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Multilevel Tabulated Interaction Method Applied to
UHF Propagation over Irregular Terrain

Conor Brennan and Peter J. Cullen

Abstract—A multilevel tabulated interaction method (TIM) is  explicitly accounted for and the whole computation took a
described for application to the analysis of exceptionally large matter of seconds on a modest computational resource such as
two-dimensional (2-D) UHF terrain propagation problems. While an HP workstation. The fast far-field algorithm (FAFFA) [9],

standard TIM schemes offer extremely rapid solutions to terrain S .
propagation problems on a medium to large scale~20 km), which is related to the well-documented fast multiple method

the computation times increase quadratically with problem size. [10], was combined with the Green’s function perturbation
For problems of extremely large size £100 km), we show how method (GFPM) [11], [12] and offers large computational

the adoption of the multilevel scheme proves beneficial, reducing savings over a wider range of problems than those amenable
computation times and restoring the TIM's computational ad- 4 r55id NBS solution. Though not as fast as the NBS,
yantgge. (lj\lumerlcal results are provided illustrating the concepts the FAFFA was further specialized (via the incorporation of
iniroduced. certain assumptions, described in Section Il, about the problem
geometry and incident field) into an extremely rapid scheme
namely the tabulated interaction method (TIM) [13] which, for
terrain problems, combined the robustness of the FAFFA with
|. INTRODUCTION the speed of the NBS. However, the admirable performance

HE efficient and accurate calculation of UHF propagatiodf the TIM when applied to medium to large sized problems,
T loss over irregular terrain occupies a position of fund£rOV|d|ng very accurate pr_edlct|ons in a matter of seconds,
mental importance in the planning of wireless communicatiofs "0t replicated when applied to very large problems (of the
systems. While previously the lack of computational resourc@&ler of 100 km at typical radio frequencies). This paper is
forced planners to use simplistic models such as single igfended to set out a simple computational technique designed
multiple knife edge diffraction [1], the advent of the digitaf® ImProve the efficiency of the TIM in this regard. In the
computer rendered feasible the usage of more sophisticafft Section, we briefly review the workings of the standard
models such as geometric theory of diffraction (GTD) [2] 0]I'IM while S_ectlon_ Il motivates and descrlbes_ a multilevel
the parabolic equation [3], [4]. The potentially exact full wavdmnplementation suitable for usage in the anaIyS|s.of extremely
solutions offered by an integral equation (IE) formulation aré'9€ scale problems. We close with some numerical examples
a tantalizing prospect, but until recently have remained elusilit'Strating the advantages of the new method.
due to the inherent computational complexity of standard IE
solutions. This computational burden has, in the past, relegated IIl. BASIC TIM SCHEME
them to the position of reference solutions to the faster The propagation model adopted by ourselves, that of & TM
approximate solutions mentioned above. The last decadegrizontal polarization) linesource irradiating, with wavenum-
however, has seen a great deal of activity in this importabér 3, a one-dimensional terrain profile (consisting of a
area. Hviidet. al [5] demonstrated the accuracy of the IEseries of perfectly conducting linear segments) allows us to
approach—the adoption of a forward scattering approximatiaise the two-dimensional (2-D) electric field integral equation
eliminating the need for explicit storage of the impedanq&FIE) [14]. Although the assumption of perfect reflection
matrix associated with a moment method solution of the introduced to make the analysis easier, it is by no means
IE. They also illustrated the largest drawback of standaogntral to the ideas presented. In fact, it is partially justified by
IE solutions, namely the extremely large computation timeke fact that the propagation is grazing and comparison with
necessary. The natural basis set (NBS) [6]-[8] was showndgperimental results, (see, for instance [5]) indicate that its
offer huge computational savings for propagation problenusage is reasonable. Present work by ourselves focuses on
involving grazing incidence over undulating terrain, the chosesformulating (in the context of coupled boundary integral
basis set accurately capturing much of the structure of tbquations) the ideas herein for application to nonperfectly
unknown surface current leaving an accordingly lower ordegflecting cases, a topic we leave for future discussion.
matrix equation to numerically solve. Backscattering could be Standard solution of the integral equation involves de-
scribing the unknown surface current in terms /éfknown
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us to rewrite (2) as
Group Gy Group G, ( )

-1
Z Zjidi = Viexp(3Bpy; - Pra) — Z Zw

p.CGy =1
: eXP(JﬁPU ’ ﬁuf)Fl’l 4)
T foreachp; € G;, 1 =1---D. p, is the vector from the group
Fig. 1. Geometry for the TIM. Assumption that incident field is locallycénterp,; to the source poinp,. Note that we have explicitly
planar in conjunction with the assumption thgf ~ p/;—p;r;-prri—pi;-Pir - introduced the forward scattering approximation (this is not

for all point-pairs p;, p;) allows the current residing on grou@, to be

described in terms of reference currents. central to the method but does lessen the computational

burden). The interactions between each segment @air (7;)

is given in terms offy,
scattering that allows the matrix to be approximated as lower

triangular, is exceptionally time-consuming. The TIM replaces Fuu= Y Jiexp(3Bpi - bri) (5)
the basis function to basis function interaction of conventional p;CGy

moment methods with interactions between the smooth lin&ghich are in turn given by interpolating between gra@p’s

segments that are used to describe the terrain profile. Thegefield pattern Fy*, describing scatter in thés discrete
segment-to-segment interactions can be equivalently viewed@gctionse™ for m = 1- .. K

the interactions between large groups of pulse basis functions,

having their domains on the segments in questions. It should Fr= Y Jiexp(sBpy;- &™) (6)
be noted that the addition of random roughness to these linear pP.CGy

segments leads to a more difficult problem not amenable tg:a

> ) €' is a unit directional vector given bg™ = Zcosb,, +
rigorous TIM solution. However, these roughness effects 3Qinb,, and b, = 2xm/K for m = 1---K. Upon cal-
m m T - .

not so manifest in the grazing incidence forward scatterir&"ation’ the far-field pattern of a group can be used to
case and our smooth terrain model is a reasonable one igr yimately calculate via interpolation, the field scattered
these p_rpblems. ) o from that group to the center of another. The accurate and
Sp?c'f'ca"Y’ we note that the terrain profile is made up Q{uick calculation of each group’s far-field pattern thus holds
a series of linear s.egmen'tézl for { - 1---D. Us!ng the the key to efficient solution of the problem and is the core
standard pulse basis function and Dirac-delta testing functigp,, of the TIM. This can be efficiently done upon noting that

approach the discretized EFIE for this problem can be writtefy torm of (4), where the excitation (right-hand side) on a
as given segment is a weighted sum of plane waves, suggests

N that the current residing on groug; (and, henceany group
Z Zydi =V (1) asthey are deemed physically identical) can be approximately
i=1 expressed as a weighted sumidfknown reference currents.

. . . ) _ . As described in [13] we thus tabulaf€ reference currents,

for j =1---N.V; is the incident field at poinp; and Zj; is namely the currents excited on a typical perfectly electrically

a typical ent_ry n t_he impedance matrix. Rgferrmg t.o Fig. ].Conducting (PEC) segment when illuminated by plane waves

we can rewrite (1) in a manner th.a_t emphasizes the 'nteraCt5%inging from K discrete angles from 0 tor2 Also tabulated

between linear segments. Specifically jor € Gi, we can are each reference current’'s far-field pattern. The essence
rearrange (1) to yield of the TIM is that, because the current residing on any
group G; can be written in terms of the reference currents
Z Ziidi = Vi _Z Z Zjidi- @) the far-fields of that group can now be written in terms
of the tabulated reference far fields. The calculation of far-

Note that we can impose the forward scattering conditidi¢!d Ppatterns reduces to trivial bookkeeping (of incoming
by restricting thel summation to all groups prior ta3;. Plane wave directions and amplitudes). These tabulated far-

Now, consider Fig. 1 which depicts the interaction betwedlgld patterns and reference currents are, in addition to being
two segments®; and Gy, the central points of which arg, USed to calculate the current on the scatterer surface, used

andp, , respectively. The central approximation of the TIM id" the final calculation of scattered field above the terrain

p,EG Ul p, Gy

that for each point-pairp, € Gy, p. € G surface. In short, the rigorous numerical analysis of the fields
‘ ! scattered from a typical terrain profile component provides
Pij = pri— Pyi - Py — Py - Pur (3) us with the framework to build solutions to terrain scattering

problems with a minimum of computational effort. These
where p;; is the magnitude of the vectqs;; from p; to p;, reference solutions once obtained are, of course, portable
other quantities being defined similarly. The sympas used from radial propagation problem to radial propagation problem
to indicate a unit vector. Applying this approximation to alfacilitating the rapid construction of area coverage maps.
group pairs{(Gy, G;) for I’ = 1-.-1— 1, using the far-field While the development above suggests that the tabulations
form of the Hankel function and assuming the incident fieldccur for all discrete direction§ < 6,, < 2=, it should
to be locally plane wave in form over each segment allovse noted that due to the slowly undulating nature of typical
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terrain profiles, the tabulating of far fields in a small angular stanparp TIM
sector around,,, = 0 suffices for most propagation problems,

thereby limiting the storage requirements. The TIM, thuwy—}ﬂ
described, has been used with success by ourselves in the

analysis of propagation over many terrain profiles. While as interacts with standard

with most numerical approaches it is difficult to quantify lincar scgment groups
precisely the region of validity of its application, it should wmuLTILEVEL TIM

be noted that like most numerical schemes, the algorithm

is inherently adaptive. If suitable reference currents and favf’\

fields are available, group sizes can be reduced to ensure the [ T recetving group G

accuracy of the underlying geometrical approximation (3) in supergroups allow the field interacts with supergroups
areas where it is deemed necessary (for example sharp ridges) scattered from larger portions of terrain composed of combinations

or, indeed, the scheme can be easily hybridized with the to be processed simultancously. of standard groups

FAFFA in these areas. While application to more complicat@gly. 2. Schematic of standard versus multilevel TIM. In standard TIM, each
scattering environments (such as propagation around ri jhgar segment group interacts with each other linear segment group leading
angled wedges) wouid be nontrvial, we have yet to encounfBluecrale ot comouaton tme with robem sz v case,
a rural propagation problem that was not amenable to accur@tgossible via the use of super groups.

analysis with the TIM.

receiving group G

once and only once. We will discuss the compositior;pas
. MULTILEVEL TiM well as the calculation of super group far fields later. However,

While the basic TIM scheme, as described above, perfori® now we note that the larger the super groups used in
impressively when applied to propagation problems of modegchg, the fewer the computations necessary to calculate the
to large size, it scales quadratically in computational compleséference currents residing on eaGh and, hence, the faster
ity as the number of groups (linear segments) present in e TIM scheme will be.
problem increases. This is in contrast to the performance of thel0 illustrate these ideas, consider Fig. 2, which schemati-
parabolic equation method whose computational complexiglly depicts both the standard TIM algorithm and the pro-
scales linearly with problem size. For propagation problenf®sed multilevel version. Note that in the standard algorithm
of a very large scale~100 km) it is obvious that some We are constrained to using the same group size in calculating
modification to the basic TIM scheme is necessary to rendetfie interactions between different portions of terrain. The
computationally competitive. The motivation for the multilevemultilevel scheme offers much more flexibility, allowing us to
TIM lies in the realization that for fixed group sizes thehoose larger or smaller contributing groupings as the terrain
approximation of (3) becomes more accurate as the gro@@ometry allows and, hence, fewer computations.
separation distancg;; — oc. The multilevel TIM aims to Two issues naturally arise in the implementation of such
exploit this by using larger group sizes, thus processing matescheme: how to decide on the compositiongpfand how
scattering information in tandem wherever possible. to calculate the far-field pattern of a super group. As stated

A multilevel TIM postulates, in addition to the standard TIMabove we wish to use as large super groups as is possible in
linear-segment groups, “super-groups” comprising of grougglculating the fields scattered to the receiving group of interest
of standard TIM groups. Specifically, we introduce, in additioff:- A simple check can be incorporated into the code to
to the standard grougs; . .. Gp, the following super groups. address the first issue. Consider Fig. 3, which depicts a typical

* “two groups” (comprising two standard linear segments°)'t(”?t'°”- We would like to know whether the “four group”

G§2) ) __G(DQ)2 whereGﬁ?l) = Gy U Gap: G consisting of four standard grous,, Gy, G, Gy can
« “four groups” (comprising two “two groups’) be used to calculate the field scattered to the target pgint
a® .. 0@ wherea® — @ L, ag® (the center point of some standard group or a point above
! D/4 " Jmol = m he surface where we wish to know the total field perhaps)

and so on with “e_lght groups’ apd h|gher. A.ssom.ated WItB, \whether smaller groupings would be more appropriate.
each super group is a central point easily defined in terms.of . 4) -

. iS the center point of7;™” while p, - - - p; are the centers of
the centers of the constituent standard groups. '

Upon adopting such an approach, we can write (4) as its constituent standard groups. This can be easily checked by
P piing PP ' ensuring that the fast far-field approximation is a reasonable

Z ZjiJ; =Viexp(38p1; - Pra) 2r?§cfl?rtr?:t(:h central point in the super group. In this case, we
p.cG
- Z Zuw exp(3Bpy; - Py Ve (7) Blpit — pst + Psi - Psr] < € (8)
eg )
& for ¢ = a,b, ¢, d where ¢ is some prechosen threshold

Note that rather than stepping through the standard groups Tomstant. If the threshold quantity is exceeded we can retry
{—1asin (4), thed’ index is confined to groups deemed to besing “two groups” or even resort to using standard groups if
in G;. G, is a set of standardnd super groups such that eachmecessary. The process of compogiiaghus involves stepping
of the standard TIM group&y, I’ =1---1—1 is represented through the groupé&'; - - - G;_; and trying to amalgamate them
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Fig. 5. Multilevel TIM versus standard TIM for large-scale propagation
problem. Source radiating at 970 MHz, located over leftmost point. (a) Terrain
surface. (b) Fields calculated 2.4 m over terrain surface. Multilevel used super
groups as big as 1.6 km in length and thresholg 0.001. K, the number

of discrete plane wave directions, was equal to 200.
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0 B ' ' . . ' problem size than that of the standard TIM. We note that the
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Number of groups efficiencies are not so manifest for smaller problem sizes and
Fig. 4. Number of computations as a function of problem size for standalrladeed _the muml_eVEI algorlthm can, in pr_aCtlce' be aCtua”y
and multilevel TIM. slower in these circumstances due to the increased amount of

bookwork necessary in defining super groups and checking
hreshold levels as per (8), etc. Fig. 5 shows a randomly
%@nerated terrain profile (top) and the fields predicted by both
éhge standard TIM and the multilevel for the problem of size

into as large super groups as is possible according to
threshold procedure above.

Hav?ngl decideq on what super gro;Jps O?re .ipprr]opriat(; 00 groups. The average difference in field strength predicted
a particular receiving group we are faced with the task gfas 1 57 4B with a standard deviation 5.04 dB. The multilevel

calculating their far-field scatter pattern. For each super 9rodB1 took 63 s to run as opposed to the 130 s needed by the

th'f IS e?sih’ Cflc?_lal’:jed mtttermst:)f a sufmt?atlotn (()jf S:'thT andard TIM. The computational savings garnered are not
values of the tar-field scatler patterns ot the standar high as predicted by Fig. 4 because of the inefficiencies

groups of which it is ultimately comprised. For the examplﬁmoOluceol by the increased amount of “bookkeeping” needed
above we can write for the far-field scatter in flie direction but still represent a significant saving

FO' = N Flexp(ifp, - &), ()

i=a,b,c,d

IV. CONCLUSIONS

Thus, using the multilevel TIM we can process the fields We have described a multilevel tabulated interaction

scattered between larger portions of scatterer than is possﬂ?th?d! W[‘J'S:: |mp;]r<|)ves the performlarlme of th? TIIV:C_Im
with a standard one-level TIM with a corresponding increa$é cudatlgngM path loss over exltremey darge terrain profiles.
in efficiency. To illustrate this we conducted the followin tandar groups are amalgamated into super groups

experiment. Pieces of terrain of varying lengths were genera@r&d’ wherever possible, '.t IS thesg large groups that mtgract
and fields were calculated using the standard TIM andpéoducmg a correspondlngly qupker method. Numencal
multilevel TIM. The linear segments describing the terraiﬂs‘SUItS illustrated the potential of this new formulation.

were 50 m in length and the multilevel scheme used super
groups up to and including “32 groups,” of length 1.6 km.
A threshold levele was set at 0.001 and super groups used The authors would like to thank the reviewers for their
according to the thresholding procedure described abowenstructive criticism.

Fig. 4 plots the number of group-to-group interactions that

occur in the standard TIM solution against those occurring in REFERENCES

the multilevel scheme for the various problem sizes. We notg; k_ guliington, “Radio propagation fundamentalsgell Syst. Tech. J.,
that the multilevel complexity, scales much more gently with ~ pp. 593-626, 1957.
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