

Square-Ring Microstrip Antenna with a Cross Strip for Compact Circular Polarization Operation

Wen-Shyang Chen, *Member, IEEE*, Chun-Kun Wu, and Kin-Lu Wong, *Senior Member, IEEE*

Abstract—A novel design of square-ring microstrip antenna with a cross strip for achieving compact circular polarization (CP) operation is proposed and experimentally studied. The cross strip can be placed in the centerlines or diagonals of the square-ring patch. Either design can make its excited fundamental-mode patch surface current path much longer than that in a conventional square microstrip antenna with same antenna size. By incorporating a small tuning stub for splitting the fundamental mode into two near-degenerate resonant modes with equal amplitudes and 90° phase-difference compact CP operation for the proposed design can be obtained.

Index Terms— Circular polarization, microstrip antenna, printed antennas.

I. INTRODUCTION

RECENTLY, in order to meet the miniaturization requirement of portable communication equipment, the studies of compact microstrip antennas received much attention and many related compact designs with broad-band characteristic [1], dual-frequency operation [2], [3], and circularly polarized radiation [4]–[6] have also been reported. In this paper, we demonstrate that a modified square-ring microstrip antenna with a cross strip can also be applied in the compact circular polarization (CP) operation. The cross strip can be placed in the centerlines or diagonals of the square-ring patch. By further incorporating a small tuning stub [7] to the modified square-ring microstrip antenna, the symmetry of the structure can be perturbed, which makes it possible for the excitation of two near-degenerate orthogonal modes for CP operation. Measured results of the CP performance for the design with two different arrangements (a centerline cross strip and a diagonal cross strip) are presented and discussed.

II. ANTENNA DESIGN

Fig. 1(a) and (b) shows the proposed compact CP designs. The square-ring microstrip patch, having an outer side length of L_1 and an inner side length of L_2 , is printed on a substrate of thickness h and relative permittivity ϵ_r . The two arms of the cross strip are of equal width w_c . A small narrow tuning stub of length ℓ and width w_s ($\ell \gg w_s$) is protruded at the patch corner for the case with a centerline cross strip [see Fig. 1(a)] or at the center of the patch edge for the case with

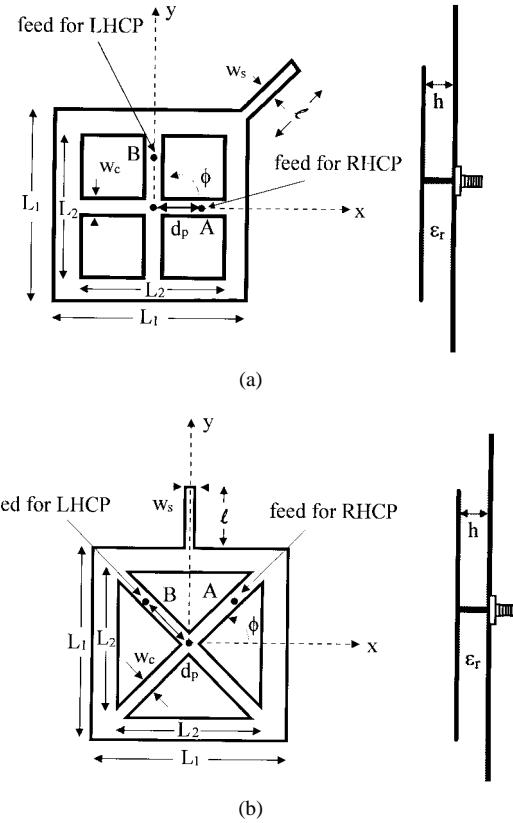


Fig. 1. Geometries of square-ring microstrip antennas with a cross strip for compact CP operation. (a) The case with a centerline cross strip. (b) The case with a diagonal cross strip. The tuning stub in both cases is for CP tuning.

a diagonal cross strip [see Fig. 1(b)]. With a tuning stub of proper length and a single probe feed at a position in the two arms of the cross strip [see Fig. 1(a) and (b); point A for right-hand CP operation and point B for left-hand CP operation], the proposed design can perform CP radiation with a compact antenna size compared to the conventional CP designs [8].

III. THE SQUARE-RING PATCH WITH A CENTERLINE CROSS STRIP

Fig. 2 shows the measured axial ratio. The feed position is at point A for right-hand CP radiation. The outer side length of the square-ring patch (L_1) is fixed to 34 mm. Two cases of $L_2 = 29.0$ mm ($\approx 0.85L_1$) and 31.5 mm ($\approx 0.93L_1$) are investigated and denoted as antennas 1 and 2 here. The corresponding CP performance is listed in Table I. First note that the center frequency (f_c), defined to be the frequency with minimum axial ratio in the operating bandwidth, is 1725 and

Manuscript received March 27, 1998; revised May 20, 1999.

W.-S. Chen is with the Department of Electronic Engineering, Cheng-Shiu Institute of Technology, Kaohsiung, Taiwan, 833 R.O.C.

C.-K. Wu and K.-L. Wong are with the Department of Electrical Engineering, National Sun-Yat Sen University, Kaohsiung, Taiwan, 804 R.O.C.

Publisher Item Identifier S 0018-926X(99)09387-4.

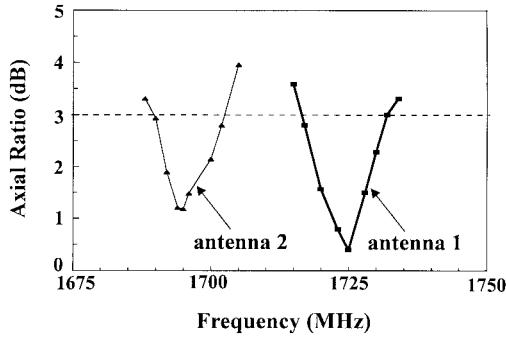


Fig. 2. Measured axial ratio against frequency in the broadside direction for the case with a centerline cross strip; $L_1 = 34$ mm, $\epsilon_r = 4.4$, $h = 1.6$ mm, $w_s = 1$ mm, $w_c = 2$ mm, feed at point A. Antenna 1: $L_2 = 29$ mm, $\ell = 5.5$ mm, $d_p = 8$ mm. Antenna 2: $L_2 = 31.5$ mm, $\ell = 4.0$ mm, $d_p = 7.0$ mm.

TABLE I

CP PERFORMANCE FOR THE SQUARE-RING MICROSTRIP ANTENNA WITH A CENTERLINE CROSS STRIP (ANTENNAS 1 AND 2) AND WITH A DIAGONAL CROSS STRIP (ANTENNAS 3 AND 4); $L_1 = 34$ mm, $\epsilon_r = 4.4$, $h = 1.6$ mm, $w_s = 1$ mm, $w_c = 2$ mm, FEED AT POINT A. THE REFERENCE ANTENNA IS CONSTRUCTED USING THE DESIGN WITH A CONVENTIONAL NEARLY SQUARE MICROSTRIP ANTENNA [8], WHOSE PATCH DIMENSIONS ARE 34 mm \times 33.14 mm

	L_2 (mm)	f_c (MHz)	Max. Received Power (dBm)	CP Bandwidth (3dB axial ratio)	ℓ (mm)	d_p (mm)
antenna 1	29.0	1725	-51.8	0.93%	5.5	8.0
antenna 2	31.5	1695	-51.9	0.89%	4.0	7.0
antenna 3	29.0	1692	-51.9	0.95%	8.3	7.5
antenna 4	31.5	1614	-52.3	0.81%	6.7	7.0
reference	---	2070	-50.0	1.40%	---	---

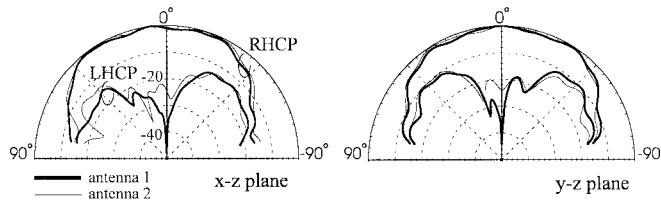


Fig. 3. Measured radiation patterns in two orthogonal planes for antenna 1 at 1725 MHz and antenna 2 at 1695 MHz; antenna parameters are given in Fig. 2.

1695 MHz for antennas 1 and 2, respectively. By comparing to the reference antenna, the center frequency of antenna 2 is lowered by about 18%. This lowering in center frequency can correspond to an antenna size reduction of about 33% by using the proposed design in place of the conventional CP design at a fixed frequency. Measured radiation patterns for antennas 1 and 2 at their respective center frequency are also plotted in Fig. 3 and good right-hand CP radiation for both cases is observed.

IV. THE SQUARE-RING PATCH WITH A DIAGONAL CROSS STRIP

The case with a diagonal cross strip is also studied. By using the same parameters described in Section III, the measured axial ratio for two different patch dimensions ($L_2 = 29.0$ mm

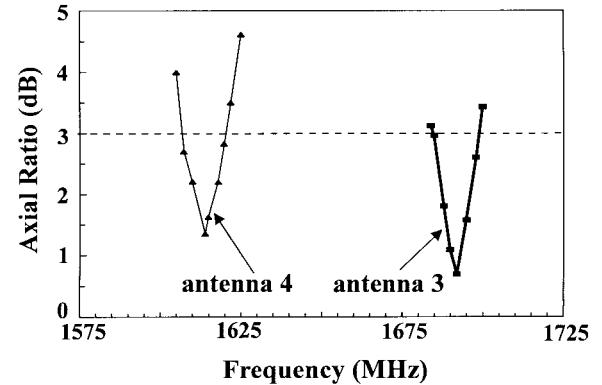


Fig. 4. Measured axial ratio against frequency in the broadside direction for the case with a diagonal cross strip; $L_1 = 34$ mm, $\epsilon_r = 4.4$, $h = 1.6$ mm, $w_s = 1$ mm, $w_c = 2$ mm, feed at point A. Antenna 3: $L_2 = 29$ mm, $\ell = 8.3$ mm, $d_p = 7.5$ mm. Antenna 4: $L_2 = 31.5$ mm, $\ell = 6.7$ mm, $d_p = 7.0$ mm.

for antenna 3 and 31.5 mm for antenna 4) are presented in Fig. 4. Obtained CP performance are also listed in Table I. The center frequencies are seen at 1692 and 1614 MHz, respectively, for antennas 3 and 4. For antenna 4, the center frequency is lowered by about 22% as compared to that of the reference antenna. Again, this suggests that an antenna size reduction about 40% can be obtained by using the proposed design at a fixed frequency. Also, good radiation patterns of antennas 3 and 4 are observed (for brevity, results are not shown).

V. CONCLUSIONS

A modified square-ring microstrip antenna with a centerline cross strip or a diagonal cross strip for compact CP operation has been experimentally investigated. Results show that for the same square-ring patch dimensions, the design with a diagonal cross strip is more effective in reducing the required antenna size for a given operating frequency. By comparing to the conventional design using a nearly square microstrip antenna, the present proposed design with a diagonal cross strip can reach an antenna size reduction as high as 40%.

REFERENCES

- [1] K. L. Wong and Y. F. Lin, "Small broadband rectangular microstrip antenna with chip-resistor loadings," *Electron. Lett.*, vol. 33, pp. 1593–1594, Sept. 1997.
- [2] W. S. Chen, "Compact dual-frequency rectangular microstrip antenna with a square slot," *Electron. Lett.*, vol. 34, pp. 231–232, Feb. 1998.
- [3] K. L. Wong and K. P. Yang, "Compact dual-frequency microstrip antenna with a pair of bent slots," *Electron. Lett.*, vol. 34, pp. 225–226, Feb. 1998.
- [4] H. Iwasaki, "A circularly polarized small-size microstrip antenna with a cross slot," *IEEE Trans. Antennas Propagat.*, vol. 44, pp. 1399–1401, 1996.
- [5] S. A. Bokhari, J. F. Zuercher, J. R. Mosig, and F. E. Gardiol, "A small microstrip patch antenna with a convenient tuning option," *IEEE Trans. Antennas Propagat.*, vol. 44, pp. 1521–1528, Nov. 1996.
- [6] K. L. Wong and J. Y. Wu, "Single-feed small circularly polarized square microstrip antenna," *Electron. Lett.*, vol. 33, no. 22, pp. 1833–1834, 1997.
- [7] M. Plessis and J. Cloete, "Tuning stubs for microstrip-patch antennas," *IEEE Antennas Propagat. Mag.*, vol. 36, pp. 52–55, Dec. 1994.
- [8] K. R. Carver and J. W. Mink, "Microstrip antenna technology," *IEEE Trans. Antennas Propagat.*, vol. 29, pp. 2–24, Jan. 1981.

Wen-Shyang Chen (M'97) was born in Nantou, Taiwan, R.O.C., in 1965. He received the B.S. degree in electrical engineering from Tamkang University, Taipei, Taiwan, in 1988, and the M.S. and Ph.D. degrees in electrical engineering from the National Sun Yat-Sen University, Kaohsiung, Taiwan, in 1990 and 1993, respectively.

Since 1993, he has been with the Department of Electronic Engineering, Cheng-Shiu Institute of Technology, Kaohsiung, Taiwan, where he became a Professor in 1999. He has served as Chairman of the Electronic Engineering Department and Computer Center since 1999. His current research interests are in antenna theory and design and electromagnetic wave propagation.

Kin-Lu Wong (M'91-SM'97) received the B.S. degree in electrical engineering from the National Taiwan University, Taipei, Taiwan, R.O.C., in 1981, and the M.S. and Ph.D. degrees in electrical engineering from Texas Tech University, Lubbock, TX, in 1984 and 1986, respectively.

From 1986 to 1987, he was a Visiting Scientist with Max-Planck Institute for Plasma Physics, Munich, Germany. Since 1987 he has been with the Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan, where he

became a Professor in 1991. He also served as Chairman of the Electrical Engineering Department there from 1994 to 1997. From 1998 to 1999 he was a Visiting Scholar with the ElectroScience Laboratory, Ohio State University. He has published more than 165 refereed journal papers and numerous conference articles. He is the author of *Design of Nonplanar Microstrip Antennas and Transmission Lines* (New York: Wiley, 1999).

Chun-Kun Wu was born in Yunlin, Taiwan, R.O.C., in 1974. He received the B.S. and M.S. degrees in electrical engineering from the National Sun Yat-Sen University, Kaohsiung, Taiwan, in 1997 and 1999, respectively.

Since 1999, he has served as a Design Engineer in the Computer and Communications Research Laboratories, Industrial Technology Research Institute, Hsinchu. His current research interests are in antenna theory and design and electromagnetic wave propagation.

Dr. Wong received the Outstanding Research Award from the National Science Council of the Republic of China in 1993. He also received the Young Scientist Award from URSI in 1993, the Outstanding Research Award from National Sun Yat-Sen University in 1994 and the Excellent Young Electrical Engineer Award from the Chinese Institute of Electrical Engineers in 1998. He is a Member of the National Committee of the Republic of China for URSI, Microwave Society of the Republic of China, and Chinese Institute of Electrical Engineers. He is listed in *Who's Who of the Republic of China* and *Who's Who in the World*.