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An Investigation of New FETD/ABC Methods of
Computation of Scattering from

Three-Dimensional Material Objects
Kenneth S. Komisarek, Nan N. Wang, Allen K. Dominek, and Raiford Hann

Abstract—Finite-element time-domain (FETD) and absorbing
boundary condition (ABC) methods for computation of scattering
from three-dimensional (3-D) material objects are developed and
investigated. The methods involve discrete-time FETD solution of
the time-domain Helmholtz equation in a region that comprises
the 3-D scatterer and its immediate vicinity. Coupling of the
solution to the surrounding infinite space is achieved through the
ABC. This FETD/ABC formulation is examined for a number of
various geometries: sphere, plate, and ogive.

I. INTRODUCTION

SINCE the introduction of the finite-element method (FEM)
to the arena of computational electromagnetics, it has

been almost exclusively limited to its use in finite-element
frequency-domain (FEFD) methods. Up until recent times,
finite-difference time-domain (FDTD) [1] was employed al-
most exclusively for time-domain scattering problems. Only in
recent times have finite-element formulations been developed
for the time domain [2]–[4]. The primary reason for the recent
interest in the time domain with regards to finite elements [5]
is that of possible gains in computational efficiency, especially
in regard to economizing central processing unit (CPU) time.
Barring the development of faster computers, the only way to
achieve a decrease in time spent on complex electromagnetic
scattering calculation is to devise new and more time-efficient
methods of solution. Hence, the development and investiga-
tion of three-dimensional (3-D) finite-element time-domain
(FETD) methods is chronicled here.

FETD reduces a scattering problem into a matrix of real
constant coefficient nonhomogeneous differential equations,
with time as the independent variable and a vector of electro-
magnetic field coefficients as the set of dependent variables.
These field coefficients are decoupled from the geometric
quantities that describe the scatterer (i.e., position, shape,
composition) since it is assumed that the scatterer geometry
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does not change with time. All of the geometric information
about the scatterer, as well as its coupling to the surrounding
space, is incorporated into the matrices of real constant coeffi-
cients. The electromagnetic wave that illuminates the scatterer
is incorporated into a real excitation vector, thus making
the differential equation system nonhomogeneous. The field
coefficients for a particular excitation are found by discretely
integrating forward or stepping the differential equation system
in time. Near and far fields can then be found from the time
history of the field coefficients.

The earliest finite-element formulations were developed for
bounded problems such as waveguides and cavities [6], [7]. An
unbounded scattering problem requires coupling of the scat-
terer and its immediate vicinity to the surrounding unbounded
region. In the literature, this coupling has been accomplished
chiefly by three methods, the perfectly matched layer (PML)
[8], [9], the boundary-element method (BEM) [10], [11],
and the absorbing boundary condition (ABC) [12]–[14]. The
ABC method has been chosen here because of simplicity. A
FETD formulation with a simple first-order Sommerfeld-type
ABC has been developed by Ali and Costache [15] and also
used by Mahadevan and Mittra [16]. Mahadevan and Mittra
employed two coupled Maxwell’s curl equations in their FETD
formulation. Presented in this work is a Helmholtz equation
based FETD formulation involving a second-order ABC.

The paper is based on the work of Komisarek [17] and is or-
ganized as follows. Section II presents the basic FETD matrix
equation. Section III presents the second-order ABC coupling.
Two time-stepping methods employed to integrate the resulting
FETD matrix equations are outlined in Section IV. The results
of some computations involving the new FETD methods are
presented in Section V. Some concluding remarks are given
in Section VI.

II. FETD FORMULATION

The FETD formulation begins with Maxwell’s curl equa-
tions in space-time for isotropic inhomogeneous media
given by

(1)

and

(2)
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where is the permittivity, is the permeability, is
the electrical conductivity, and is the magnetic conduc-
tivity. The relationships between these four quantities and
the frequency-domain complex permittivity and complex
permeability are given by

(3)

and

(4)

where is the time-harmonic radian frequency and the
time convention is assumed wherever the frequency domain
is involved.

Elimination of the magnetic field in (1) and (2) yields the
following double curl or vector Helmholtz equation:

in (5)

is a volume that contains the scatterer and some of the free-
space surrounding the scatterer.is bounded by a surface
that exists completely in free-space and is not in contact with
the scatterer. is called the truncation boundary. Equation
(5) is weakened throughout via weighting with a vector
function as follows:

(6)

Within , all of space is meshed into tetrahedral elements.
The material in each element is homogeneous. Additionally,
resistive card and PEC surfaces may reside on the triangular
interfaces between the elements. Each triangular resistive or
PEC surface is associated with one of its two adjoining
elements. The electric field throughoutis expanded in terms
of vector basis functions as follows:

(7)

where the time-independent are the linear edge-based
vector expansion functions of [19] and the are their
corresponding time-varying expansion coefficients, one for
each of the edges of the mesh not on a PEC surface.
The particular edge-based vector expansion employed in (7)
has been chosen since it is not plagued by the spurious
contributions or nonphysical resonances in the solution that
are characteristic of nodal-based expansions [20].

Application of vector identities, one of Gauss’ theorems,
time-domain resistive boundary conditions, the expansion of
(7), and the choice of testing functions , results
in the FETD matrix equation

(8)

where the elements of the finite-element matrices are given by

(9)

(10)

(11)

where is the resistance sheet resistivity and the elements of
the excitation vector are given by

(12)

for and , where is the incident
electric field and is the scattered electric field. Since the
weighting and expansion functions are the same, this is a
Galerkin formulation. The dependence of the integral in (12)
is eliminated through the use of the ABC presented in the
next section.

III. A BSORBING BOUNDARY CONDITIONS

The ABC employed on the truncation boundaryis a time-
domain version of the frequency domain second-order ABC
of Webb et al. [13] given by

(13)

where

(14)

is the local radius of curvature of the truncation boundary,
is the speed of light in free-space, andis a scalar parameter.
The subscript denotes the transverse vector component. In
the interest of preserving the symmetry of the matrices of the
final form of the FETD formulation, is set equal to two in
(13). Fourier transform theory yields the time domain analog
of (13) given by

(15)

Substitution of (15) into (12), recognizing that for a linear
vector expansion the last integral in (15) is zero, separation
of the incident and total fields and subsequent rearrangement
leads to the FETD/ABC matrix equation

(16)
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where the elements of the ABC matrix are given by

(17)

the elements of the ABC matrix are given by

(18)

and the elements of the excitation vector are given by

(19)

Note that the first order ABC (Sommerfeld radiation condition)
formulation can be recovered from (16) by ignoring the term
involving and the last integral in (19).

IV. TIME-STEPPING METHODS

The FETD/ABC matrix equation of (16) possesses the basic
structure given by

(20)

The solution for the time-domain total electric field involves
stepping this integro-differential equation forward in time
given a set of initial conditions. This is accomplished by dis-
cretizing (20) in time steps of . Two discretization schemes
are presented here. The first is the backward Euler method,
which approximates the first derivative in time with a simple
backward difference [21]. This yields the following solution
for , the vector of expansion coefficients at time
given by:

(21)

Note that the integral has been approximated with step inte-
gration.

The second discretization scheme is themethod [2], [22],
which is based on a local temporal quadratic approximation
of the electric field coefficients. Application of the method

to (20) while approximating the integral with step integration
yields

(22)

where and are scalar parameters.
In order to obtain a solution, a discretization scheme must

possess the property of stability. Stability ensures that errors in
the solution such as roundoff do not grow without bound. It can
be shown that the backward Euler scheme is unconditionally
stable; that is, it is stable for all . The method can be
shown to be unconditionally stable for and .
Appendix A provides a proof for these stability conditions.

In order to start a solution, initial conditions are needed. The
initial conditions are that the fields are everywhere zero in
and, thus, and are both chosen to be. Time stepping
is terminated when all transients have sufficiently decayed. In
the case of continuous wave excitation, the time history of

is converted to phasor form in order to get the far field
at the frequency of the excitation. In the case of a Gaussian
pulse excitation, the time-domain far field at a single point
is computed from the time history of and then the fast
Fourier transform is used to obtain the far field over a band of
frequencies. In the computer code, the inverses in (21) and (22)
are not computed explicitly, but rather the conjugate gradient
method for sparse matrices [23] is employed to compute.

V. RESULTS

Five sets of results of FETD computations on an IRIS
Indigo SGI workstation with a MIPS R4400 processor with a
150-MHz clock rate are presented here. The first set of results
concern a comparison between FEFD and FETD. Fig. 1 shows
the bistatic RCS for a 0.1-m-radius PEC sphere at 0.3 GHz for
both FEFD and FETD and various mesh densities. It is noted
that the FEFD and FETD curves match each other for each
value of mesh density. Fig. 1 shows that FETD can produce
the same results as FETD. Note also that a mesh density of
20 nodes/ produces adequate results.

The second set of results concern the ABC order and
distance. Figs. 2 and 3 show FETD computed backscatter radar
cross section (RCS) for a 0.1-m-radius PEC sphere with the
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Fig. 1. FEFD and FETD backward Euler (�t = :005 ns) generated bistatic
RCS(�̂�̂) in the� = 0� plane for a 0.1-m-radius PEC sphere with first-order
ABC. (Both FEFD and FETD curves overlap.)

Fig. 2. FETD backward Euler (�t = :005 ns) generated monostatic RCS
(�̂�̂) for a 0.1-m-radius PEC sphere with ABC radius of 0.16 m.

Fig. 3. FETD backward Euler (�t = :005 ns) generated monostatic RCS
(�̂�̂) for a 0.1-m-radius PEC sphere with ABC radius of 0.18 m.

ABC boundary respectively located at 0.06 m and 0.08 m
above the sphere surface. It can be seen that ABC distance is
a critical factor in FETD computation. It can also be seen that
the second-order ABC, as implemented in Section III, has the
same level of performance as the first-order ABC.

The third set of results concerns the time-domain resistive
boundary condition. Fig. 4 shows normal backscatter RCS
for a 0.2-m-square resistive sheet of resistivity 200/
as computed by FEFD and the moment method. There is

Fig. 4. Far-field backscatter(�̂�̂) for a 0.2 m square resistive sheet of
R = 200 
/ with first-order ABC, Theta method with�1 = 0 and
�2 = 0:125.

Fig. 5. Far-field backscatter(�̂�̂) for a 0.2-m square PEC sheet with
first-order ABC,� method with�1 = 0 and�2 = 0:125.

Fig. 6. Time-domain backscattered far fields for the ogive, with excitation
incident along the main axis.

excellent agreement between the FEFD and moment method
solutions. As a further check of the resistive boundary con-
dition, backscatter RCS results for a PEC sheet of the same
dimensions are shown in Fig. 5. Two FETD curves are dis-
played, one for the PEC edge unknowns removed and the
other with the edges left in the mesh and the resistive boundary
condition of 0.001 / employed. As can be seen, both curves
match each other and have good agreement with the moment
method solution.

The fourth set of results concern a PEC ogive. Fig. 6 show
FETD generated time-domain backscattered far fields for axial
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Fig. 7. Frequency-domain copole far field for the ogive, with excitation
incident along the main axis.

TABLE I
� METHOD (�1 = 0;�2 = 0:125) FETD TIMING STATISTICS FOR .3-GHz

CW EXCITATION FOR THE 0.1-m-RADIUS PEC SPHERE FORVARIOUS

NUMBER OF EXTRAPOLATION POINTS FOR THEINITIAL CG GUESS VECTOR

incidence. Superimposed over the copole far-field curve is
an ogive twice its length in light nanoseconds. A Gaussian
pulse was employed as the excitation and the returns from the
front and back ends of the ogive are easily seen. However, the
distance between the returns is a little shorter than expected.
This is probably due to the coarseness of the mesh near
the tips which has the effect of making the ogive appear
smaller than it is. This coarseness is also probably the cause of
the nonzero cross-pole return. Fig. 7 show frequency-domain
axially backscattered RCS as computed by FETD for three
meshes of the ogive and by the moment method. As can be
seen, the FETD formulation is capable of producing reasonable
RCS results for an object such as the PEC ogive.

The fifth and last set of results concern timing issues.
It was found that the provision of the conjugate gradient
algorithm at each time step with an initial guess vector greatly
increased the speed of the FETD computation. The guess
vector was computed by fitting a separate polynomial curve
to each of the edge unknowns based on the behavior at the
previous few time steps. The guess vector is then obtained
from evaluating the polynomials at the present time step. As
can be seen in Table I for the CW excitation and in Table II
for the Gaussian pulse excitation, three-point extrapolation
(using the time history for the last three time steps) is the
best in terms of solution time and memory requirements. The
major benefit of extrapolation for the initial guess vector is
the excellent convergence characteristics acheived with the
conjugate gradient algorithm (10–30 iterations per time step).

Three-point extrapolation was employed in a timing test
based on problem size, the results of which are given in Fig. 8.

TABLE II
� METHOD (�1 = 0;�2 = 0:125) FETD TIMING STATISTICS

FOR 1.25-GHz-BANDWIDTH GAUSSIAN PULSE EXCITATION FOR

THE 0.1-m-RADIUS PEC SPHERE FORVARIOUS NUMBER OF

EXTRAPOLATION POINTS FOR THE INITIAL CG GUESS VECTOR

Fig. 8. Finite-element free-space bar calculation timing statistics.

The test geometry employed were five rectangular free-space
bars with a cross section of 0.01 m by 0.01 m and lengths
of 0.01, 0.1, 1, 10, and 50 m, with a broadside incident field.
FEFD and FETD CW calculations were made at 0.01, 0.1, and
1 GHz. In the FETD CW case, 1.25 cycles were allowed to
pass through the mesh before termination of the calculation
and there were 200 time steps per cycle. As can be seen,
FEFD is by far preferable time-wise to FETD CW for single
frequency calculations. Also, there is little dependence on
frequency as far as solution time is concerned. Also included
in Fig. 8 are the timing statistics for an FETD Gaussian pulse
calculation. In this case, the solution time is the time required
for the bulk of the pulse to propagate through the mesh. As
can be seen, the FETD Gaussian pulse approach produces a
broad-band solution in roughly the same amount of time as a
single FETD CW calculation. It is anticipated that the FETD
pulse approach will be useful for resolving sharp variations in
the RCS such as with high resonances, where many closely
spaced frequency points would be required. Finally, Fig. 8 also
suggests that FETD has a solve time of order, where is
the number of edge unknowns in the finite-element mesh. In
conclusion, memory requirements are generally the same for
FEFD and FETD, the choice of algorithm depends upon the
problem: FEFD for single-frequency applications and FETD



1584 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 47, NO. 10, OCTOBER 1999

for broad-band applications. Note that as the unknown count
becomes large, FEFD techniques have convergence concerns
while none have been observed with this FETD technique.

VI. CONCLUSION

A FETD formulation based on the Helmholtz equation with
a second-order ABC has been developed for 3-D material
scatterers. It has been found that ABC boundary distance is
a crucial factor in FETD RCS computation. The second-order
ABC was found to work just as well as the first-order ABC.
Excellent results were obtained for various PEC and resistive
geometries. It was found that three-point polynomial extrapo-
lation for the CG guess vector greatly improved solution time.
Finally, FETD/ABC has been shown to have a potential for
use in timely computation of RCS with sharp variations in a
small frequency band as opposed to the conventional FEFD
approach.

APPENDIX A

In order to obtain a solution, a discretization scheme must
possess the property of stability. Stability ensures that errors in
the solution such as roundoff do not grow without bound. For
the first-order ABC, it can be shown that the backward Euler
scheme is unconditionally stable; that is, stable for any.
Likewise, for the first-order ABC, the method can be shown
to be unconditionally stable for and . In both
cases, the property of unconditional stability can be easily
shown through the bilinear transformation. The stability of
the discretization schemes for the second-order ABC requires
similar treatment and is outlined here.

Following is verification of the method stability condition
for the first-order ABC with a backward Euler scheme.

Application of the transform to (21) yields

(23)

The above summation for large time reduces to

(24)

Insertion of the resulting summation expression into the-
transformed equation yields

(25)

Replacement of with the bilinear transformation of
yields

(26)

(27)

The above polynominal in can be separated into four
inequalites for each power of to yield

(28)

(29)

(30)

and

(31)

These four inequalities are true for any since the matrices
, , , and are all positive definite which results in

unconditional stability.
Following is the verification of the method stability

condition for the second-order ABC with a backward Euler
scheme.

Application of the transform to (22) yields

(32)

Insertion of the previous summation reduction yields

(33)
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Application of the same bilinear transformation as before and
separating for each power of yields

(34)

(35)

(36)

and

(37)

These four inequalities are true for any when ,
, and since the matrices , , , and

are all positive definite.
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