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Infinite Phased-Array Analysis Using
FDTD Periodic Boundary Conditions—
Pulse Scanning in Oblique Directions

Henrik Holter and Hans Steyskal,Fellow, IEEE

Abstract—Unit cell analysis of infinite phased arrays in the
finite difference time domain (FDTD) is performed by implemen-
tation of periodic boundary conditions. The technique allows for
pulse excitation and oblique scan directions in both the cardinal
and intercardinal planes. To our knowledge, this is the first paper
presenting FDTD computations for intercardinal pulse scanning
in oblique directions. The ordinary Yee lattice is used, which
makes the algorithm easy to incorporate in an already existing
FDTD code. Nonperiodic boundaries are truncated by Berenger’s
perfectly matched layer (PML). Active impedance of an infinite
dipole array is calculated with the new method and validation
is performed via the “element-by-element” approach, i.e., by a
conventional FDTD simulation of a corresponding large finite
array. Excellent agreement is found and the technique has been
numerically stable in all cases analyzed.

Index Terms—FDTD, numerical analysis, periodic structures,
phased array.

I. INTRODUCTION

M ANY geometries in electromagnetic problems have an
infinite periodic structure in one or two dimensions.

In the frequency domain, the mathematical treatment of such
structures is greatly simplified by Floquet’s theorem, which
reduces the analysis to that of a single unit cell in the structure
[1]. Infinite phased-array analysis belongs to this class of
problems. The analysis of infinite periodic arrays is important
for understanding the electromagnetic behavior of elements in
large finite arrays.

The finite-difference time-domain method (FDTD) is well
suited for antenna analysis. The geometry and material mod-
eling capability make FDTD especially suited for advanced
antenna element development, the wide-band data generation
is especially appropriate for broad-band antennas and the near-
field data generation is important for impedance calculation,
visualization, etc. Therefore, it is most desirable to develop
also a time-domain analogy of Floquet’s theorem.

A number of papers dealing with periodic boundary con-
ditions in FDTD have been published (see, e.g., [2]–[12]).
However, the few papers that consider the case of pulse
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Fig. 1. Top view of the infinite periodic array.

excitation and oblique scan directions appear to be approx-
imate or complicated to implement numerically [2]–[5]. Our
earlier short letter treats pulse scanning in oblique directions
in the cardinal planes for one-dimensional (1-D) and two-
dimensional (2-D) arrays [13]. The purpose of the present
paper is twofold. First, and most important, it generalizes our
earlier technique to pulse scanning in intercardinal planes. Sec-
ond, the cardinal plane scanning technique is more thoroughly
explained. To our knowledge, this is the first paper presenting
a FDTD analysis for pulse scanning in intercardinal planes.

II. THE PROBLEM OF UNIT-CELL ANALYSIS IN FDTD

Unit-cell analysis in the time domain is difficult for the
following reason. Consider a unit cell with dimension
in an infinite periodic array, as shown in Fig. 1, and assume
that the array is scanned in the plane to an angle in
the positive direction. The fields at boundary and are
then identical at every instant of time. Therefore, simple time
independent boundary conditions can be applied. However, at
boundaries and the tangential fields are related according
to

(1)

(2)

where is one of the tangential components of the
electric or magnetic field.

(3)
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is the excitation time delay between adjacent unit cells and
is the speed of light. Equation (1) implies that tangential field
values at boundary are obtained from time-delayed values
at boundary , which are simply saved in a buffer for later
use. On the other hand (2), implies that time-advanced field
values from boundary are used at boundary. This poses
a major problem since the time advanced values at time
are not known at time.

III. FORMULATION OF THE TECHNIQUE

In this section, the technique for oblique pulse scanning is
formulated. The first subsection treats scanning in the cardinal
planes. This is a more detailed explanation of the method
presented earlier by us in a short letter [13]. In the second
subsection, intercardinal plane scanning is considered. The
techniques will be explained mainly by two examples. In
both cases of cardinal and intercardinal scanning, there is no
restriction on the size of the FDTD Yee cell, the cell dimension

, , and may be chosen arbitrarily. However, the
numerical time step is somewhat dependent on the size of
the unit cell. Furthermore, the number of possible scan angles
is a discrete number, which increases with increasing spatial
resolution of the FDTD volume.

A. Cardinal Plane Scanning

First, the technique for pulse scanning of a 1-D array is
explained, where afterward the method is extended to a 2-D
array scanned in a cardinal plane.

Consider the 1-D linear infinite array in Fig. 2 and assume
that the array is scanned to an angleso that the pulse
excitation appears to move with the phase velocity
along the array. The dashed rectangle represents a three-
dimensional (3-D) unit cell modeled in FDTD. The idea is now
to move this cell with the speed of light in thedirection. This
is accomplished by shifting the FDTD volume in the computer
memory, which is a fast operation. An observer moving with
the cell sees no field with motion in the positivedirection
but only sees a field entering the unit cell at boundary
and leaving the cell at boundary (and boundary and
in Fig. 1). Thus, the fields radiating from the infinitely many
array elements to the left of boundary will never reach
the moving cell. Normally, the FDTD method requires some
kind of boundary condition to truncate the finite computational
volume. However, with our technique, no boundary condition
needs to be fulfilled on boundary. Reflections from boundary

will never catch up with the moving unit cell, so boundary
need not be considered. The effect is that the boundary

condition represented by (2) is unnecessary. At boundary
time-delayed values obtained from an earlier time point in the
FDTD computation are applied.

1) Example: With reference to Fig. 2, assume that
m, Yee-cell size m

and time step . The time for a signal to travel
the distance at the speed of light is, therefore, . The
distance is divided into ten FDTD cells. After 20 time
steps, the moving unit cell should have moved the distance

. Therefore, moving the unit cell with the speed of light is

Fig. 2. Side view of the infinite periodic array.

Fig. 3. A 20 time-step cycle in the FDTD simulation. The unit cell is shifted
in memory every second time step.

accomplished by shifting the FDTD volume in the computer
memory every second time step. Further, the excitation time
delay between adjacent unit cells is [(3) repeated]

(4)

Let be the excitation time delay divided by the time
step used in FDTD

(5)

In order to reuse earlier computed values the excitation time
must be an integer multiple of the time step. Possible

scan angles are given by the requirement of being an
integer greater than zero and less than .
corresponds to broadside scanning, which is not possible with
the current technique. However, this is not a limitation since at
broadside simple time independent boundary conditions may
be used (with a nonmoving unit cell). corresponds to
a scan angle of 90, which is not possible as explained later.
Equation (5) shows that the number of possible scan angles
( ) increases with decreasing .

Assume that , corresponding to a scan angleof
arcsin . Fig. 3 shows a time step cy-
cle of the moving unit cell. Only the center cell shown in Fig. 3
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Fig. 4. Implementation of time-independent boundary condition in FDTD
for cardinal plane scanning.

is modeled in FDTD. Actually, it is not necessary to model
the whole unit cell in FDTD. It is sufficient to model the three
FDTD-cells wide part to the left of boundary, shown at time
Step 3. This can be used to reduce the simulation time. At time
Step 3, the tangential electric (or magnetic) field is saved in a
buffer for use at boundary at time step . At
time Step 19 ( ), it is not enough to update only the
tangential field at boundary obtained from time Step 4. The
reason is that after time Step 18, the FDTD volume is shifted
one spatial step and, therefore, it is necessary to update the
first layer of electric and magnetic field components (- -,
and components) to the left of boundary. But those field
components are obtained from time Step 4. The algorithm may
be implemented by using a circular buffer (with 15 positions
in the current example) for the time-delayed field values.

At the start of the FDTD simulation all fields are zero in the
moving unit cell. The phase velocity of the antenna
excitation is always larger than the speedwhen and,
as time goes on, the pulse excitation will pass the moving unit
cell. A 90 scan angle is not allowed, since the excitation
pulse would never disappear. Element currents and voltages
are calculated for the element, which happens to be in the
moving cell. Therefore, at the end of the FDTD simulation,
a simple post-processing of the stored element currents and
voltages must be performed in order to obtain the currents
and voltages for a particular element in the array. The post-
processing is carried out by erasing time steps of
the current and voltage in every time-step cycle,
because they contain no new information. Only new
sets of time data are generated in eachtime-step cycle. This
implies that the simulation time increases with increasing scan
angle. After the post-processing, the active impedance may be
calculated by a discrete Fourier transform of these currents
and voltages.

2) Extension to Two Dimensions:So far, the method de-
scribed applies to 1-D arrays as in [13]. Extension to 2-D
arrays is accomplished by using time-independent boundary
conditions. Consider Fig. 1, and assume that the array is
scanned in the plane to an angle in the positive

direction. The tangential field at corresponding points on
boundaries and are then the same and, therefore, a simple
time-independent boundary condition applies. Fig. 4 shows
how the time-independent boundary condition is implemented
in FDTD by wrapping the mesh around itself. Of course, the
tangential magnetic field could be used as well.

Fig. 5. Some primitive cells in a rectangular lattice with dimension
Dx � Dy.

B. Intercardinal Plane Scanning

In this section, intercardinal plane scanning is treated.
Although the cardinal scanning technique could be used, it
would work only for certain lattice dimensions. Therefore, the
method described in this section is a modified version of the
cardinal scanning technique. It applies for arbitrary rectangular
lattices.

The scanning technique is based on the premise of con-
structing primitive cells, which are alternative unit cells in the
periodic lattice. There are many ways to choose a primitive
cell for a given lattice. Fig. 5 shows some primitive cells in
a periodic rectangular lattice with dimension . The
shape of the primitive cell determines our intercardinal scan
plane, which is perpendicular to the sidesand . Thus,

denotes the angle between theaxis and the scan plane.
Instead of moving the unit cell with the speed of lightin
the scan direction, the unit cell is now moved with a speed
larger than along the direction. The discrete set of angles

is easily found to be

(6)

Additional angles can be obtained by moving the unit cell
along the axis.

Again, the scanning technique is explained with an example.
3) Example: With reference to Figs. 1 and 5, m,

m. The FDTD cell size m,
m, and m. The unit cell shown in Fig. 5(a) is used
in the example and the analysis is for the scan direction ().
The excitation time delay between adjacent unit cells (in the

direction) is

(7)
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Fig. 6. FDTD implementation of the unit cell in Fig. 5(a).

The FDTD time step should be chosen in a way that makes
the moving of the unit cell in the computer memory as easy
as possible. A convenient choice of the FDTD time step is

(8)

This time step satisfies the Courant–Friedrich–Levy (CFL)
stability criterion [see (13)].

As before, define as the excitation time delay divided
by the time step

(9)

Possible scan anglesare again given by the requirement of
being an integer greater than zero and less than .
The distance comprises ten FDTD cells and, thus, after

time steps, the moving unit cell will have moved the
distance . Therefore, the unit cell must be moved in the
computer memory every second time step. The speed of the
moving unit cell is independent of and is given by

(10)

This implies that the projection of onto the plane is equal
to the speed. The case corresponds to cardinal
scanning. If instead, the unit cell is moved in the positive
direction [Fig. 5(d)] then the unit cell speed would be

(11)

The case corresponds to cardinal scanning.
As before, moving of the unit cell is accomplished by

shifting the FDTD volume in the computer memory and the
boundary is updated with saved field values as shown
in Fig. 3. The tangential fields at corresponding points on
boundary and in Fig. 5(a) are the same. Therefore, a
simple time-independent boundary condition is used at those
boundaries. Fig. 6 shows how the unit cell in Fig. 5(a) is
modeled in FDTD. Boundary is modeled as a staircase (not
an approximation).

The whole idea of moving the unit cell is to make (2)
unnecessary. However, at first glance, one might suspect
that the boundary in Fig. 5(a)–(d) could be influenced
by propagating fields coming from the negativedirection
[Fig. 5(a)–(c)] or from the negative direction [Fig. 5(d)]
because of the slope of the boundary. However, this does
not happen, since the projected unit cell speedonto the
plane is equal to the speed of light.

Fig. 7. Scan direction� = 44:4�, ' = 71:0�. Active impedance for the
finite array calculated with different number of antenna elements.

Fig. 8. Active impedance for the scan direction� = 11:5�, ' = 0�. The
first grating lobe enters visible space at 557 MHz and others at 625 and 803
MHz.

IV. V ALIDATION

Using the new technique we calculated the active imped-
ances for an infinite periodic 2-D phased array scanned in both
cardinal and intercardinal planes. Validation was performed
via the “element-by-element” approach, i.e., by a conventional
FDTD simulation of a corresponding large finite array.

A. Absorbing Boundary Condition on Nonperiodic Boundaries

Nonperiodic boundaries, i.e., boundaries in the positive and
negative directions, were truncated by Berenger’s perfectly
matched layer (PML) [14]. The PML layer had a thickness
of 12 FDTD cells and a quadratic profile with a reflection
coefficient for normal incidence of 10. In the conventional
FDTD simulation, PML was used to truncate all six boundaries
with the same layer characteristics as above.
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TABLE I
SIMULATION DATA FOR SIX DIFFERENT TEST CASES

Fig. 9. Active impedance for the scan direction� = 64:2�, ' = 0
�. The

first grating lobe enters visible space at 395 MHz and others at 588, 789,
and 888 MHz.

When the FDTD volume was shifted in the computer
memory in order to move the unit cell, the PML layer was also
shifted and updated with time-delayed values from a buffer.

Initially, a second-order absorbing boundary condition (first
order at corners and edges) was used to truncate nonperi-
odic boundaries. Sometimes, this led to numerical instability.
However, after implementation PML, there have been no
indications of numerical instability even when the simulations
were run for very long times (300 000 time steps).

B. Test Cases

An infinite dipole array was used as test case. The following
data are common to all simulations: , m.
FDTD cell size m, m, and
m. The dipoles, pointing in the direction and fed at the
midpoints were modeled by setting nine collinear electric field
components ( ) along subsequent FDTD cells equal to zero.
The smallest distance between the dipoles and the PML layer
was five FDTD cells for both the finite and the infinite array.
The frequency spectrum considered was 200–1000 MHz. The
excitation pulse used was

(12)

Fig. 10. Active impedance for the scan direction� = 64:2�, ' = 20:0�.
See Fig. 11 for the impedance around 470–510 MHz. The first grating lobe
enters visible space at 417 MHz and others at 506, 649, 794, 835, and 840
MHz.

where MHz and MHz. The finite
array contained dipoles. This is a large number
of dipoles, but as can be seen from Fig. 7, the impedance
clearly changes when the number of dipoles is increased. The
active impedance is calculated for the center element of the
array.

The time step used satisfies the CFL stability criterion.

(13)

Table I contains simulation data for the different test cases.
Two simulations were performed in the cardinal plane ( )
and four simulations were performed in intercardinal planes.
Table I shows that the simulation time for the infinite array
increases with increasing scan angle, which is expected as
explained earlier.

In all simulations, the computer used was a 300-MHz Intel
Pentium II pc (dual processors) equipped with 512 MB of
memory.

1) Modeling of the Antenna Feed:A simple feed model
which incorporates a series resistance of 50was used for
the dipoles [15]. This feed model reduced the simulation time
significantly.



HOLTER AND STEYSKAL: INFINITE PHASED-ARRAY ANALYSIS—PULSE SCANNING 1513

Fig. 11. Active impedance for the scan direction� = 64:2, ' = 20:0�.
This is Fig. 10 magnified around 470–510 MHz.

Fig. 12. Active impedance for the scan direction� = 30:0�, ' = 36:0�.
The first grating lobe enters visible space at 451 MHz and others at 551, 618,
879, 897, 903, and 908 MHz.

The antenna voltage was calculated as , where
is the electric field in the feed gap. The total antenna current

at the feed point was calculated from

(14)

which means that the displacement current is included in
. If desired, it is possible to remove the displacement

current from (14) as shown in [16].
The active impedance is calculated from the discrete Fourier

transforms of and . For the test cases in this
paper, it is important to compensate for the time difference

between the voltage and current. Therefore, in the active
impedance calculation, the Fourier transformed voltage
was multiplied by an appropriate phase factor as shown

(15)

Fig. 13. Active impedance for the scan direction� = 53:1�, ' = 55:5�.
The first grating lobe enters visible space at 352 MHz and others at 540, 622,
704, and 736 MHz.

Fig. 14. Active impedance for the scan direction� = 44:4�, ' = 71:0�.
The first grating lobe enters visible space at 334 MHz and others at 623, 667,
767, 799, and 978 MHz.

Ignoring this phase factor results in a negative resistance of
about 100 around 482 MHz in Fig. 10 for both the finite
and the infinite array.

2) Cardinal Plane Scanning:Figs. 8 and 9 shows the sim-
ulation results for cardinal plane scanning. The agreement
between the finite and the infinite array is excellent.

3) Intercardinal Plane Scanning:Figs. 10–14 shows the
simulation results for intercardinal plane scanning. In some
cases, e.g., Figs. 12 and 13 at about 500 MHz, the impedance
of the finite array oscillates around the infinite array
impedance. These oscillations decrease if more antenna
elements are used. Therefore, they are most likely an effect
caused by the finite number of elements. More interesting is
the , scan case in Figs. 10 and 11. At
482 MHz, the impedance is very near zero and at 486 MHz
the impedance is very high. This cannot be a regular blind
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spot since a grating lobe has already entered visible space at
417 MHz. However, it does indicate more or less total power
reflection and thus implies a main lobe and grating lobe of
low or zero amplitude. The next grating lobe enters visible
space at 506 MHz and is therefore unlikely to be associated
with the strange impedance behavior.

V. SUMMARY

A new technique for FDTD analysis of obliquely scan-
ning, pulsed-array antennas has been presented. It reduces the
computational volume to a single unit cell of the array and,
therefore, is computationally highly efficient. The technique
has been successful applied to a 2-D array of dipoles scanned
in both cardinal and intercardinal planes.
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