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Infinite Phased-Array Analysis Using
FDTD Periodic Boundary Conditions—
Pulse Scanning in Obligue Directions

Henrik Holter and Hans Steyskéaftellow, IEEE

finite difference time domain (FDTD) is performed by implemen-
tation of periodic boundary conditions. The technique allows for : Antenna

Abstract—Unit cell analysis of infinite phased arrays in the fl
| itati d obli directi in both th dinal I--l—m-' l ! l
pulse excitation and oblique scan directions in both the cardina : 1 1 § . —TElement
|

————-r--—--

and intercardinal planes. To our knowledge, this is the first paper
presenting FDTD computations for intercardinal pulse scanning
in oblique directions. The ordinary Yee lattice is used, which

1 i
makes the algorithm easy to incorporate in an already existing Dy | Al 'Bl 1
FDTD code. Nonperiodic boundaries are truncated by Berenger’s : : :

dipole array is calculated with the new method and validation
is performed via the “element-by-element” approach, i.e., by a
conventional FDTD simulation of a corresponding large finite
array. Excellent agreement is found and the technique has been "= ==—= - e T T T T
numerically stable in all cases analyzed. Dx

|
|
perfectly matched layer (PML). Active impedance of an infinite :- ————pm————p———-— ,—>X
|
1
I

Index Terms—FDTD, numerical analysis, periodic structures, Fig. 1. Top view of the infinite periodic array.

phased array.

excitation and oblique scan directions appear to be approx-
I. INTRODUCTION imate or complicated to implement numerically [2]-[5]. Our
earlier short letter treats pulse scanning in oblique directions

M ANY geometries in electromagnetic problems have 3 the cardinal planes for one-dimensional (1-D) and two-

In th |fnf|n|te per:jodlc _strl:ﬁture It?] onet_orlt){/vo ?'me?s'fonsd'mensional (2-D) arrays [13]. The purpose of the present
n the irequency domain, the mathématcal treatment of su per is twofold. First, and most important, it generalizes our

structures is greatly simplified by Floquet's theorem, whic arlier technique to pulse scanning in intercardinal planes. Sec-

reduces the analysis to that of a single unit cell in the structuy d, the cardinal plane scanning technique is more thoroughly

[1]. Infinite phased-a_rray _an_al_y5|s b_elo_ngs to tr_us_ class 8 plained. To our knowledge, this is the first paper presenting
problems. The_analy5|s of infinite pe_nodlc arrays Is Important gy analysis for pulse scanning in intercardinal planes.
for understanding the electromagnetic behavior of elements In
large finite arrays.
The finite-difference time-domain method (FDTD) is well !l THE PROBLEM OF UNIT-CELL ANALYSIS IN FDTD
suited for antenna analysis. The geometry and material modUnit-cell analysis in the time domain is difficult for the
eling capability make FDTD especially suited for advancefdllowing reason. Consider a unit cell with dimensibi x D,
antenna element development, the wide-band data generatroan infinite periodic array, as shown in Fig. 1, and assume
is especially appropriate for broad-band antennas and the nelaat the array is scanned in the= 0 plane to an anglé in
field data generation is important for impedance calculatiothe positiver direction. The fields at boundaxy and D are
visualization, etc. Therefore, it is most desirable to develahen identical at every instant of time. Therefore, simple time
also a time-domain analogy of Floquet's theorem. independent boundary conditions can be applied. However, at
A number of papers dealing with periodic boundary corboundariesd and B the tangential fields are related according
ditions in FDTD have been published (see, e.g., [2]-[12])

However, the few papers that consider the case of pulse
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is the excitation time delay between adjacent unit cellsend |- = —-——
is the speed of light. Equation (1) implies that tangential field

. i I '
values at boundarys are obtained from time-delayed values L/ Al \ / 'B Y
0

at boundaryA, which are simply saved in a buffer for later

i
use. On the other hand (2), implies that time-advanced field '_‘%__"_[ --»X
values from boundary are used at boundargt. This poses o . o
a major problem since the time advanced values at time, 9 2> Side view of the infinite periodic array.
are not known at time.
center cell
antenna modeled time
[ll. FORMULATION OF THE TECHNIQUE Y element Alin FDTD IB step
In this section, the technique for oblique pulse scanning is (1LY | XY 1Y 1 )1
formulated. The first subsection treats scanning in the cardinal (1 'Y 1 LY | N2
planes. This is a more detailed explanation of the method LY | 1 1Y 1 YS
presented earlier by us in a short letter [13]. In the second LY L Y/IlL.Y | Y*
subsection, intercardinal plane scanning is considered. The LY LY/ Y LY ®
techniques will be explained mainly by two examples. In LY 1Y \Y 1YS¢5
both cases of cardinal and intercardinal scanning, there is no LY d | Ly “
restriction on the size of the FDTD Yee cell, the cell dimension hd LY v 1y 8
Az, Ay, and Az may be chosen arbitrarily. However, the IY Y | y °
numerical time steg\¢ is somewhat dependent on the size of Y | L 1y 10
the unit cell. Furthermore, the number of possible scan angles Y h Y Y !
is a discrete number, which increases with increasing spatial Y Y \ Y Y 12
resolution of the FDTD volume. Yl N Yl 13
Yl M\ v | ¥ 1‘51
A. Cardinal Plane Scanning z: z: \\z: / i: 16
First, the technique for pulse scanning of a 1-D array is Y | Y |- YA Y 17
explained, where afterward the method is extended to a 2-D Y1 Y] YV Y] 18
array scanned in a cardinal plane. Y1 Y 1L Y Yt Y1 19
Consider the 1-D linear infinite array in Fig. 2 and assume Y I Y1 Y1 Y I 20

that. th.e array 1s scanned to .an am‘ﬂeso that th'e pulse Fig. 3. A 20 time-step cycle in the FDTD simulation. The unit cell is shifted
excitation appears to move with the phase veloeifyin 6 iy memory every second time step.
along the array. The dashed rectangle represents a three-

dimensional (3-D) unit cell modeled in FDTD. The idea is now lished by shifi he EDTD vol in th

to move this cell with the speed of light in thedirection. This accomplished by S |t|ng the volume in t e_co_mquer
is accomplished by shifting the FDTD volume in the comput(ﬂ"emory every sec_:ond t|me_ step. l_:urther, the excitation time
memory, which is a fast operation. An observer moving wit elay between adjacent unit cells is [(3) repeated]

the cell sees no field with motion in the positizedirection D, sin 6

but only sees a field entering the unit cell at boundaty e = c @

and leaving the cell at boundary (and boundary”’ and D Let N be the excitation time delay, divided by the time

in Fig. 1). Thus, the fields radiating from the infinitely man¥ten At used in FDTD

array elements to the left of boundary will never reach ]

the moving cell. Normally, the FDTD method requires some n — = _ Dy sin 6 2¢ =20sinf=Npsinf. (5)

kind of boundary condition to truncate the finite computational At ¢ Az

volume. However, with our technique, no boundary conditiolm order to reuse earlier computed values the excitation time

needs to be fulfilled on boundary. Reflections from boundary 7, must be an integer multiple of the time stéy. Possible

A will never catch up with the moving unit cell, so boundargcan angleg are given by the requirement df being an

A need not be considered. The effect is that the boundanyeger greater than zero and less thelp = 20. N = 0

condition represented by (2) is unnecessary. At boundary corresponds to broadside scanning, which is not possible with

time-delayed values obtained from an earlier time point in thiee current technique. However, this is not a limitation since at

FDTD computation are applied. broadside simple time independent boundary conditions may
1) Example: With reference to Fig. 2, assume th&t. = be used (with a nonmoving unit cellN = Ny corresponds to

0.5 m, Yee-cell sizeAx = Ay = Az = D, /10 = 0.05 m a scan angle of 90 which is not possible as explained later.

and time stepAt = Az/2¢. The time for a signal to travel Equation (5) shows that the number of possible scan angles

the distanceD, at the speed of light is, thereforg)A¢. The (Ng — 2) increases with decreasingz.

distanceD,, is divided into ten FDTD cells. After 20 time Assume thatV = 15, corresponding to a scan angleof

steps, the moving unit cell should have moved the distanagcsin15/20 = 48.6°. Fig. 3 shows &0 (=Ny) time step cy-

D,.. Therefore, moving the unit cell with the speed of light igle of the moving unit cell. Only the center cell shown in Fig. 3
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Fig. 4. Implementation of time-independent boundary condition in FDTD
for cardinal plane scanning.

is modeled in FDTD. Actually, it is not necessary to model
the whole unit cell in FDTD. It is sufficient to model the three
FDTD-cells wide part to the left of boundady, shown at time
Step 3. This can be used to reduce the simulation time. At time
Step 3, the tangential electric (or magnetic) field is saved in a
buffer for use at boundarg at time stepl8 (18 = 3+ N). At
time Step 1919 = 4+ N), it is not enough to update only the S i
tangential field at boundarg obtained from time Step 4. The Fig. 5. Some primitive cells in a rectangular lattice with dimension
reason is that after time Step 18, the FDTD volume is shifted. x D,.
one spatial stepx and, therefore, it is necessary to update the
first layer of electric and magnetic field components, -, B. Intercardinal Plane Scanning
and z components) to the left of boundafy. But those field
components are obtained from time Step 4. The algorithm m
be implemented by using a circular buffer (with 15 positio
in the current example) for the time-delayed field values.
At the start of the FDTD simulation all fields are zero in th
moving unit cell. The phase velocity/ sin # of the antenna
excitation is always larger than the speadhené < 90° and,
as time goes on, the pulse excitation will pass the moving ug'

cell. A 9¢° scan angle is not allowed, since the excitatio eriodic lattice. There are many ways to choose a primitive
pulse would never disappear. Element currents and volta T for a given lattice. Fig. 5 shows some primitive cells in

are palculelllte_clj_hfor ]Ehe eletr?r(]ent, V\(/jhlcfhtr?ap[:psgg tq bel Itr'] \ eperiodic rectangular lattice with dimensidn, x D,. The
moylngl cell. i erefore, a f?hen to d eI i simu atlo hape of the primitive cell determines our intercardinal scan
a simple post-processing of the stored element currents jﬂ ne, which is perpendicular to the siddsand B. Thus,
voltages must be performed in order to obtain the currents

. . denotes the angle between theaxis and the scan plane.
and voltages for a particular element in the array. The po ﬁ'stead of moving the unit cell with the speed of lighin
processing is carried out by erasing = 15 time steps of

th t and volt . ~ o0t : | the scan direction, the unit cell is now moved with a speed
€ current and voftage In evgrz% = =0 time-step cycle, larger thanc along thez direction. The discrete set of angles
because they contain no new information. OMy — N new

; . . . is easily found to be
sets of time data are generated in eAghtime-step cycle. This 14 y

In this section, intercardinal plane scanning is treated.
ﬂ%hough the cardinal scanning technique could be used, it
"Rould work only for certain lattice dimensions. Therefore, the
method described in this section is a modified version of the
Rardinal scanning technique. It applies for arbitrary rectangular
lattices.

The scanning technique is based on the premise of con-
?ucting primitive cells, which are alternative unit cells in the

implies that the simulation time increases with increasing scan @ = arcsin ;7 n=1,23 . (6)
angle. After the post-processing, the active impedance may be D, 2
calculated by a discrete Fourier transform of these currents 1+ nD,

and voltages. . _ _ _

2) Extension to Two Dimensionso far, the method de- Additional ang_les can be obtained by moving the unit cell
scribed applies to 1-D arrays as in [13]. Extension to 2-B/Ong they axis. o . .
arrays is accomplished by using time-independent boundaryg@in, the scanning technique is explained with an example.
conditions. Consider Fig. 1, and assume that the array is3) Example: With reference to Figs. 1 and 8, = 0.4 m,
scanned in they = 0 plane to an anglé in the positive v = 0-55m. The FDTD cell sizeAz = 0.04 m, Ay = 0.055
z direction. The tangential field at corresponding points di» @ndAz = 0.05 m. The unit cell shown in Fig. 5(a) is used
boundarie<” and D are then the same and, therefore, a simp|8 the €xample and the analysis is for the scan directiorp}.
time-independent boundary condition applies. Fig. 4 shoﬂ?e. excitation time delay between adjacent unit cells (in the
how the time-independent boundary condition is implementéddirection) is
in FDTD by wrapping the mesh around itself. Of course, the D, sin 6 cos ¢ @)

tangential magnetic field could be used as well. e = ¢
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Fig. 6. FDTD implementation of the unit cell in Fig. 5(a).
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The FDTD time stepAt should be chosen in a way that makes |

¥ 11 x 11 elementsf—————

the moving of the unit cell in the computer memory as easy — -~ 21x21elements
as possible. A convenient choice of the FDTD time step is _ o} % “7 - 31x31elements
2 45 x 45 elements
Az T o
At = . @ :
2 § 10
c 8-
cos @ -
200 , ‘ ‘ . ,
This time step satisfies the Courant-Friedrich-Levy (CFL) ™ 0 B oy %0 1900

stability criterion [see (13)].
As before, defingV as the excitation time delay, divided
by the time stepAt

Fig. 7. Scan directio = 44.4°, ¢ = 71.0°. Active impedance for the
finite array calculated with different number of antenna elements.

Tx ) )
N = — = 20 Sin 9 = NO Sin 9 (9) Dipole impedance
At o — : : ‘ . -
. . . . - Finite Array
Possible scan anglésare again given by the requirement of z —— Infinite Array

1000

(ohm:

N being an integer greater than zero and less tNgnr= 20.

The distanceD, comprises ten FDTD cells and, thus, after
Ny = 20 time steps, the moving unit cell will have moved thed **|
distanceD,. Therefore, the unit cell must be moved in the
computer memory every second time step. The speed of the 2w
moving unit cell is independent akt and is given by

sistance

D D c —— )
= T = z = --- Finite A
v NoAt Tz At ~ cos @ z e (10) soof | infinite /r\rregy ]
At sin 6

This implies that the projection af onto they plane is equal
to the speed. The cases(¢ = 0) = ¢ corresponds to cardinal = %
scanning. If instead, the unit cell is moved in the positive ‘ , . ‘ ‘ ‘ \

Reactance (ohms)
(=]

. . . . 200 300 400 500 600 700 800 900 o8]
direction [Fig. 5(d)] then the unit cell speed would be : Froquency (MH2) o
c Fig. 8. Active impedance for the scan directibn= 11.5°, ¢ = 0°. The
v = sin ¢ 2c (11) first grating lobe enters visible space at 557 MHz and others at 625 and 803
MHz.

The casev(¢ = 90°) = ¢ corresponds to cardinal scanning.
As before, moving of the unit cell is accomplished by
shifting the FDTD volume in the computer memory and the IV. VALIDATION

boundary B is updated with saved field values as shown Using the new technique we calculated the active imped-
in Fig. 3. The tangential fields at corresponding points ainces for an infinite periodic 2-D phased array scanned in both
boundaryC' and D in Fig. 5(a) are the same. Therefore, @ardinal and intercardinal planes. Validation was performed
simple time-independent boundary condition is used at thog@ the “element-by-element” approach, i.e., by a conventional

boundaries. Fig. 6 shows how the unit cell in Fig. 5(@) iEBDTD simulation of a corresponding large finite array.
modeled in FDTD. Boundary is modeled as a staircase (hot

an approximation). ) - o )

The whole idea of moving the unit cell is to make (2)0" Absorbing Boundary Condition on Nonperiodic Boundaries
unnecessary. However, at first glance, one might suspecNonperiodic boundaries, i.e., boundaries in the positive and
that the boundaryA in Fig. 5(a)—(d) could be influencednegativez directions, were truncated by Berenger's perfectly
by propagating fields coming from the negatiyedirection matched layer (PML) [14]. The PML layer had a thickness
[Fig. 5(a)—(c)] or from the negative: direction [Fig. 5(d)] of 12 FDTD cells and a quadratic profile with a reflection
because of the slope of the boundaty However, this does coefficient for normal incidence of 1§. In the conventional
not happen, since the projected unit cell speednto they FDTD simulation, PML was used to truncate all six boundaries
plane is equal to the speed of light. with the same layer characteristics as above.
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TABLE |
SIMULATION DATA FOR Six DIFFERENT TEST CASES

Simulation Data

Scan direction Time step Speed of Simulation time (minutes)
Atin pe infinite array finite array
9 ) FDTD unit cell @ ) t2/tl
11.5° 0.0 Ax/2¢ c 0.9 1440 1600
64.2° 0.0° Ax/2¢ c 7.0 1140 163
64.2° 20.0° Aysinglc c/sing 11.8 1325 112
30.0° 36.0° | Axcos@i2c | clcosp 3.6 2990 831
53.1° 55.5° Axcosglc | clcose 5.0 2020 404
44.4° 71.0° Axcosglc | clcosp 7.7 3410 443
Dipole Impedance Dipole impedance
T T T T T T 1000~ i R T8 B ——
1500F 1 - - - Finite Array 1 |- - Finite Atray
7 ——— Infinite Array 7 aooi l —— Infinite Array | |
£ £ e
<1000 - 1 < 600
'§ % 400} A 4
& s £ o e \
2004-=—""
i | ~— e
0 | L L L 1 L I ol . 1 L 1 i S S |
200 300 400 500 600 700 800 900 1000 200 300 400 500 600 700 800 900 1000
Frequency (MHz) Frequency (MHz)
T T T T T T T 1000 T T o
soof- | - - - Finite Array 1 ' : Finite Array
N —— Infinite Array & } i — Infinite Array
£ £ soof i
3 >
& § ¢ ;/// —— - PRy \
200 300 400 s00 600 700 800 900 1000 00, 300 400 500 w00 700 w0 ano 1000
- Frequency (MHz) Frequency (MHz)

Fig. 9. Active impedance for the scan directin= 64.2°, ¢ = 0°. The Fig. 10. Active impedance for the scan directibn= 64.2°, ¢ = 20.0°.

first grating lobe enters visible space at 395 MHz and others at 588, 78%)e Fig. 11 for the impedance around 470-510 MHz. The first grating lobe

and 888 MHz. enters visible space at 417 MHz and others at 506, 649, 794, 835, and 840
MHz.

When the FDTD volume was shifted in the computerh Aw — MH dw — 27550 MHz. The fini
memory in order to move the unit cell, the PML layer was alg§"€re 2w = 2300 MHz andw = 2r550 MHz. The finite
shifted and updated with time-delayed values from a bufferdfay contained5 x 45 = 2025 dipoles. This is a large number

dipoles, but as can be seen from Fig. 7, the impedance

e : e ~af
Initially, a second-order absorbing boundary condition (fir . C
order at corners and edges) was used to truncate nonp%ﬁ-""rly changes when the number of dipoles is increased. The

odic boundaries. Sometimes, this led to numerical instabili:%:t've impedance is calculated for the center element of the

However, after implementation PML, there have been
indications of numerical instability even when the simulations

were run for very long times (300000 time steps). At < 1 ' (13)

The time step used satisfies the CFL stability criterion.

1 1 1
¢ 5+ 5+ 2
B. Test Cases \/(Aﬂf) (Ay)?2  (Az)

An infinite dipole array was used as test case. The foIIowin%r%ble.I cont.alns simulation data.for the dnfferent test cases.
data are common to all simulation&.. — 0.4. D. — 0.55 m. 0 simulations were performed in the cardinal plape< 0)
EDTD cell sizeAz = 0.04 m, Ay = 0“’055 m ’anéA;« —0.05 and four simulations were performed in intercardinal planes.

. ' ) ' - : Table | shows that the simulation time for the infinite array

midpoints were modeled by setting nine collinear electric fiefgcreases W'th. increasing scan anglewhich is expected as
components,) along subsequent FDTD cells equal to zeroe.Xplamed. earhgr.

The smallest distance between the dipoles and the PML la e}n .aII simulations, the computer use'd was a 300-MHz Intel
was five FDTD cells for both the finite and the infinite array}l.')em'um Il pc (dual processors) equipped with 512 MB of

The frequency spectrum considered was 200—-1000 MHz. mory. .
excitation pulse used was 1) Modeling of the Antenna FeedA simple feed model

which incorporates a series resistance of{b@vas used for
, the dipoles [15]. This feed model reduced the simulation time
v(t) = e~ W/DOE=8/2)A) gin((t — 8/Aw))  (12) significantly.

m. The dipoles, pointing in the direction and fed at the
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Fig. 12. Active impedance for the scan directién= 30.0°, ¢ = 36.0°.
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The antenna voltag€(¢) was calculated as E, Ay, where
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Fig. 13. Active impedance for the scan directién= 53.1°, ¢ = 55.5
The first grating lobe enters visible space at 352 MHz and others at 540, 622,
704, and 736 MHz.
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?gj. 14. Active impedance for the scan directién= 44.4°, ¢ = 71.0°.
The first grating lobe enters visible space at 334 MHz and others at 623, 667,
767, 799, and 978 MHz.

E, is the electric field ?n the feed gap. The total antenna Curremlgnoring this phase factor results in a negative resistance of
Lot (t) at the feed point was calculated from

Tioi(t)

:jl{H-dl.

(14)

about—100 2 around 482 MHz in Fig. 10 for both the finite
and the infinite array.
2) Cardinal Plane Scanningfigs. 8 and 9 shows the sim-

which means that the displacement current is included @tion results for cardinal plane scanning. The agreement
Lo (t). If desired, it is possible to remove the displacemefetween the finite and the infinite array is excellent.
current from (14) as shown in [16].

The active impedance is calculated from the discrete Fourfifhulation results for intercardinal plane scanning. In some
transforms of V() and Li:(t). For the test cases in thisCases, e.g., Figs. 12 and 13 at about 500 MHz, the impedance

paper, it is important to compensate for the time differenc

3) Intercardinal Plane ScanningFigs. 10-14 shows the

the finite array oscillates around the infinite array

At/2 between the voltage and current. Therefore, in the actif@Pedance. These oscillations decrease if more antenna
impedance calculation, the Fourier transformed voltége )
was multiplied by an appropriate phase factor as shown

Z(w)

V(w)e—ijt/Q
Itot(w)

(15)

elements are used. Therefore, they are most likely an effect
caused by the finite number of elements. More interesting is
the 8 = 64.2°, ¢ = 20.0° scan case in Figs. 10 and 11. At

482 MHz, the impedance is very near zero and at 486 MHz
the impedance is very high. This cannot be a regular blind
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spot since a grating lobe has already entered visible spacegiat E. Navarro, B. Gimeno, and J. Cruz, “Modeling of periodic structures

417 MHz. However. it does indicate more or less total power using the finite difference time domain method combined with the
. " . . . Floquet theorem,’Electron. Lett.,vol. 29, no. 5, pp. 446-447, Mar.
reflection and thus implies a main lobe and grating lobe of 1993

low or zero amplitude. The next grating lobe enters visiblg3] H. Holter and H. Steyskal, “Broadband FDTD analysis of infinite phased

; ; ; arrays using periodic boundary conditiorfist. Elect. Eng. Electron.
space at 506 MHz and is therefore unlikely to be associated Lett. vol, 35, no. 10, pp. 758-759, 1999,

with the strange impedance behavior. [14] J. Berenger, “Three-dimensional perfectly matched layer for the absorp-
tion of electromagnetic wavesJ. Comput. Physyol. 127, pp. 363-379,
1996.
V. SUMMARY [15] R. Luebbers and H. Langdon, “A simple feed model that reduces time

; ; ; _ steps needed for FDTD antenna and microstrip calculatioHsEE
A new technique for FDTD analysis of obliquely scan Trans. Antennas Propagat. 44, pp. 1000-1005, July 1996.

ning, pulsed-array antennas has been presented. It reducegi#)eH. Holter, “Antenna feed modeling in the finite difference time domain
computational volume to a single unit cell of the array and, method,” Master’s thesis, Ericsson Radio Syst. AB and Royal Inst.
therefore, is computationally highly efficient. The technique el Nov. 1996.

has been successful applied to a 2-D array of dipoles scanned

in both cardinal and intercardinal planes.
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