM).

When testing the identification of a concealed or distant
target, we assume we have access tomeasured waveforms,
from different target-sensor orientations. While therel-
ative angles between the measurements are known, the
absolute target-sensor angles (orientations) are not (i.e., they
are “hidden”), because the target cannot be seen. For each of
the measured waveforms, wave-based matched-pursuits
iterations are performed from which we obtain theparam-
eter vectors , these vectors, in general, being
different from or a subset of the vectors are used to populate
the codebook. Matched pursuits is followed by VQ from which
the vectors (with, in general, continuous parameters) are
mapped to discrete codebook elements, constituting the ob-
servation vector (each discrete ob-
servation represents one of the codebook elements). From
the Introduction, the measurements correspond to sampling
scattered waveforms from the states of the target, where
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Fig. 2. Schematization of a four-state hidden Markov model (HMM). The
Aij represent the probability of transitioning from statei to statej. In general,
all state transitions have nonzero probability of occurrence; the figure only
shows a subset of all possible transitions.

represents the state sampled for measurement. However, the
state sequence associated with is hidden,
and, therefore, we model the statistics of via a hidden
Markov model (HMM). An HMM is constructed for each tar-
get of interest, and the target is identified as that for which the
observation vector has the highestprobability of occurring.

Assume a target of interest has states, each of which
constitutes a range of angles (target-sensor orientations) over
which the wave physics is relatively invariant, i.e., angular
regions for which the parameter vectors extracted via
matched pursuits are highly correlated. In Fig. 2, we show, for
example, a four-state HMM model ( ), implying that
wave scattering from the target in question can be partitioned
into four principal domains or target-sensor orientations. The
HMM is characterized by the matrices and and by the
vector . The matrix represents the state-transition
probabilities. For example, represents the probability that
there will be a transition from state to state (as one
moves the angle of observation) [42]. Since the states represent
angular domains, the probabilities are dictated largely by
geometry. The matrix represents the probability
that each codebook element will be observed in a given state,
i.e., represents the probability that codebook elementis
observed in state (referring to Section III-A, we see that
the probability of witnessing a given codebook element is
not simply a function of the target in question, but also of
the state—target-sensor orientation—being sampled for that
target). Finally, the -dimensional vector represents the
probability that the initial observation is in each of the states
and, therefore, represents the probability that the initial
observation (scattered waveform) corresponds to state. The
vector is, therefore, also dictated largely by geometry.

For a model with states and angular observations,
the probability that the sequence of codebook vectorsis
observed for HMM model is given by

(9)

where is an element in , representing the probability
that codebook element is observed in state (where

is the codebook extracted after VQ for theth angular
observation). There are simple algorithms available in the
literature by which (9) is computed efficiently [22], [23], [43].

What remains to be discussed are the details of how one
determines the probabilities and . Recall that the HMM
states can be attributed to target-sensor orientations for which
the scattering phenomenology is largely unchanged. Through
a priori knowledge of the target and associated scattering,
one can often delineate where such states will reside (this
can also be inferred by examination of which parameters are
selected via the wave-based matched pursuits algorithm, as a
function of target-sensor orientation). Therefore, it is relatively
straightforward (as will be demonstrated in the examples) to
determine which angular domains should constitute a state.
Once this partitioning is accomplished, the probabilities in the
vector are available immediately from geometry (assuming
that all target-sensor orientations are equally likely). Moreover,
the transition probabilities are readily computed from the
rate of angular change (between each of theorientation-
dependent measurements) and knowledge of how the states
are partitioned geometrically. Rigorously speaking, the matrix
elements in are time dependent based on previous state tran-
sitions; for example, if two consecutive observations remain
in the same state, the probability of transitioning out of that
state is higher than if this is not the case. Time-dependent

matrices have been considered in speech processing [26],
[27] and will constitute the subject of future research in the
context of target identification.

Finally, the matrix represents the probability that within
a given state, VQ will lead to the selection of a particular
codebook element. Again, since the states are linked to known
target-sensor orientations, training can be effected (via wave-
based matched pursuits followed by VQ), to determine the
probability of selecting each codebook element for a given
state. While the number of independent orientation-dependent
scattered waveforms is clearly limited, further training (on a
fixed set of scattering data) can be affected by adding noise
to the data from which an unlimited set of noisy data can be
generated.

The explicit method employed to compute , and
is discussed in the Appendix. These initial probabilities are
subsequently refined using techniques that have been devel-
oped in the speech processing community [22], [23], [43].
In particular, given observations from a given target, we
refine the probabilities and such that is
maximized, where corresponds to the HMM for the target
in question. A popular method used for such a refinement and
that utilized here is the Baum–Welch algorithm [22], [23], [43].
While the initial estimates of and are based largely
on geometry anda priori physical insight, Baum–Welch is a
general HMM algorithm removed from the underlying physics
and, therefore, it should account for any incorrect assumptions
used in our initial probabilities (Baum–Welch only requires
initial estimates[22], [23], [43] for and , which are
readily available from geometry and the underlying physics).
Several authors [22], [23], [43], [44] discuss the Baum–Welch
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Fig. 3. Two-dimensional canonical target used for the example results. The
perfect electric conductor (PEC) is infinitesimally thin and the distance�c

represents the center wavelength of the incident pulse (Fig. 4). Dielectric
constants of"r = 4–6 are considered.

algorithm in detail as well as other related algorithms for
refining and .

IV. EXAMPLE RESULTS

The HMM codebook is composed of the wavefront and
resonance features characteristic of the targets of interest. If the
features representative of the different targets are sufficiently
distinct, then those features alone, extracted via wave-based
matched pursuits, can be used to effect discrimination. This
is implicitly the strategy pursued in resonance-based discrim-
ination, for example, in which the resonant frequencies of
the different targets are alone used for discrimination [1]–[4].
However, it is well known that the excitation strength of
a given target resonance depends strongly on the target-
sensor orientation (hidden in general from the processor) and,
therefore, resonances alone are an incomplete tool for discrim-
ination. Similar issues apply with regard to wavefront-based
discrimination [6]–[10]. Therefore, the most challenging and
realistic scenarios are ones for which the target is characterized
by both wavefront and resonance effects with the relative
importance of each dependent on the target-sensor orientation.
Moreover, the discrimination is further complicated when the
particular resonant and wavefront features characteristic of
the targets in question are highly correlated. We therefore
present examples for the 2-D target in Fig. 3. Ultrawide-
band backscattered waveforms were computed as a function of
target-sensor orientation, assuming TM-polarized plane-wave
excitation, with the incident pulse in Fig. 4. The scattered
fields were computed via the finite-difference time-domain
(FDTD) algorithm [45], [46], considering a Huygen surface for
the incident fields [45], [46] a near-to-far-zone transformation
[45], [46] and a perfectly matched layer (PML) absorbing
boundary [46].

Considering the target in Fig. 3, we note that diffractive
scattering from the plate edges will contribute at all incidence
angles (the fields are observed in backscatter). Moreover, for
angles 90 270 , resonant scattering from the dielectric
slab is expected to be important. To provide a relatively
challenging test to the HMM discriminator, we consider three
targets of the form in Fig. 3, with each distinguished only
by differences in . Here we consider targets with ,

Fig. 4. Incident pulse utilized in the scattering computations (spectrum
inset). The frequency spectrum (and associated pulse resolution) are as used
in the FDTD [44], [45] computations.

, and . We deem this a relatively challenging discrimi-
nation problem; matters simplify considerably if the target
geometries and electrical parameters are more dramatically
different. However, we do not consider this case. When the
targets are significantly different, one may no longer require
a multiaspect (HMM) processing paradigm since a single
scattered waveform (at nearly any orientation) will provide
sufficient discrimination. It is felt that this limiting case is
rarely found in practice.

A. Noise-Free Data

As indicated in Fig. 2, the HMM is characterized by mul-
tiple states, each of which is representative of an angular
( ) sector over which the scattering phenomenology changes
slowly. In general, the underlying physics changes quickly
from state to state, while within a given state, the physics
is slowly varying. For the target in Fig. 3, with , we
found five states (angular sectors) were required to represent
the variation in the scattering physics, while when
and , four states were sufficient. As an example of
the scattered waveforms and their state-dependent variability,
in Fig. 5, we plot an example backscattered waveform from
each of the four states characteristic of the target. For
this target, the four states are characterized by 0 67 ,
67.5 101 , 101.5 150 , and 150.5 180 .
From Fig. 5 we note that the different states are characterized
by an interesting range of scattering physics, with wavefront
scattering playing a principal role for and
(Fig. 5), and resonances playing an increasing important role
for , , and . Similar scattered
waveforms exist for the targets with and . The
target with is characterized by the states 0
72 , 72.5 100 , 100.5 136 , 136.5
153 , and 153.5 180 , while the target with is
characterized by the states 0 67 , 67.5 101 ,
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Fig. 5. Example of scattered waveforms from each of the four states char-
acteristic of the target in Fig. 3 (�r = 5) for the incident pulse in Fig. 4.

101.5 136 , and 136.5 180 . The scattering
data was sampled at half-degree angular increments.

Considering Fig. 5, we reiterate that the waveforms scat-
tered at and are characterized almost
exclusively by edge diffraction with the effects due to the di-
electric slab all but nonexistent. Similar effects were witnessed
over this angular range for the other two targets. Therefore,
if the set of multiaspect backscattered waveforms used to
identify the target fall entirely within this range of angles,
it will be impossible to distinguish one target from another.
This is what we have termed an “ambiguity region,” an angular
region over which the scattered waveforms from the targets are
essentially identical (in principal, there aresomedifferences
due to diffraction from the dielectric slabs, but these effects
are too small to afford reliable discrimination). We will revisit
this issue when considering algorithm performance.

As discussed above, the vectors
are extracted via wave-

based matched pursuits, for each scattered waveform available
from a given target. For the examples considered here, we
used matched-pursuits iterations. As an example of the
distribution of features characteristic of the target with ,
in Fig. 6 we depict the extracted vectorsprojected onto the
( ) plane of the dimensional phase space. In
Fig. 6, different symbols are used to denote each of the four
states characteristic of this target and the generally clear state
partitioning is evident. Also shown in Fig. 6 are the codebook
vectors determined via the -means algorithm [39], projected
as well onto the ( ) plane. Note that the codebook
vectors generally do a good job of representing the distribution
of vectors in the ( ) plane. However, there are
regions in this plane where clusters of vectorsare without
an apparent proximate codebook element. This is because the

-means algorithm [39] used to populate the codebook is
based on a distance metric in the dimensional phase
space, where in Fig. 6 we only show projections onto the 2-D
( ) plane.

From Fig. 6 it is seen that at least in the ( ) space,
the scattering physics is clearly partitioned into angular sectors

Fig. 6. Matched-pursuits extracted parameters for the target in Fig. 3
(�r = 5), excited by the incident pulse in Fig. 4. The parameters are
projected onto the plane (!3; t3 � t1), with codebook elements depicted
by the symbols “X.”

(states) over which the relevant physics is relatively slowly
varying. This phenomenon naturally suggests the angular
sectors used to define the states. We have found this phe-
nomenon—by which the angular-dependent physics naturally
defines the states—for all targets considered. However, one
could envision a target for which this may not be the case
or for which the state partitioning may be less obvious. In
this connection, we note that the Baum–Welch [22], [23],
[43] scheme refines the initial estimates for the HMM state
positions, such that the probability in (9) is maxi-
mized when the data sequencecorresponds to model .
Therefore, the Baum–Welch algorithm refines the initial state
partitions as well as the associated probabilities and
(see Appendix), such that ) is maximized for the target
and model of interest. When the state partitioning is less than
obvious, as often the case in speech processing [22], [23],
[43], the Baum–Welch algorithm will play an important role.
It is worth noting, however, for the targets we have examined
thus far, the initial estimates for and (and, implicitly,
the state partitions) only changed slightly after refining via the
Baum–Welch algorithm.

In Fig. 7, we demonstrate the codebook elements selected
as a function of scattered waveform considered (during the
training phase, discussed further below). Results are demon-
strated for the target with . From this figure, the state
definitions are clearly evident (angular sectors over which
the physics is slowly varying). Moreover, the anticipated
significant interstate variation is pronounced, this playing
a critical role in multi-aspect target identification (and in
allowing the clear identification of states).

In Fig. 8 we plot the performance of the algorithm as the
, such that smaller numbers imply higher prob-

abilities. Recall that the vector represents the sequence of
codebook elements representative of the multi-aspect scatter-
ing data sampled. For a given scattered waveform (associated
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Fig. 7. Codebook elements selected for the target in Fig. 3 (�r = 5) excited
by the pulse in Fig. 4. The codebook elements selected, as a function of angle,
tend to naturally suggest a state decomposition (angular sectors over which
the underlying physics is relatively slowly varying). The four states used for
this target are identified.

with one element in ), the codebook is determined by first
performing wave-based matched pursuits followed by vector
quantization [38]–[40]. The vector therefore represents
the results of such for all scattered waveforms in a given
sequence (representing a span of target-sensor orientations,
where here we consider scattered waveforms, with
5 angular sampling). We plot for the three
targets discussed above (for three HMM models), where
the data actually correspond to that with .

Concerning the results in Fig. 8, the codebook and prob-
abilities and were defined (trained) as follows. We
considered a sequence of ten scattered waveforms (

), as described above, with the first waveform in each
sequence at angle 3( )/2, for all integers between 1
and 240 (720 scattered waveforms were available from the
FDTD, with a 0.5 sampling interval). The algorithm was
tested (after training) using sequences of scattered waveforms
(10 waveforms, 5 sampling) with all other starter angles
(480 sets). In this manner, all 720 scattered waveforms were
examined when deriving the codebook and estimating
and , but the sequences used for testing were different than
those used for training. Finally, note that although the target
is symmetrtic about and , a sequence with
starting angle at (for example) is not the same as
one for starting angle (the direction of the state
transitions are reversed).

From Fig. 8 we see that for most initial angles (abscissa),
for , where is the HMM for

the data under test (corresponding to the target with ).
However, there are several initial angles for which this is not
the case (marked in Fig. 8 with an “X”). These identification
failures occur when all of the ten scattered waveforms used to
generate reside in the aforementioned “ambiguity region.”
For these sequences of measured waveforms, the underlying

Fig. 8. Algorithm target-discrimination performance with noise-free data
coming from the target in Fig. 3, with�r = 5. Proper classification occurs
when the probability of the data being associated with the HMM for�r = 5
is larger than that for the HMM’s for�r = 4 and6. Ten scattered waveforms
are sampled as a function of angle, using 5� sampling (the FDTD results
were computed with 0.5� sampling in angle). Results are plotted in terms of
� log[p(OOOjMMM)], whereMMM corresponds to each of the three HMM’s, with
the associated probabilities plotted as a function of the starting angle for each
of the sequences of ten waveforms. The HMM’s were trained using starting
angles with (n� 1)3/2 degree sampling, withn taking integer values from 1
to 240. Testing was performed using the other 480 starting angles. The “X”
symbols identify starting angles for which the associated sequence of scattered
waveforms yielded a misclassification.

physics is virtually independent of the dielectric slab (the
incident fields being largely shielded from the slab by the
perfectly conducting plate). In fact, for starting angles in this
ambiguity region any correct identification is largely serendip-
ity and can be ignored as meaningless. From Fig. 8, we define
the ambiguity region as (initial angles) lying between 0, 40,
280, and 360. For the waveforms considered, at a 5
sampling (45 angular swath), this ambiguity region implies
that backscattered waveforms in the region 275–360 and 0–85
are very weakly influenced by the presence of the dielectric
slab and, therefore, it is virtually impossible to discriminate
between the targets based solely on backscattered waveforms
in this region. If at least some of the ten waveforms reside
outside of this region (starting angle outside the ambiguity
region), discrimination is possible.

An additional interesting phenomenon is evident from con-
sideration of Fig. 8. In particular, note that the greatest dis-
crimination performance [differences in ] occurs for
starting angles in the vicinity of and . This
is explained as follows. For TM-polarized excitation at these
angles, there is no diffraction from the perfectly conducting
plate alone in the absence of the dielectric slab. Therefore, at
and around these incidence angles and for the TM excitation
considered, scattering due to the conducting plate is expected
to be reduced (it is not eliminated entirely, for the fields
scattered from the slab must interact with the plate). Hence,
at and around these angles the scattered fields are dominated
by that portion of thegeneral target in Fig. 3 (the slab)
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TABLE I
PROBABILITY OF MISCLASSIFICATION FOR EACH OF THETHREE TARGETS (THE

TARGET IN FIG. 3, WITH �r = 4–6). NOISE-FREE RESULTS ARE SHOWN, FOR

SEQUENCE LENGTHS OFM = 10, 5 AND 2 SCATTERED WAVEFORMS (5�

ANGULAR SAMPLING). THE TRAINING AND TESTING WERE PERFORMED AS

DISCUSSED IN THECAPTION TO FIG. 8 AND RESULTS ARE PRESENTED FORCASES

IN WHICH AT LEAST ONE SCATTERED WAVEFORM IN THE SEQUENCE IS OUTSIDE

THE “A MBIGUITY REGION” (THE ANGULAR REGION IN WHICH THE

SCATTERED WAVEFORMS FROM ALL THREE TARGETS ARE VIRTUALLY

INDISTINGUISHABLE). THE MISCLASSIFICATION PROBABILITY IS THE

PROBABILITY THAT DATA FROM A GIVEN TARGET IS ASSOCIATED WITH

A HMM CHARACTERISTIC OF A DIFFERENT TARGET. THE RESULTS

HERE ARE AVERAGED ACROSSALL THREE TARGETS CONSIDERED

that distinguishes theparticular three targets considered. It
is in this region that an algorithm should provide optimal
discrimination. In practice, however, one cannot count on
exploiting such a propitious target-sensor orientation since
such is generally hidden from the processor.

In Table I, we give the probability of misclassification
for each of the three targets. Results are shown for testing
as discussed, using sequence lengths of , , and

scattered waveforms (in each case there is 5angular
sampling between waveforms). For the reasons discussed,
algorithm performance is only scored for initial angles outside
the ambiguity region where such is meaningful. Despite the
fact that testing and training were performed on different
sequences, we see from Table I that classification performance
is quite good for large data sequences ( observation-
dependent scattered waveforms). As expected, as the number
of scattered waveforms is reduced ( and ),
classification performance deteriorates.

C. Noisy Data

In the final set of examples, we consider the same scattering
data addressed above with additive white Gaussian noise.
Overall performance is dependent on the ability of the wave-
based matched-pursuits algorithm to accurately extract features
(wavefronts and resonances) from noisy data. This issue has
been addressed in a previous paper [37] and is summarized
briefly here.

For a scattered waveform with additive white Gaussian
noise , we process the signal . For a matched-
pursuits dictionary composed of elements , we
compute inner products with each element in the
dictionary and select the largest inner product. As discussed in
Section II, the process is subsequently and iteratively repeated
on the remainder. The inner products satisfy

. The are zero-mean Gaussian random variables
with variance , where is the variance of the noise. If
the variance is large relative to , for all in the

Fig. 9. The same state-dependent scattered waveforms as plotted in Fig. 5,
with a minimum of 10-dB SC-SNR additive white Gaussian noise.

dictionary, then the algorithm will have difficulty extracting
the underlying signal from the additive noise. Therefore, in
the context of matched pursuits, the figure of merit for noisy
data is what we have termed the signal-component signal-to-
noise ratio [37] (SC-SNR) defined as . Therefore,
the SNR is dependent on the target feature (signal component)
in question defined as , where represents the
dictionary element (feature) extracted via matched pursuits in
theabsenceof additive noise. The SC-SNR must be reasonably
large (on the order of 5 dB or greater [37]) for at least some
dictionary elements, for matched pursuits to work properly.
For the noisy examples considered here, we consider an SC-
SNR of greater than or equal to 10 dB (i.e.,
for all selected for representation of, after matched-
pursuits iterations, in theabsenceof noise). Hence, many of
the signal components have an associated SC-SNR well
in excess of 10 dB. In Fig. 9, are plotted the same scattered
waveforms shown in Fig. 5, with example realizations of
additive noise at the noise variance considered. As expected,
the SNR (and SC-SNR) depends strongly on the target-sensor
orientation.

For noisy data , we train the HMM algorithm
by considering consecutive sets of scattered waveforms
at a prescribed angular sampling rate with the initial angle of
observation varied. For each of the 720 scattered waveforms
available for each target (0.5angular sampling), we generate
an associated noise waveform with each different but
described by the same statistical distribution. This process
is done eight times (5760 realizations of), and the HMM
probabilities and are trained (and the code books
generated) using all 5760 initial angles. The algorithm is tested
by considering all possible initial observation angles (720),
with four (different) realizations of the noiseat each angle (a
total of 2880 testing sequences, each of length). Therefore,
the data used for HMM training is different than that used
for testing, although the underlying signal and the noise
statistics are the same.

The probability of misclassification for the noisy data (min-
imum SC-SNR of 10 dB) is presented in Table II in the
same form as considered in Table I. Comparing Tables I and
II, we see that the presence of noise at the noise levels
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TABLE II
AS IN TABLE I, WITH AT LEAST 10-dB SC-SNR ADDITIVE WHITE

GAUSSIAN NOISE (SEE FIG. 9). THE TESTING AND TRAINING WERE

PERFORMED WITH DIFFERENT ADDITIVE-NOISE REALIZATIONS

(EACH REPRESENTATIVE OF THE SAMENOISE STATISTICS)

considered does not cause a dramatic deterioration in algorithm
performance (for data length ). In fact, for the
case, the results are actually betterwith noise. This is simply
because, as mentioned previously, more extensive training can
be implemented for noisy data than for the finite set of noise-
free data (also, for the noise-free case, we tested and trained on
different scattered waveform sequences). As the noise variance
increases, a more pronounced performance deterioration is
anticipated. It is interesting to note that in both Tables I and II,
the target with is generally characterized by the highest
level of misclassification. This is to be expected, for it has
two neighboring targets with very similar electrical parameters
( and ) to which it can be misclassified, where
the targets with and only have one such target
with proximate electrical properties.

The final issue we address concerns the matched-pursuits
dictionary , defined in (4) and (5). If one has access to
the noise-freescattered waveforms characteristic of a given
target, one can apply matched pursuits toand determine
the set of vectors ( ) that are representative of
the data (it is the vectors in that we used to define the
aforementioned SC-SNR). One could envision access to noise-
free model or measured data that can be used via matched
pursuits to learn and then the reduced dictionary
can be applied to the noisy data (with known or estimated
statistics). This strategy has several salutary features. First,
the reduced dictionary is generally much smaller than the
original dictionary . Therefore, use of the smaller dictionary

with the HMM results in a significant acceleration in
algorithm speed. Moreover, the matched-pursuits dictionary

is, through training on noise-free data, well matched to
the underlying signal and, therefore, is more robust for
processing noisy data than the original dictionary

. For the results presented in Table II we have utilized the
reduced dictionary rather than the original dictionary
described in (4) and (5). For the data considered here,has
85 elements while the original dictionary has 996, yielding
significant algorithm acceleration. Moreover, as demonstrated
in Table III, the reduced dictionary manifests HMM per-
formance (for the noisy data) that is significantly better than
that when the full (original) dictionary is applied. This is
expected, for dictionary elements in that are matched to the
noise but not to are not found in the reduced dictionary.

TABLE III
COMPARISON OFHMM CLASSIFICATION PERFORMANCE FORNOISY DATA

(M = 10 SCATTERED WAVEFORMS, 5� SAMPLING) USING THE FULL

MATCHED-PURSUITS DICTIONARY [SEE (4) AND (5)] AND USING A

CONSTRAINED MATCHED-PURSUITS DICTIONARY “L EARNED” BY INITIALLY

APPLYING THE MATCHED-PURSUITS ALGORITHM TO NOISE-FREE DATA

V. CONCLUSIONS

In this paper, we have considered the use of scattered
electromagnetic fields for the identification of a concealed or
hidden target. Previous solutions to this problem have been
pursued in terms of wavefront [1]–[4] and resonance-based
[5]–[10] processing. While each approach has met with some
success, it is well known that the fields scattered from a
general target must be described simultaneously in terms of
wavefronts and resonances [18], with the relative importance
of each dictated by the details of the underlying wave physics.
Moreover, motivated in large part by observed mammalian
target-identification procedures [30]–[32], we have sought the
development of an algorithm that employs a multi-aspect
paradigm, wherein the scattered fields from multiple target-
sensor orientations are processed simultaneously (i.e., fused) to
effect target discrimination. In addition to being representative
of target discrimination in nature, this approach mitigates the
difficulties of a single-aspect scheme that has severe limi-
tations for targets that have a complicated aspect-dependent
signature. Finally, the multi-aspect paradigm is consistent with
data acquisition procedures used in SAR [33], ISAR [34], and
inverse scattering [35].

As detailed in the text, each of the multi-aspect time-domain
waveforms is parsed in terms of wavefronts and resonances via
the wave-based matched-pursuits algorithm. The continuous
parameters representative of each such parametric decompo-
sition are then mapped into one element in a finite codebook
of such parameters through VQ. Thus, after matched-pursuits
parametric data parsing and VQ, the sequence of multi-aspect
scattered waveforms are represented in terms of an associated
sequence of codebook elements. A hidden Markov model
(HMM) is defined for each target of interest and that HMM
for which the sequence of codebook element gives the highest
probability of occurrence is deemed the HMM representative
of the target under interrogation (thus identifying the target).

The probability of observing a given codebook element for
a particular target is dependent on the target-sensor orientation
since such dictates the associated scattering physics. Thus,
“states” are defined, representative of particular target-sensor
orientations over which the underlying physics (and, hence,
the probability of observing a given codebook element) is
relatively slowly varying. The multi-aspect scattered fields are
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modeled as a Markovian process of state transitions; ahidden
Markov process because the underlying states are concealed
from the processor with the absolute target-sensor orientation
unknown.

The general paradigm has been illustrated here using com-
puted scattering data from three very similar targets. Anal-
ogous results have been presented elsewhere for measured
acoustic scattering data from submerged elastic targets [46].
However, several issues warrant further consideration and
development. In particular, we first note that we have assumed
that the state-transition probabilities quantified by the matrix

are time-independent. In reality, however, this is not the
case. Previous history plays an important role in the state-
transition probabilities. For example, assume statehas an
angular extent of 8 and 5 angular sampling is used. If the
sensor-target orientation is in state on two consecutive
observations, the probability of transitioning out of this state is
100%. This is different from the transition probability if one is
only in state for one observation. Similar issues have been
addressed in speech processing [26] and will be considered
here as well in the context of target identification.

Another issue involves the form of the HMM applied here in
which adiscreteand finite codebook has been utilized (leading
to the matrix , representing the probabilities of observing
in a given state each of the finite set of codebook elements).
Alternatively, one could employ acontinuousHMM, in which
probabilities are attached to observing the continuous matched-
pursuits parameters, without VQ. Continuous HMM’s have
received considerable attention in speech processing [22],
[23], [40] and warrant attention in the context of target
identification.

Finally, here we have applied matched pursuits and the
associated HMM directly in the time-domain data domain.
In the context of SAR or ISAR, one may rather employ this
technique in the 2-D image domain. This would imply generat-
ing multiple 2-D images, utilizing subsections (subapertures)
of the full synthetic-aperture data set from which the target
and environment will be viewed from multiple orientations. In
this scenario, 2-D physics-based matched-pursuits dictionary
elements are required. However, the basic HMM construct
remains unchanged. The application of this algorithm to SAR
and ISAR data constitutes the principal direction of our current
research.

APPENDIX

INITIAL ESTIMATION OF , , AND

Assume that a given target can be represented by
contiguous states, with (in two dimensions) consecutive an-
gular support of denoted by states

respectively. Further, let represent
the hidden state sampled by theth observed scattered
waveform. If the target orientation is assumed uniformly
distributed, the initial-state probabilities are defined as

(A.1)

Moreover, if we assume that the sensor moves in one direction
relative to the putative target center (the target has been
detected, and is now being identified) with angular sampling

, with , then the probability of transitioning
from state to state , represented by

is given by

if

if

if .

(A.2)

Like (A.1), the expressions in (B.1) are derivable directly from
geometrical considerations. Considering , for example,
assume that scattered waveformis uniformly likely to be
located at any angle in state. There are a range of angles

– for which a change in the target-sensor orientation of
will yield a target-sensor orientation that still resides with

state . We therefore have – . The other terms
in (A.2) are derived similarly.

The matrix is computed by considering all the training
data available for stateof a given target. The probability that
codebook element is selected for state is given by

(A.3)

where is the total number of training waveforms for state
, and represents the number of times codebook element
was selected for such.
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