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Abstract—The method of matched pursuits is an algorithm by model-based or “super-resolution” algorithms [6], [8]-[10],
which a waveform is parsed into its fundamental constituents gnd Cramer—Rao bound studies have quantified the (relatively

here, in the context of short-pulse_elt_actromagnetic scattering, high) signal-to-noise ratio (SNR) required to make such an
wavefronts, and resonances (constituting what we have called .
approach viable [6].

wave-basednatched pursuits). The wave-based matched-pursuits A ) . o
algorithm is used to develop a codebook of features that are ~ Wide-band electromagnetic scattering from most realistic

representative of time-domain scattering from a target of interest, targets cannot be characterized by wavefronts or resonances
accounting for the ‘ﬁ]r,'ab'“té/ gf Slgc,h asba fU“Ct"I’“ of tdarget-h independently, but rather by a combination of wavefronts and
sensor orientation. This codebook is subsequently used in the - Lo
context of a hidden Markov model (HMM) in which the probabil- resonances, with the relative Importa,nce o,f each dependent
ity of measuring a particular codebook element is quantified as a ON the target and the target-sensor orientation. Therefore, the
function of target-sensor orientation. We review the wave-based SEM and GTD algorithms discussed above are each only
matched-pursuits algorithm and its use in the context of an HMM  applicable to a subclass of possible wave phenomenology.
(for target identification). Finally, this new wave-based signal - consequently, of late, several investigators have considered
processing algorithm is demonstrated with simulated scattering i f lqorith 111-[191. Such algorith
data, with additive noise. ime-frequency algorithms [ ]_—[ ]. Such algori ms repre-
) . S sent wavefronts as features with narrow support in time and
Index Terms—Electromagnetic scattering, target identification. wide support in frequency while representing resonant wave
objects in a complementary manner. In the context of time-
|. INTRODUCTION frequency algorithms, researchers have considered windowed
ourier transforms [11], [13], [15], wavelet transforms [12],

a distant or concealed target constitutes a problem I ] _[i]?]’ aﬂg mact;chbed %‘.”S_“”S [l?]]' TT)e matchedd-purswts
longstanding interest. In the context of wide-band or timé"—,gom m with a Gabor dictionary has been used to parse

domain scattering, there has been significant interest in tffié-band scattering data into its wavefront and resonant
use of late-time resonances [1]-[4] as a means of tar&&nstltqents—the formgr used subs_equently to form'an inverse
identification. Such research has been motivated by Baunpd1thetic radar (ISAR) image (devoid of resonant artifacts) and
[1] singularity expansion method (SEM), which represents tﬁ@e latter used for resongnt—feature identification [19].
late-time scattered fields in terms of a sum of resonances, eaclf the research described here, we present a new strategy
of which has an excitation independent resonant frequen®y Which wavefronts and resonances are usietlltaneously
(although the modal excitation strengmeaspectdependent).to effect targetl |dent|f|cat|0n. In _pgrtlcular, instead of using
The resonant frequencies of many targets are very low Bftched pursuits with a Gabor dictionary [20], we utilize our
and, hence, difficult to extract from noisy data. Therefor&nderstanding of the underlying physics to constitute a wave-
researchers have investigated detection and identification Rsed dictionary [18] composed of wavefronts and resonances
gorithms based on wavefronts scattered from localized targélt Moreover, we utilize the wave-based matched-pursuits
scattering centers [5]-[10]. The time of arrival of consecutiv@gorithm in the context of a hidden Markov model (HMM)
wavefronts yields important information on the target siz&0 effect target identification. The utilization of an HMM
while the frequency dependence of the wavefronts can fi@mework is motivated by the extensive use of the HMM
used for scattering-center identification [6]-[10]. In particulaParadigm in speech processing (word identification), where it
from the geometrical theory of diffraction (GTD) [5], thehas been applied with notable success [21]-[29].
frequency dependence of many canonical scattering center§ is well known that the fields scattered from a general
(edges, corners, finite platestc) have been catalogued [6]target are a strong function of the target-sensor orientation.
and can therefore be used to identify features on the t4towever, there are generally angular sectors over which the
get, with the cumulative information from multiple scatteringcattering physics is slowly varying. For example, consider a
centers yielding information about the global target itselhollow conducting sphere, with a hole in the sphere allowing
This approach has been investigated by several authors, ugiagess to the internal cavity. At target-sensor orientations for
which electromagnetic energy is efficiently coupled into the
Manuscript received May 22, 1998; revised June 3, 1999. This work wH&temal cavity, t_he scatterec_i fields may b_e (_jomlnated _by
supported in part by the Office of Naval Research under Grant N00014-96r€sonant scattering (depending on the excitation bandwidth

HE use of scattered fields to infer the identification o

0861. , , _and the cavity resonant frequencies). At the other target-
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ing, Duke University, Durham, NC 27708 USA. sensor orientations, for whic ére IS weak coupling, the
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0018-926X/99$10.001 1999 IEEE



1544 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 47, NO. 10, OCTOBER 1999

(nonresonant) scattering. Moving from this simple example The remainder of the text is organized as follows. In

to scattering from a general target, we similarly can divid8ection Il, we give a brief review of the wave-based matched-

the target-sensor orientations into angular sectors over whmlrsuits algorithm [18], [37], which provides data parsing

a particular class of physics dominates. We term each sudiring both training and testing. The HMM framework is

angular sector a target “state.” The number of states requidetailed in Section Ill, in which we elucidate codebook gen-

to characterize scattering from a given target is dependentenation, formulation of associated states, as well as various

the target complexity and sensor bandwidth. associated statistical measures. Example results are presented
Assume that the fields scattered from a target are measuiredection |V, followed by conclusions in Section V.

from multiple target-sensor orientations, due to sensor

motion, target motion, or both. The target identity and II. WAVE-BASED MATCHED PURSUITS

orientation are assumed unknown. Within the context of the

above terminology, the multiple scattered waveforms sampde Algorithm Basics

multiple states of the target under interrogation, where theThe matched-pursuits algorithm [20] utilizes a dictionary of
same state may be sampled more than once and other stfal\}e

. . fdamental elemen , where~ represents the associated
not at all, depending on the details of the target-senso iy) 7 rep

. . . V r parameters. The dictionary is initially discretized in
motion (the particular states so sampled are “hidden, ctor parameters e dictionary is initially discretized into

. . N normalized vectorse(w,), where the~, representN
because the target is assumed concealed or distanty,Let . . .
™ " realizations of the general parameter veetoGiven a sampled
represent the state sampled on thgh measurement. We g P b

. ; waveform f, we form the inner productf|e(v,)) with each
flhemonstrate n ?ectlonlllgth?ttfoM SU'C'h' measuremebnts’discretized elemene(y,) in the finite-size dictionaryD.
e sequence of sampled statég, g2, -+, qu} can be o oo product of vectory and e(v,) is defined as
modeled statistically as a Markov chain. _ le(1n)) = Fle(y)] where superscripf] represents the
featires. via wave-based matched purauts, whegs TN UanSpose anffl? = (717}, We select that(,)
represents the feature vector for theh scpattered ‘waveform. (O Which [(fle(va))| 2 [{fle(v))[Ve(n) € D. A gradient
) search in they space is then performed in the vicinity of,

. . %8 which we find they that maximizes the inner product
gm are characterized by a corresponding ensemble of feat {fle(fy»l defining the associated vecter. We now have the
vectors, withw,, representing one realization of such. Th

) . epresentation
selection ofu,, from that ensemble can also be viewed as P

a random process. Hence, the extraction of #eguence f={lé&)ér + Ry 1)

of feature vectors{u;, uz, ---,ups} IS representative of a . _ _ _ .
doubly stochasticprocess: 1) sampling of multiple targetWherGR1 Is the remainder after the first iteratiof, |é,) =

states {qi, g2, - -, qu} With such treated statistically due0). This process is now repeated, but instead of operating on

. . we perform inner products of the elementsinwith R
to the unknown target orientation and 2) for each state gqlowe% by the assocf;te d gradient search in-lspace Aftler
sampled, extraction of particular feature vectors yieldin§, uch m);tched pursuits ?cerations we have '

the sequenceu, uz, - -, uas}. Note that the same state
. i isti i i K
sequence{q:, g2, -+, gar } can yield distinct realizations of o
the feature vector$u,, us, - - -, up }. Further, in practice we =) (Ri_ilen)er + R 2
only have access to the feature vectdis, uz, -, up}, k=1
with the associated state sequency, g2, -+, g} whereR, = f. Moreover, we have the energy balance
“hidden.” Consequently, as demonstrated in Section lll, I
such a doubly stochastic process is well characterized via If? = Z {Ry_1|en)? + |RK|2 3)

a hidden Markov model (HMM).

Note that the basiddentification strategy invoked here is ) . .
based on viewing target scattering from multiple (hidden) If the vectqrs represented kY with the associated gradient
gwgarch constitute a complete set, thé| — 0 asK — oc.

target sensor orientations, with the consequent multiple wa ) ;
forms characterized by an HMM. This multi-aspect targ,é—tlowever, for our purposes we are not interested in a complete
flecomposition of the signaf, rather, we wish to use a

identification strategy is consistent with mammalian ident ! i ) o
fication of prey [30]-[32] and is also consistent with thé;elanvely small number of iterations” to extract the principal

multi-aspect data implicitly utilized in SAR [33], ISAR [34], constituents;, most representative gf. As discussed further

and inverse scattering [35]. Finally, we note that in addition ®¢/0W, in the context of the HMM for the data we have
accounting for the underlying wave phenomenology, the HMgPnsidered here, we typically us€ on the order of two or
construct involves a “training” phase, forming statistical tT€e-

link between the wave physics and the variability of such o

in actual target scattering. In this connection, the HMM (8- Wave-Based Dictionary

related to neural networks [36], which also exploit a training The algorithm discussed above can be utilized with a general
phase. However, while neural networiksplicitly account for dictionary D, Gabor basis functions representing a popular
the wave physics during training, here, in the context a@hoice [20]. However, for electromagnetic scattering applica-
physics-based HMM's, this connection is maaelicit. tions, it is natural to tailor the dictionary to the underlying

k=1
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wave physics. To this end, we introduce the discrete-time o : MP output, S1
dictionary elements A e : MP output, $2
e(i; p, 1, v, ¢) = cos [2m(i — 2P L1277 4 ¢ % Ooojg ° X : Code book element (VQ)
exp [—(i — 2P~ H27P|U (4 — v2P™1) ‘e ..
p:10g2 NzaalogQ(SNl) ° 02 *
[=0,---,2" =1 ° .,
V:()v T stlip (4) o L]
000& ° L] 2(. -
whereU(3) = 0 for 5 < 0 andU(3) = 1 for 3 > 0, N, ° X
represents the number of samples in the data under investi- ¢
gation, IV; is the nominal number of meaningful (nonzero)

time samples in the incident pulse agdv; represents the Lo on of § _ | 2.5 o ey
: . 1. lllustration of features in a general 2-D phase space, extracted via
Iarg_eSt expected length for a resonant V\_Iaveform (typically Vﬂigtched pursuits (MP). The solid and open circles are representative of
utilize £ = &). In (4), p and v take on integer values and,different “states” (target-sensor orientations, denoted here S1 and S2), in
therefore, the logarithms and quotients in (4) are rounded @ffiich the underlying physics is different. The “X” symbols identify possible

: : : : codebook elements, which collectively seek to model the distribution of
ac_cordmgly, if necessary. T_he s_ampllng paradlgrrptol_r, "?md extracted features in the phase space. This figure is only “illustrative” (not
v is analogous to that applied in [20] for a Gabor dictionaryepresentative of real data); in general, the number of clusters associated with

but here in the context of our wave-based dictionary, we assargive state is problem dependent.

that the minimum envelope width is no smaller than the width

of the incident excitation and the maximum width is consistef@nd the target-sensor orientation), while the absolute arrival
with the longest-duration resonance that may be realisticall{’€S are dependent on the (variable) target-sensor distance.
excited. Note that (4) is in its unnormalized form, while in thd N€ vectoru essentially represents a parsing of the scattered

actual matched-pursuits implementation all vectorirare waveform in terms of the wavefront-resonance dictionary
normalized appropriately. discussed in Section Il. This compact representation, in terms

For the finite dictionaryD used in the initial matched- Of 3K — 1 parameters, should be contrasted with storage
pursuits search (before performing gradient optimization 8f the original waveform ofiV, samples (in most examples

the parameters), we utilize thecomplexvectors Ny > 3K.—'1). Moreover, in the actual HMM implementation
. o o we may utilize only a subset of the8& —1 components (those
ec(é; p, I, v) = exp [j2m(i — 27 7)1277] that are less susceptible to noise, for example).

- exp [_(i_;/21“_1)2_P]U(i—1/2p_1) (5) The vectoru resides in the3BK — 1 dimensional space.

. 1/2 . , _To determine the regions in that space most representative
wherej = (—1)*/*. In a manner similar to that discussed iny gcattering from a given target, we perform wave-based
[20], the phasep is estimated while forming inner productSyaiched pursuits on all available scattered waveforms from
with the initial coarsely sampleel and therp, 7, ¢, and¢ (i.e., said target (sampling the range of target-sensor orientations

the parameters) are refined subsequently via the gradient,sected in practice). Fah observation angles, we obtain
search [performed using threal vectorse in (4)].

A vectorsug, us, - -+, up, Which constitute the distribution
of the 3K — 1 parameters for the target of interest. The
1. HIDDEN MARKOV MODEL FORMULATION statistics of the continuous feature vectars, us, - - -, u
are generated via a discrete approximation. In particular,
A. Codebook Development and Vector Quantization we define a finite numberN,) of vectors in the3K — 1

The first issue of interest in the HMM algorithm is charparameter space, with tifé. discrete feature vectors termed a
acterizing the statistical distribution of the state-dependei®odebook,” and each individual element is called a “codebook
feature vectorsu. Various time-frequency algorithms haveelement.” Each continuous feature vecteris mapped, in
been investigated for generation of feature vectors [38], [39], nearest-neighbor sense, to a particular codebook element.
but here in the context of electromagnetic scattering, wdhe probability distribution of the continuous feature space is
invoke the wave-based matched-pursuits algorithm outlineddnantified approximately via a discretized histogram, defined
Section II. In particular, aftey matched pursuits iterationsas the probability of witnessing each codebook element (after
on a given scattered waveform, we extract the paramet&arest-neighbor mapping), for the target of interest. The

vectoru = {wi, ay, ta —t1, wa, o, -+, tx —t1, wi, ax }. nNumber of codebook elememté. is designed such tha¥,. <
This vector stores the angular frequency and decay constaniThis procedure is demonstrated schematically in Fig. 1, for
extracted on each matched-pursuits iteratien<2° andw = a two-dimensional (2-D) slice in th&K — 1 dimensional space

27l /), as well as the timingt(= 27~1) relative tot;. The (this figure is purely for illustrative purposes).

parameters;, wy, oy correspond to the wave-object occurring This discretization of the continuous feature space is termed
earliest in time, whiletg, wg, ax correspond to the wave- vector quantization (VQ). A simple VQ example is discussed
object occurring latest. The remaining parameterasimre for clarity. Assume that the voltage output of some device is
arranged consecutively with time. iowe utilizerelativetimes known to range between zero ah{,,.. Further, we wish to
because such are only dependent upon the target geomgtrgntize the output voltage in terms &f, discrete values. For
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a given N,, the objective is to determine whicN. discrete of the codebook itself. The interested reader is referred to [40]
voltage values are best used for this quantization problefar an excellent summary of the various methods available
We can start by definingv. discrete voltages, uniformly dis- for codebook generation, while we focus on the particular
tributed between zero anid,,.. (this is our initial “codebook”). algorithm applied here, referred to as themeans [39] or
During the “training” phase, many voltage measurements drande, Buzo and Gray (LBG) [39] algorithm. The algorithm
performed. Using a nearest-neighbor mapping, we associsteémplemented via the following four steps: a) define an
each training voltage with the discrete voltage fofpossible) initial codebook of NV, vectors, which provides a reasonable
to which it is closest. This is the “clustering” phase. For thstarting point; b) using the metric in (7), cluster (associate)
cluster of training voltages associated with a given codeboekch of the training vectors, , uz, - - -, uy with a particular
element, we update the corresponding codebook elementcadebook element witly’;, representing the cluster of training
the average of all voltages in the respective cluster. Thisctors associated with thigh codebook element; ¢) update
is done for all N. initial codebook elements. Using thethe codebook elements by defining the new codebook vector
same training data, the process is then repeated, with #jeassociated with clustefy, where

iterative process terminated after the set of codebook elements 1

achieve convergence (the change in the codebook is below a U, = — Z U, (8)
specified threshold). Subsequently, in the “testing” phase, each u, CC

measured voltage is mapped to one of the discrete codeb?

elemerllts,. again in the nearest-neighbor Sense. The_ probab{ &(ning vectors inCy; and d) with the updated codebook
of achieving a voltage from zero W« is approximated CO{npute the average distortion for all training vectors, relative

via a histogram using the training data and the discrete Sett8 the codebook to which they are assigned. If the distortion

colc:jeboo_k elem_ents. the t t-classificati bl £ t(%or change in distortion) is below a prescribed value, the
ocusing again on the target-classification probiem or Inte %?fbook generation is complete, if not, return to b). The
i

iSt dh(ire, t.he?e areft\;\éo relatt_ed I|ssu§sbth;‘t§ n?ed be :ilddresg led mathematical characteristics of this algorithm have
) determination of the optimal codebodk;, >, -+, e peen examined extensively [39], [40]. With regard to step a)

for representation of the training data, ua, -, ux (fom ) pion the starting codebook is defined, one can spread

A observa_tmn angles) and 2) after the codebook is so def'nﬁge initial codebook entries uniformly within the parameter
the mapping from a general measured parameter vagtor,

o th it debook elemant | 1) is t q space or, based oa priori knowledge (of the target and
0 the appropriate codebook elemaly. Issue 1) is terme underlying scattering physics), the initial codebook can be

“populating the codebook” [38], [39], implemented during th s
training phase and 2) addresses how each codebook elenﬁghted to anticipated wave phenomenology.

is assigned, during the testing phase (i.e., when the scattered, ,. .
wavefc?rm from ang unknown ?afget is Ejsed in the context or Hidden Markov Model (HMM) Implementation
target identification). There is a vast VQ literature [38]-[40], Above we have introduced the concept of a codebook
while here, for completeness, we only address the fundamerigil quantization of the continuous feature space. For target
issues in VQ as well as the particular VQ algorithm applieddentification, we are interested in the probability of realizing
We begin by defining a distortion or distance metia, ), each codebook element, for targets of interest. This issue is
where we utilize the Mahalanobis distance [41] complicated by the fact that, as discussed in the introduction,
the wave physics is generally a strong function of the target-
d(u, @) = (u—a)"C~(u—a), with C = E[(u—u)(u—u)"] sensor orientation. Therefore, for a given target, the probability
(6) of witnessing particular codebook elements is also target-
where C' is the covariance matrix ané = E(u) (each sensor-orientation dependent. This issue, as discussed below, is
of which we estimate through averaging over the availabigyndled within the context of a hidden Markov model (HMM).
vectorsu). The expression in (6) is termed a distortion measure When testing the identification of a concealed or distant
because it represents the perturbation to a measured vegi@get, we assume we have accessftaneasured waveforms,
« when it is quantized ta:. While (6) is the most popular from A different target-sensor orientations. While thed-
such metric, there are several alternatives in the literatuaive angles between thd/ measurements are known, the
[40]. Moreover, from our discussion of the matched-pursuitibsolute target-sensor angles (orientations) are not (i.e., they
algorithm, the vectors: and 4« in (6) are assumed to be ofare “hidden”), because the target cannot be seen. For each of
length3K — 1. However, as mentioned previously, one coulthe M/ measured waveformgy wave-based matched-pursuits
utilize a subset of th8 K — 1 matched-pursuits parameters ifterations are performed from which we obtain the param-

Ifhe cluster centroid, withV,, representing the number of

desired. eter vectorsus, us, - - -, uy, these vectors, in general, being
For a codebook of vectoms,, 4, - - -, ix., VQ is effected different from or a subset of thé vectors are used to populate
via the quantization operatar(-), where the codebook. Matched pursuits is followed by VQ from which

the M vectors (with, in general, continuous parameters) are

iy, = g(u) iff d(u, ) < d(u, %) V1<i<N. (7) mappedtad discrete codebook elements, constituting the ob-
servation vectolQ = {0y, Os, ---, Op} (each discrete ob-

which is essentially a “nearest-neighbor” mapping. While thiservationO,, represents one of the codebook elements). From

solution to issue 2) is relatively straightforward and intuitivethe Introduction, the\/ measurements correspond to sampling
there are several different algorithms available for generatispattered waveforms from the states of the target, whgre
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Ay Ay Ay Ay whereB;(Oy ) is an element i3, representing the probability
that codebook elemen®; is observed in stateé (where
m A O A O O Oy is the codebook extracted after VQ for th¢h angular
12 23 A,y . . . . .
N iy observation). There are simple algorithms available in the

ah literature by which (9) is computed efficiently [22], [23], [43].
S1 A A S3 A S4 What remains to be discussed are the details of how one
G4 A P4 L4 determines the probabilitie4, B and«. Recall that the HMM
A

states can be attributed to target-sensor orientations for which

A e the scattering phenomenology is largely unchanged. Through
a priori knowledge of the target and associated scattering,
Ay Ay one can often delineate where such states will reside (this
° can also be inferred by examination of which parameters are
Py selected via the wave-based matched pursuits algorithm, as a
o function of target-sensor orientation). Therefore, it is relatively

Fig. 2. Schematization of a four-state hidden Markov model (HMM). Thétraightforward (as will be demonstrated in the examples) to
A;; represent the probability of transitioning from state statej. In general, determine which angular domains should constitute a state.
all state transitions have nonzero probability of occurrence; the figure or&ynCe this partitioning is accomplished, the probabilities in the
shows a subset of all possible transitions. . . . ' .
vectorr are available immediately from geometry (assuming
represents the state sampled for measuremehtowever, the that all target-sensor orientations are equally likely). Moreover,
state sequencgyy, o, - - -, qas} associated witl® is hidden, the transition probabilitiesA are readily computed from the
and, therefore, we model the statistics ©f via a hidden rate of angular change (between each of Meorientation-
Markov model (HMM). An HMM is constructed for each tar-dependent measurements) and knowledge of how the states
get of interest, and the target is identified as that for which tlage partitioned geometrically. Rigorously speaking, the matrix
observation vecto© has the highegprobability of occurring. - elements inA are time dependent based on previous state tran-
Assume a target of interest had, states, each of which sitions; for example, if two consecutive observations remain
constitutes a range of angles (target-sensor orientations) oyethe same state, the probability of transitioning out of that
which the wave physics is relatively invariant, i.e., angulaftate is higher than if this is not the case. Time-dependent
regions for which the parameter vectots extracted via A matrices have been considered in speech processing [26],

matched pursuits are highly correlated. In Fig. 2, we show, f857] and will constitute the subject of future research in the
example, a four-state HMM model{; = 4), implying that ., text of target identification.

wave scattering from the target in question can be partitionedFina"y’ the matrixB represents the probability that within

into four principal domains or target-sensor orientations. The _. ; : :
HMM is characterized by the matrice4 and B and by the % given state, VQ wil 'Iead' to the selection O.f a particular
codebook element. Again, since the states are linked to known

vector7r_..1_'heM5 x M, matrix A represents the State_transmor}arget—sensor orientations, training can be effected (via wave-
probabilities. For exampled;;, represents the probability thatbased matched pursuits followed by VQ), to determine the

there will be a transition from state to statek (as one i ¢ selocti h K ol ¢ .
moves the angle of observation) [42]. Since the states repred¥ioability of selecting each codebook element for a given

angular domains, the probabilitiet;, are dictated largely by state. While the numbgr of indeper]dent orientatiop—erendent
geometry. TheN. x M, matrix B represents the probability s_cattered Waveforms is clearly limited, further training (on a
that each codebook element will be observed in a given stdiged set of scattering data) can be affected by adding noise
i.e., B;, represents the probability that codebook elemeist to the data from which an unlimited set of noisy data can be
observed in staté (referring to Section Ill-A, we see thatgenerated.
the probability of witnessing a given codebook element is The explicit method employed to compui# B, and =
not simply a function of the target in question, but also dé discussed in the Appendix. These initial probabilities are
the state—target-sensor orientation—being sampled for tlsatbsequently refined using techniques that have been devel-
target). Finally, theM -dimensional vectorr represents the oped in the speech processing community [22], [23], [43].
probability that the initial observation is in each of the statgs particular, given observation® from a given target, we
and, thereforesr;, represents the probability that the initialefine the probabilitiesd, B and = such thatp(O|M) is
observation (scattered waveform) corresponds to dtalthe maximized, whereM corresponds to the HMM for the target
vectorw is, therefore, also dictated largely by geometry.  in question. A popular method used for such a refinement and
For a model withM, states and\/ angular observations, that utilized here is the Baum-Welch algorithm [22], [23], [43].
the probability that the sequence of codebook vec@rss while the initial estimates ofd, B, and« are based largely

observed for HMM modelM is given by on geometry ana priori physical insight, Baum-Welch is a
M, M, M, general HMM algorithm removed from the underlying physics
p(O|M) = Z 7B (O1) Z Api Bi(03) Z AinB,(03)  and, therefore, it should account for any incorrect assumptions
k=1 i=1 n=1 used in our initial probabilities (Baum-Welch only requires
M, initial estimateq22], [23], [43] for A, B, and w, which are
Z ApBi(On) (9) readily available from geometry and the underlying physics).

=1 Several authors [22], [23], [43], [44] discuss the Baum—Welch
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Fig. 3. Two-dimensional canonical target used for the example results. The
perfect electric conductor (PEC) is infinitesimally thin and the distakce -0.05 -
represents the center wavelength of the incident pulse (Fig. 4). Dielectric
constants of,, = 4-6 are considered. 01k
. . . . 1 ] ]
algorithm in detail as well as other related algorithms for 5 0 5

refining A, B and =. Time (ns)

Fig. 4. Incident pulse utilized in the scattering computations (spectrum
IV. EXAMPLE RESULTS inset). The frequency spectrum (and associated pulse resolution) are as used
. in the FDTD [44], [45] computations.
The HMM codebook is composed of the wavefront and

resonance features characteristic of the targets of interest. If heand 6. We deem this a relatively challenging discrimi-
features representative of the different targets are sufficientliition problem; matters simplify considerably if the target
distinct, then those features alone, extracted via Wave-ba%metries and electrical parameters are more dramatically
matched pursuits, can be used to effect discrimination. Thiffferent. However, we do not consider this case. When the
is implicitly the strategy pursued in resonance-based discrifargets are significantly different, one may no longer require
ination, for example, in which the resonant frequencies @f multiaspect (HMM) processing paradigm since a single
the different targets are alone used for discrimination [1]-{4§cattered waveform (at nearly any orientation) will provide
However, it is well known that the excitation strength ofufficient discrimination. It is felt that this limiting case is
a given target resonance depends strongly on the targgfely found in practice.
sensor orientation (hidden in general from the processor) and,
therefore, resonances alone are an incomplete tool for discrim-
ination. Similar issues apply with regard to wavefront-basdtt NOIse-Free Data
discrimination [6]-[10]. Therefore, the most challenging and As indicated in Fig. 2, the HMM is characterized by mul-
realistic scenarios are ones for which the target is characterizipe states, each of which is representative of an angular
by both wavefront and resonance effects with the relatif@) sector over which the scattering phenomenology changes
importance of each dependent on the target-sensor orientati&lawly. In general, the underlying physics changes quickly
Moreover, the discrimination is further complicated when thigom state to state, while within a given state, the physics
particular resonant and wavefront features characteristic isfslowly varying. For the target in Fig. 3, with. = 4, we
the targets in question are highly correlated. We therefoi@und five states (angular sectors) were required to represent
present examples for the 2-D target in Fig. 3. Ultrawidehe variation in the scattering physics, while when= 5
band backscattered waveforms were computed as a functiorandl ¢, = 6, four states were sufficient. As an example of
target-sensor orientation, assuming TM-polarized plane-watye scattered waveforms and their state-dependent variability,
excitation, with the incident pulse in Fig. 4. The scattereid Fig. 5, we plot an example backscattered waveform from
fields were computed via the finite-difference time-domaieach of the four states characteristic of the= 5 target. For
(FDTD) algorithm [45], [46], considering a Huygen surface fothis target, the four states are characterized by 8 < 67°,
the incident fields [45], [46] a near-to-far-zone transformatiod7.5° < 8 < 101°, 101.5< 6 < 150°, and 150.8< 6 < 18(C°.
[45], [46] and a perfectly matched layer (PML) absorbingrrom Fig. 5 we note that the different states are characterized
boundary [46]. by an interesting range of scattering physics, with wavefront
Considering the target in Fig. 3, we note that diffractivecattering playing a principal role f& = 20° andf = 65°
scattering from the plate edges will contribute at all incidend€&ig. 5), and resonances playing an increasing important role
angles (the fields are observed in backscatter). Moreover, for 8 = 90°, § = 145°, and 8 = 180°. Similar scattered
angles 90 < 6 < 270°, resonant scattering from the dielectrisvaveforms exist for the targets with = 4 ande,. = 6. The
slab is expected to be important. To provide a relativebarget withe,. = 4 is characterized by the state$ & ¢ <
challenging test to the HMM discriminator, we consider threg2°, 72.5 < 6 < 100?, 100.5 < 6 < 136, 136.5 < € <
targets of the form in Fig. 3, with each distinguished onl§53, and 153.5 < 8 < 18(°, while the target with:,, = 6 is
by differences ine,.. Here we consider targets with. = 4, characterized by the state8 & 6 < 67°, 67.5 < 6 < 107°,
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Fig. 5. Example of scattered waveforms from each of the four states char- 0 ! 31 2 8

acteristic of the target in Fig. 3=( = 5) for the incident pulse in Fig. 4.

Fig. 6. Matched-pursuits extracted parameters for the target in Fig. 3
101.5 < 6 < 136°, and 136.8 < 8 < 18C°. The Scattering (e,»_ = 5), excited by the incident puls_e in Fig. 4. The paramete_rs are
data was sampled at half-degree angular increments. ﬁ;oﬁcetegygBg’lstt?;_f)'ane”é’ fa — 1), with codebook elements depicted

Considering Fig. 5, we reiterate that the waveforms scat-

tered atf = 20° and § = 60° are characterized almost(states) over which the relevant physics is relatively slowly
exclusively by edge diffraction with the effects due to the divarying. This phenomenon naturally suggests the angular
electric slab all but nonexistent. Similar effects were witnesseéctors used to define the states. We have found this phe-
over this angular range for the other two targets. Therefoigsmenon—by which the angular-dependent physics naturally
if the set of multiaspect backscattered waveforms used defines the states—for all targets considered. However, one
identify the target fall entirely within this range of anglescould envision a target for which this may not be the case
it will be impossible to distinguish one target from anotheir for which the state partitioning may be less obvious. In
This is what we have termed an “ambiguity region,” an angul@is connection, we note that the Baum-Welch [22], [23],
region over which the scattered waveforms from the targets 18] scheme refines the initial estimates for the HMM state
essentially identical (in principal, there asemedifferences positions, such that the probabilitf O|M) in (9) is maxi-
due to diffraction from the dielectric slabs, but these effectfized when the data sequen€ecorresponds to mode\.
are too small to afford reliable discrimination). We will revisitTherefore, the Baum—Welch algorithm refines the initial state

this issue when considering algorithm performance. partitions as well as the associated probabilitesB and =
As discussed above, the vectots = {wi, 01,%2 — (see Appendix), such tha{O|M) is maximized for the target
t1, wa, 02, -+, tix — t1, wi, o)} are extracted via wave- and model of interest. When the state partitioning is less than

based matched pursuits, for each scattered waveform availagiigious, as often the case in speech processing [22], [23],
from a given target. For the examples considered here, &) the Baum-Welch algorithm will play an important role.
usedK = 3 maiched-pursuits iterations. As an example of the s \yorth noting, however, for the targets we have examined
distribution of features characteristic of the target with= 5, thus far, the initial estimates fod, B and (and, implicitly

in Fig. 6 we depict the extracted vectargprojected onto the " . - .
(ws, t3 —t1) plane of the3K — 1 dimensional phase space. Irg]:uifit\?vgliﬁltgggii%nr:]y changed slightly after refining via the

Fig. 6, different symbols are used to denote each of the fourIn Fig. 7, we demonstrate the codebook elements selected

states characteristic of this target and the generally clear state function of ttered waveform considered (during th
partitioning is evident. Also shown in Fig. 6 are the codeboo a function of scattered waveform considered (during the

vectors determined via thi-means algorithm [39], projectedtraimng phase, discuss_ed further below)_. R_esults are demon-
as well onto the s, #5 — ;) plane. Note that the codebookStr"‘_‘t‘?q for the target W|tla,_, = 5. From this figure, the state_
vectors generally do a good job of representing the distributigfinitions are clearly evident (angular sectors over which
of vectorsu in the (us, t3 — t1) plane. However, there arethe physics is slowly varying). Moreover, the anticipated
regions in this plane where clusters of vectarare without Significant interstate variation is pronounced, this playing
an apparent proximate codebook element. This is becauseahéritical role in multi-aspect target identification (and in
K-means algorithm [39] used to populate the codebook ajowing the clear identification of states).
based on a distance metric in th& — 1 dimensional phase In Fig. 8 we plot the performance of the algorithm as the
space, where in Fig. 6 we only show projections onto the 2-Blog[p(O|M)], such that smaller numbers imply higher prob-
(ws, t3 — t1) plane. abilities. Recall that the vectd? represents the sequence of
From Fig. 6 it is seen that at least in the;( 73 —t;) space, codebook elements representative of the multi-aspect scatter-
the scattering physics is clearly partitioned into angular sectaong) data sampled. For a given scattered waveform (associated
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Fig. 7. Codebook elements selected for the target in Fig, 3« 5) excited Fig. 8. Algorithm target-discrimination performance with noise-free data

by the pulse in Fig. 4. The codebook elements selected, as a function of angteming from the target in Fig. 3, with, = 5. Proper classification occurs

tend to naturally suggest a state decomposition (angular sectors over whidten the probability of the data being associated with the HMMefoe= 5

the underlying physics is relatively slowly varying). The four states used fig larger than that for the HMM's fo¢,. = 4 and6. Ten scattered waveforms

this target are identified. are sampled as a function of angle, usirfg $ampling (the FDTD results
were computed with 05sampling in angle). Results are plotted in terms of

with one element ir0), the codebook is determined by first=1log[p(O|M)], where M corresponds to each of the three HMM'’s, with
performing wave-based matched pursuits followed by vectf,3ocated probabies plotd 25 it of e staring angle fr each
quantization [38]-[40]. The vectoO therefore represents angles with ¢ — 1)3/2 degree sampling, with taking integer values from 1
the results of such for all scattered waveforms in a givéf 240. Testing was performed using the other 480 starting angles. The "X
sequence (representing a span of target-sensor orient_ati@ﬂgg%f%ie;ité%zgagnn%igggg;gg;mhrfh the associated sequence of scattered
where here we conside¥/ = 10 scattered waveforms, with
5° angular sampling). We plot log[p(O|M;)] for the three physics is virtually independent of the dielectric slab (the
targets discussed above (for three HMM mod&ls), where incident fields being largely shielded from the slab by the
the data actually correspond to that with= 5. perfectly conducting plate). In fact, for starting angles in this
Concerning the results in Fig. 8, the codebook and proambiguity region any correct identification is largely serendip-
abilities A, B, and = were defined (trained) as follows. Weity and can be ignored as meaningless. From Fig. 8, we define
considered a sequence of ten scattered waveforis = the ambiguity region as (initial angles) lying between 0, 40,
10), as described above, with the first waveform in ea@80, and 360. For theM = 10 waveforms considered, at & 5
sequence at angle /3 1)/2, for all integersn between 1 sampling (45 angular swath), this ambiguity region implies
and 240 (720 scattered waveforms were available from ttieat backscattered waveforms in the region 275-360 and°0-85
FDTD, with a 0.5 sampling interval). The algorithm wasare very weakly influenced by the presence of the dielectric
tested (after training) using sequences of scattered waveforstah and, therefore, it is virtually impossible to discriminate
(10 waveforms, % sampling) with all other starter anglesbetween the targets based solely on backscattered waveforms
(480 sets). In this manner, all 720 scattered waveforms wenethis region. If at least some of the ten waveforms reside
examined when deriving the codebook and estimadlng3, outside of this region (starting angle outside the ambiguity
and, but the sequences used for testing were different theegion), discrimination is possible.
those used for training. Finally, note that although the targetAn additional interesting phenomenon is evident from con-
is symmetrtic abou? = 0° and & = 180°, a sequence with sideration of Fig. 8. In particular, note that the greatest dis-
starting angle a¥ = 90° (for example) is not the same ascrimination performance [differences i{O|M;)] occurs for
one for starting angle = 270° (the direction of the state starting angles in the vicinity of = 90° and 6 = 270°. This
transitions are reversed). is explained as follows. For TM-polarized excitation at these
From Fig. 8 we see that for most initial angles (abscissangles, there is no diffraction from the perfectly conducting
p(O|My) > p(O|M;) for i £ k, whereM, is the HMM for plate alone in the absence of the dielectric slab. Therefore, at
the data under test (corresponding to the target wite- 5). and around these incidence angles and for the TM excitation
However, there are several initial angles for which this is nabnsidered, scattering due to the conducting plate is expected
the case (marked in Fig. 8 with an “X”). These identificatioto be reduced (it is not eliminated entirely, for the fields
failures occur when all of the ten scattered waveforms useddecattered from the slab must interact with the plate). Hence,
generate0 reside in the aforementioned “ambiguity region.’at and around these angles the scattered fields are dominated
For these sequences of measured waveforms, the underiiggthat portion of thegeneral target in Fig. 3 (the slab)
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TABLE |
PROBABILITY OF MISCLASSIFICATION FOR EACH OF THETHREE TARGETS (THE 200
TARGET IN FIG. 3, WITH €, = 4-6). NOISE-FREE RESULTS ARE SHOWN, FOR
SEQUENCE LENGTHS oF M = 10, 5 AND 2 ScATTERED WAVEFORMS (5° 65°

ANGULAR SAMPLING). THE TRAINING AND TESTING WERE PERFORMED AS WWWMMWMMW,MM
Discusseb IN THECAPTION TO FiG. 8 AND RESULTS ARE PRESENTED FORCASES 900
IN WHICH AT LEAST ONE SCATTERED WAVEFORM IN THE SEQUENCE |s OUTSIDE WWWWMWWWM
THE “AMBIGUITY REGION’ (THE ANGULAR REGION IN WHICH THE

SCATTERED WAVEFORMS FROMALL THREE TARGETS ARE VIRTUALLY 1450
INDISTINGUISHABLE). THE MISCLASSIFICATION PROBABILITY |S THE
PROBABILITY THAT DATA FROM A GIVEN TARGET |S ASSOCIATED WITH

A HMM CHARACTERISTIC OF A DIFFERENT TARGET. THE RESULTS
HERE ARE AVERAGED ACROSSALL THREE TARGETS CONSIDERED 180°

Sequence Sequence Sequence
Length=10 |Length=5 |Length=2

£ =4 3.8 57 8.2

§=5 13 143 35.8 Fig. 9. The same state-dependent scattered waveforms as plotted in Fig. 5,
with a minimum of 10-dB SC-SNR additive white Gaussian noise.

£=6 0.65 7.1 235 dictionary, then the algorithm will have difficulty extracting

the underlying signal from the additive noise. Therefore, in
- — the context of matched pursuits, the figure of merit for noisy
e . . data is what we have termed the signal-component signal-to-
that distinguishes thearticular three targets considered. Itnoise ratio [37] (SC-SNR) defined & e.,)|2/o2. Therefore

is in this region that an algorithm should provide 0pt'matlne SNR is dependent on the target feature (signal component)

discrimination. In practice, however, one cannot count q question defined al fle.)|2/o2, wheree, represents the

epr0|_t|ng such a propitious target-sensor orientation Sln(c‘ﬁactionary element (feature) extracted via matched pursuits in
such is generally hidden from the processor.

. i . ... .. theabsencef additive noise. The SC-SNR must be reasonably
In Table |, we give the probability of m'SC|aSS'flcatlor]arge (on the order of 5 dB or greater [37]) for at least some
; . . Hﬁtionary elements, for matched pursuits to work properly.
as discussed, using seéquence lengthsibf= 10, 5, and For the noisy examples considered here, we consider an SC-
2 scattered waveforms (in each case there isabgular SNR of greater than or equal to 10 dB (g £]e,)|2/o2 > 10

samplmg between wayeforms). For thg reasons dlscus_ (ii’all e, selected for representation ¢f after K matched-
algorithm performance is only scored for initial angles outsi rsuits iterations, in thabsenceof noise). Hence, many of
the ambiguity. region whgrg such is meaningful. Des‘?ite Ufe signal compohentsn have an associated Sé-SNR well
fact that testing and training were performed on dlﬁererﬂg excess of 10 dB. In Fig. 9, are plotted the same scattered
sequences, we see from Table | that classification performari}\?g\/eformS shown in Fig. 5, with example realizations of

Is quite good for large data sequenca$ & 10 observation- dditive noise at the noise variance considered. As expected,

dependent scattered wav_eforms). As expected, as the NUMREroNR (and SC-SNR) depends strongly on the target-sensor
of scattered waveforms is reduced! (= 5 and M = 2), orientation

classification performance deteriorates. For noisy datas = f -+ w, we train the HMM algorithm
by considering consecutive sets 8f scattered waveforms
at a prescribed angular sampling rate with the initial angle of
In the final set of examples, we consider the same scatterivlgservation varied. For each of the 720 scattered wavefgrms
data addressed above with additive white Gaussian noiagailable for each target (O.&ngular sampling), we generate
Overall performance is dependent on the ability of the wavan associated noise waveform with eachw different but
based matched-pursuits algorithm to accurately extract featudescribed by the same statistical distribution. This process
(wavefronts and resonances) from noisy data. This issue lmglone eight times (5760 realizations #f, and the HMM
been addressed in a previous paper [37] and is summaripedbabilities A, B, and = are trained (and the code books
briefly here. generated) using all 5760 initial angles. The algorithm is tested
For a scattered waveforni with additive white Gaussian by considering all possible initial observation angles (720),
noisew, we process the signal = f 4+ w. For a matched- with four (different) realizations of the noise at each angle (a
pursuits dictionary composed of elemerts = e(v,), we total of 2880 testing sequences, each of length Therefore,
compute inner productgsle,) with each element in the the datas used for HMM training is different than that used
dictionary and select the largest inner product. As discussedan testing, although the underlying signfil and the noise
Section I, the process is subsequently and iteratively repeagtdtistics are the same.
on the remainder. The inner products satiglle,,} = (fle,)+ The probability of misclassification for the noisy data (min-
(w|ey). The (w|e,) are zero-mean Gaussian random variablésium SC-SNR of 10 dB) is presented in Table Il in the
with variances?, whereo? is the variance of the noise. If same form as considered in Table |. Comparing Tables | and
the variances? is large relative td(f|e,)|?, for all e, in the I, we see that the presence of noise at the noise levels

C. Noisy Data
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TABLE I TABLE I
As IN TABLE |, wiTH AT LEAST 10-dB SC-SNR ADITIVE WHITE CoMPARISON OFHMM CLASSIFICATION PERFORMANCE FORNOISY DATA
GaussIAN Noise (SEe Fig. 9). THE TESTING AND TRAINING WERE (M = 10 ScATTERED WAVEFORMS, 5° SAMPLING) USING THE FuLL
PERFORMED WiTH DIFFERENT ADDITIVE-NOISE REALIZATIONS MATCHED-PURsUITS DICTIONARY [SEE (4) AND (5)] AND USING A
(EACH REPRESENTATIVE OF THE SAMENOISE STATISTICS) CONSTRAINED MATCHED-PURSUITS DICTIONARY “L EARNED” BY INITIALLY

APPLYING THE MATCHED-PURSUITS ALGORITHM TO NOISE-FREE DATA

Sequence Sequence Sequence
Length=10 |Length=5 |Length=2 Unconstrained | Constrained
MP dictionary | MP dictionary
£ =4 1.9 35 10.3
€ =4 1.9 2.7
£=5 6.5 9.2 24.7
€ =5 6.5 9.0
£=6 4.0 70 252
£=6 40 47

considered does not cause a dramatic deterioration in algorithm
performance (for data lengt? = 10). In fact, for theM = 10
case, the results are actually bettdth noise. This is simply ~ In this paper, we have considered the use of scattered
because, as mentioned previously, more extensive training €@ctromagnetic fields for the identification of a concealed or
be implemented for noisy data than for the finite set of noisbidden target. Previous solutions to this problem have been
free data (also, for the noise-free case, we tested and trainedgrsued in terms of wavefront [1]-[4] and resonance-based
different scattered waveform sequences). As the noise variaffele[10] processing. While each approach has met with some
increases, a more pronounced performance deterioratiorsiéscess, it is well known that the fields scattered from a
anticipated. It is interesting to note that in both Tables | and general target must be described simultaneously in terms of
the target withe, = 5 is generally characterized by the higheswvavefronts and resonances [18], with the relative importance
level of misclassification. This is to be expected, for it hagf each dictated by the details of the underlying wave physics.
two neighboring targets with very similar electrical parameteMoreover, motivated in large part by observed mammalian
(e = 4 ande¢,. = 6) to which it can be misclassified, wheretarget-identification procedures [30]-[32], we have sought the
the targets with:,. = 4 ande, = 6 only have one such targetdevelopment of an algorithm that employs a multi-aspect
with proximate electrical properties. paradigm, wherein the scattered fields from multiple target-
The final issue we address concerns the matched-pursgigsor orientations are processed simultaneously (i.e., fused) to
dictionary D, defined in (4) and (5). If one has access teffect target discrimination. In addition to being representative
the noise-freescattered waveformg characteristic of a given of target discrimination in nature, this approach mitigates the
target, one can apply matched pursuits fteand determine difficulties of a single-aspect scheme that has severe limi-
the set of vectorsD’ (I’ C D) that are representative oftations for targets that have a complicated aspect-dependent
the data (it is the vectors i’ that we used to define thesignature. Finally, the multi-aspect paradigm is consistent with
aforementioned SC-SNR). One could envision access to noigata acquisition procedures used in SAR [33], ISAR [34], and
free model or measured data that can be used via matclmekerse scattering [35].
pursuits to learnD’ and then the reduced dictionar’ As detailed in the text, each of the multi-aspect time-domain
can be applied to the noisy data (with known or estimateuiaveforms is parsed in terms of wavefronts and resonances via
statistics). This strategy has several salutary features. Fitbe wave-based matched-pursuits algorithm. The continuous
the reduced dictionary)’ is generally much smaller than theparameters representative of each such parametric decompo-
original dictionaryD. Therefore, use of the smaller dictionansition are then mapped into one element in a finite codebook
D’ with the HMM results in a significant acceleration inof such parameters through VQ. Thus, after matched-pursuits
algorithm speed. Moreover, the matched-pursuits dictiongparametric data parsing and VQ, the sequence of multi-aspect
D'’ is, through training on noise-free data, well matched tecattered waveforms are represented in terms of an associated
the underlying signalf and, therefore, is more robust forsequence of codebook elements. A hidden Markov model
processing noisy data = f + w than the original dictionary (HMM) is defined for each target of interest and that HMM
D. For the results presented in Table Il we have utilized ther which the sequence of codebook element gives the highest
reduced dictionaryD’ rather than the original dictionaryp probability of occurrence is deemed the HMM representative
described in (4) and (5). For the data considered hBfdhas of the target under interrogation (thus identifying the target).
85 elements while the original dictionary has 996, yielding The probability of observing a given codebook element for
significant algorithm acceleration. Moreover, as demonstratagarticular target is dependent on the target-sensor orientation
in Table IIl, the reduced dictionar$)’ manifests HMM per- since such dictates the associated scattering physics. Thus,
formance (for the noisy data) that is significantly better thdistates” are defined, representative of particular target-sensor
that when the full (original) dictionanp is applied. This is orientations over which the underlying physics (and, hence,
expected, for dictionary elements In that are matched to thethe probability of observing a given codebook element) is
noise but not tgf are not found in the reduced dictionaBy/. relatively slowly varying. The multi-aspect scattered fields are

V. CONCLUSIONS
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modeled as a Markovian process of state transitioisgdden Moreover, if we assume that the sensor moves in one direction
Markov process because the underlying states are conceatddtive to the putative target center (the target has been
from the processor with the absolute target-sensor orientatidetected, and is now being identified) with angular sampling
unknown. A6, with A < 6,V 6y, then the probability of transitioning

The general paradigm has been illustrated here using conom state to statek, represented byl = P(gmy1 =
puted scattering data from three very similar targets. Analx|q,, = s;) is given by

ogous results have been presented elsewhere for measured 0. — AY

acoustic scattering data from submerged elastic targets [46]. Aip = ZT, if i =k

However, several issues warrant further consideration and ¢

development. In particular, we first note that we have assumed A = ﬁ7 if [i—kl =1 (A-2)
that the state-transition probabilities quantified by the matrix 20;

A are time-independent. In reality, however, this is not the A =0, if i — k&[> 1.

case. Previous history plays an important role in the staige (a.1), the expressions in (B.1) are derivable directly from
transition probabilities. For example, assume sféas an geometrical considerations. Considerinty;, for example,
angular extent of 8and § angular sampling is used. If theygqme that scattered waveformis uniformly likely to be
sensor-target orientation is in staf on two consecutive |ocated at any angle in state There are a range of angles
observations, the probability of transitioning out of this state PE—AQ for which a change in the target-sensor orientation of
100%. This is different from the transition probability if one isn g will yield a target-sensor orientation that still resides with

only in stateS; for one observation. Similar issues have beefiate; We therefore havel;; = (6;—A6) /6;. The other terms
addressed in speech processing [26] and will be considellfﬁd(AIZ) are derived similarly.
here as well in the context of target identification. The matrix B is computed by considering all the training

Another issue involves the form of the HMM applied here iya(q available for state of a given target. The probability that
which adiscreteand finite codebook has been utilized (leading,qepook element is selected for staté is given by

to the matrix B, representing the probabilities of observing

in a given state each of the finite set of codebook elements). B, =

Alternatively, one could employ eontinuousHMM, in which

probabilities are attached to observing the continuous matchedieren;, is the total number of training waveforms for state

pursuits parameters, without VQ. Continuous HMM’s havé, andn;, represents the number of times codebook element

received considerable attention in speech processing [22was selected for such.

[23], [40] and warrant attention in the context of target
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In the context of SAR or ISAR, one may rather employ this

technique in the 2-D image domain. This would imply generat-

ing multiple 2-D images, utilizing subsections (subapertures)

of the full synthetic-aperture data set from which the targetl] C. E. Baum, “The singularity expansion method,” Tnansient Elec-

and environment will be viewed from multiple orientations. In tlrgr?“Gag”e“C Fields L. B. Felsen, Bd. New York: Springer-Verlag,

this scenario, 2-D physics-based matched-pursuits dictionagy] E. Heyman and L. B. Felsen, “A wavefront interpretation of the
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