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Multilevel Tabulated Interaction Method Applied to
UHF Propagation over Irregular Terrain

Conor Brennan and Peter J. Cullen

Abstract—A multilevel tabulated interaction method (TIM) is
described for application to the analysis of exceptionally large
two-dimensional (2-D) UHF terrain propagation problems. While
standard TIM schemes offer extremely rapid solutions to terrain
propagation problems on a medium to large scale (���20 km),
the computation times increase quadratically with problem size.
For problems of extremely large size (���100 km), we show how
the adoption of the multilevel scheme proves beneficial, reducing
computation times and restoring the TIM’s computational ad-
vantage. Numerical results are provided illustrating the concepts
introduced.

Index Terms—Electromagnetic propagation, UHF propagation,
UHF radio propagation terrain factors.

I. INTRODUCTION

T HE efficient and accurate calculation of UHF propagation
loss over irregular terrain occupies a position of funda-

mental importance in the planning of wireless communications
systems. While previously the lack of computational resources
forced planners to use simplistic models such as single or
multiple knife edge diffraction [1], the advent of the digital
computer rendered feasible the usage of more sophisticated
models such as geometric theory of diffraction (GTD) [2] or
the parabolic equation [3], [4]. The potentially exact full wave
solutions offered by an integral equation (IE) formulation are
a tantalizing prospect, but until recently have remained elusive
due to the inherent computational complexity of standard IE
solutions. This computational burden has, in the past, relegated
them to the position of reference solutions to the faster
approximate solutions mentioned above. The last decade,
however, has seen a great deal of activity in this important
area. Hviid et. al [5] demonstrated the accuracy of the IE
approach—the adoption of a forward scattering approximation
eliminating the need for explicit storage of the impedance
matrix associated with a moment method solution of the
IE. They also illustrated the largest drawback of standard
IE solutions, namely the extremely large computation times
necessary. The natural basis set (NBS) [6]–[8] was shown to
offer huge computational savings for propagation problems
involving grazing incidence over undulating terrain, the chosen
basis set accurately capturing much of the structure of the
unknown surface current leaving an accordingly lower order
matrix equation to numerically solve. Backscattering could be
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explicitly accounted for and the whole computation took a
matter of seconds on a modest computational resource such as
an HP workstation. The fast far-field algorithm (FAFFA) [9],
which is related to the well-documented fast multiple method
[10], was combined with the Green’s function perturbation
method (GFPM) [11], [12] and offers large computational
savings over a wider range of problems than those amenable
to rapid NBS solution. Though not as fast as the NBS,
the FAFFA was further specialized (via the incorporation of
certain assumptions, described in Section II, about the problem
geometry and incident field) into an extremely rapid scheme
namely the tabulated interaction method (TIM) [13] which, for
terrain problems, combined the robustness of the FAFFA with
the speed of the NBS. However, the admirable performance
of the TIM when applied to medium to large sized problems,
providing very accurate predictions in a matter of seconds,
is not replicated when applied to very large problems (of the
order of 100 km at typical radio frequencies). This paper is
intended to set out a simple computational technique designed
to improve the efficiency of the TIM in this regard. In the
next section, we briefly review the workings of the standard
TIM while Section III motivates and describes a multilevel
implementation suitable for usage in the analysis of extremely
large scale problems. We close with some numerical examples
illustrating the advantages of the new method.

II. BASIC TIM SCHEME

The propagation model adopted by ourselves, that of a TM
(horizontal polarization) linesource irradiating, with wavenum-
ber , a one-dimensional terrain profile (consisting of a
series of perfectly conducting linear segments) allows us to
use the two-dimensional (2-D) electric field integral equation
(EFIE) [14]. Although the assumption of perfect reflection
is introduced to make the analysis easier, it is by no means
central to the ideas presented. In fact, it is partially justified by
the fact that the propagation is grazing and comparison with
experimental results, (see, for instance [5]) indicate that its
usage is reasonable. Present work by ourselves focuses on
reformulating (in the context of coupled boundary integral
equations) the ideas herein for application to nonperfectly
reflecting cases, a topic we leave for future discussion.

Standard solution of the integral equation involves de-
scribing the unknown surface current in terms of known
basis functions with unknown coefficients. The problem, thus
discretized, reduces to one of linear algebra, specifically a large
dense matrix equation that must be solved to yield the basis
coefficients. Solution of this equation, even assuming forward
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Fig. 1. Geometry for the TIM. Assumption that incident field is locally
planar in conjunction with the assumption that�ij ' �l l����l i��̂��l l����lj ��̂��ll
for all point-pairs (���i; ���j ) allows the current residing on groupGl to be
described in terms of reference currents.

scattering that allows the matrix to be approximated as lower
triangular, is exceptionally time-consuming. The TIM replaces
the basis function to basis function interaction of conventional
moment methods with interactions between the smooth linear
segments that are used to describe the terrain profile. These
segment-to-segment interactions can be equivalently viewed as
the interactions between large groups of pulse basis functions,
having their domains on the segments in questions. It should
be noted that the addition of random roughness to these linear
segments leads to a more difficult problem not amenable to a
rigorous TIM solution. However, these roughness effects are
not so manifest in the grazing incidence forward scattering
case and our smooth terrain model is a reasonable one for
these problems.

Specifically, we note that the terrain profile is made up of
a series of linear segments; for . Using the
standard pulse basis function and Dirac-delta testing function
approach the discretized EFIE for this problem can be written
as

(1)

for . is the incident field at point and is
a typical entry in the impedance matrix. Referring to Fig. 1,
we can rewrite (1) in a manner that emphasizes the interaction
between linear segments. Specifically for , we can
rearrange (1) to yield

(2)

Note that we can impose the forward scattering condition
by restricting the summation to all groups prior to .
Now, consider Fig. 1 which depicts the interaction between
two segments and , the central points of which are
and , respectively. The central approximation of the TIM is
that for each point-pair,

(3)

where is the magnitude of the vector from to ,
other quantities being defined similarly. The symbolis used
to indicate a unit vector. Applying this approximation to all
group pairs for , using the far-field
form of the Hankel function and assuming the incident field
to be locally plane wave in form over each segment allows

us to rewrite (2) as

(4)

for each . is the vector from the group
center to the source point . Note that we have explicitly
introduced the forward scattering approximation (this is not
central to the method but does lessen the computational
burden). The interactions between each segment pair ( )
is given in terms of

(5)

which are in turn given by interpolating between group’s
far-field pattern , describing scatter in the discrete
directions for

(6)

is a unit directional vector given by
and for . Upon cal-

culation, the far-field pattern of a group can be used to
approximately calculate via interpolation, the field scattered
from that group to the center of another. The accurate and
quick calculation of each group’s far-field pattern thus holds
the key to efficient solution of the problem and is the core
aim of the TIM. This can be efficiently done upon noting that
the form of (4), where the excitation (right-hand side) on a
given segment is a weighted sum of plane waves, suggests
that the current residing on group (and, hence,any group
as they are deemed physically identical) can be approximately
expressed as a weighted sum ofknown reference currents.
As described in [13] we thus tabulate reference currents,
namely the currents excited on a typical perfectly electrically
conducting (PEC) segment when illuminated by plane waves
impinging from discrete angles from 0 to 2. Also tabulated
are each reference current’s far-field pattern. The essence
of the TIM is that, because the current residing on any
group can be written in terms of the reference currents
the far-fields of that group can now be written in terms
of the tabulated reference far fields. The calculation of far-
field patterns reduces to trivial bookkeeping (of incoming
plane wave directions and amplitudes). These tabulated far-
field patterns and reference currents are, in addition to being
used to calculate the current on the scatterer surface, used
in the final calculation of scattered field above the terrain
surface. In short, the rigorous numerical analysis of the fields
scattered from a typical terrain profile component provides
us with the framework to build solutions to terrain scattering
problems with a minimum of computational effort. These
reference solutions once obtained are, of course, portable
from radial propagation problem to radial propagation problem
facilitating the rapid construction of area coverage maps.
While the development above suggests that the tabulations
occur for all discrete directions , it should
be noted that due to the slowly undulating nature of typical
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terrain profiles, the tabulating of far fields in a small angular
sector around suffices for most propagation problems,
thereby limiting the storage requirements. The TIM, thus
described, has been used with success by ourselves in the
analysis of propagation over many terrain profiles. While as
with most numerical approaches it is difficult to quantify
precisely the region of validity of its application, it should
be noted that like most numerical schemes, the algorithm
is inherently adaptive. If suitable reference currents and far
fields are available, group sizes can be reduced to ensure the
accuracy of the underlying geometrical approximation (3) in
areas where it is deemed necessary (for example sharp ridges)
or, indeed, the scheme can be easily hybridized with the
FAFFA in these areas. While application to more complicated
scattering environments (such as propagation around right
angled wedges) would be nontrivial, we have yet to encounter
a rural propagation problem that was not amenable to accurate
analysis with the TIM.

III. M ULTILEVEL TIM

While the basic TIM scheme, as described above, performs
impressively when applied to propagation problems of modest
to large size, it scales quadratically in computational complex-
ity as the number of groups (linear segments) present in the
problem increases. This is in contrast to the performance of the
parabolic equation method whose computational complexity
scales linearly with problem size. For propagation problems
of a very large scale (100 km) it is obvious that some
modification to the basic TIM scheme is necessary to render it
computationally competitive. The motivation for the multilevel
TIM lies in the realization that for fixed group sizes the
approximation of (3) becomes more accurate as the group
separation distance . The multilevel TIM aims to
exploit this by using larger group sizes, thus processing more
scattering information in tandem wherever possible.

A multilevel TIM postulates, in addition to the standard TIM
linear-segment groups, “super-groups” comprising of groups
of standard TIM groups. Specifically, we introduce, in addition
to the standard groups , the following super groups.

• “two groups” (comprising two standard linear segments)
where ;

• “four groups” (comprising two “two groups”)
where

and so on with “eight groups” and higher. Associated with
each super group is a central point easily defined in terms of
the centers of the constituent standard groups.

Upon adopting such an approach, we can write (4) as

(7)

Note that rather than stepping through the standard groups 1 to
as in (4), the index is confined to groups deemed to be

in . is a set of standardand super groups such that each
of the standard TIM groups is represented

Fig. 2. Schematic of standard versus multilevel TIM. In standard TIM, each
linear segment group interacts with each other linear segment group leading
to quadratic growth in computation time with problem size. In multilevel case,
we endeavor to allow as large portions of terrain interact with each other as
is possible via the use of super groups.

once and only once. We will discuss the composition ofas
well as the calculation of super group far fields later. However,
for now we note that the larger the super groups used in
each , the fewer the computations necessary to calculate the
reference currents residing on each and, hence, the faster
the TIM scheme will be.

To illustrate these ideas, consider Fig. 2, which schemati-
cally depicts both the standard TIM algorithm and the pro-
posed multilevel version. Note that in the standard algorithm
we are constrained to using the same group size in calculating
the interactions between different portions of terrain. The
multilevel scheme offers much more flexibility, allowing us to
choose larger or smaller contributing groupings as the terrain
geometry allows and, hence, fewer computations.

Two issues naturally arise in the implementation of such
a scheme: how to decide on the composition ofand how
to calculate the far-field pattern of a super group. As stated
above we wish to use as large super groups as is possible in
calculating the fields scattered to the receiving group of interest

. A simple check can be incorporated into the code to
address the first issue. Consider Fig. 3, which depicts a typical
situation. We would like to know whether the “four group”

consisting of four standard groups can
be used to calculate the field scattered to the target point
(the center point of some standard group or a point above
the surface where we wish to know the total field perhaps)
or whether smaller groupings would be more appropriate.
is the center point of while are the centers of
its constituent standard groups. This can be easily checked by
ensuring that the fast far-field approximation is a reasonable
one for each central point in the super group. In this case, we
check that

(8)

for where is some prechosen threshold
constant. If the threshold quantity is exceeded we can retry
using “two groups” or even resort to using standard groups if
necessary. The process of composingthus involves stepping
through the groups and trying to amalgamate them
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Fig. 3. Threshold procedure to decide whether to use super group of size
four. Require�j�it � �st + ���si � �̂stj < � for i = a; b; c; d.

Fig. 4. Number of computations as a function of problem size for standard
and multilevel TIM.

into as large super groups as is possible according to the
threshold procedure above.

Having decided on what super groups are appropriate for
a particular receiving group we are faced with the task of
calculating their far-field scatter pattern. For each super group
this is easily calculated in terms of a summation of shifted
values of the far-field scatter patterns of the standard TIM
groups of which it is ultimately comprised. For the example
above we can write for the far-field scatter in theth direction

(9)

Thus, using the multilevel TIM we can process the fields
scattered between larger portions of scatterer than is possible
with a standard one-level TIM with a corresponding increase
in efficiency. To illustrate this we conducted the following
experiment. Pieces of terrain of varying lengths were generated
and fields were calculated using the standard TIM and a
multilevel TIM. The linear segments describing the terrain
were 50 m in length and the multilevel scheme used super
groups up to and including “32 groups,” of length 1.6 km.
A threshold level was set at 0.001 and super groups used
according to the thresholding procedure described above.
Fig. 4 plots the number of group-to-group interactions that
occur in the standard TIM solution against those occurring in
the multilevel scheme for the various problem sizes. We note
that the multilevel complexity, scales much more gently with

(a)

(b)

Fig. 5. Multilevel TIM versus standard TIM for large-scale propagation
problem. Source radiating at 970 MHz, located over leftmost point. (a) Terrain
surface. (b) Fields calculated 2.4 m over terrain surface. Multilevel used super
groups as big as 1.6 km in length and threshold� = 0:001. K, the number
of discrete plane wave directions, was equal to 200.

problem size than that of the standard TIM. We note that the
efficiencies are not so manifest for smaller problem sizes and
indeed the multilevel algorithm can, in practice, be actually
slower in these circumstances due to the increased amount of
bookwork necessary in defining super groups and checking
threshold levels as per (8), etc. Fig. 5 shows a randomly
generated terrain profile (top) and the fields predicted by both
the standard TIM and the multilevel for the problem of size
2500 groups. The average difference in field strength predicted
was 1.27 dB with a standard deviation 5.04 dB. The multilevel
TIM took 63 s to run as opposed to the 130 s needed by the
standard TIM. The computational savings garnered are not
as high as predicted by Fig. 4 because of the inefficiencies
introduced by the increased amount of “bookkeeping” needed
but still represent a significant saving.

IV. CONCLUSIONS

We have described a multilevel tabulated interaction
method, which improves the performance of the TIM in
calculating UHF path loss over extremely large terrain profiles.
Standard TIM groups are amalgamated into super groups
and, wherever possible, it is these large groups that interact
producing a correspondingly quicker method. Numerical
results illustrated the potential of this new formulation.
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