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An Investigation of New FETD/ABC Methods of
Computation of Scattering from
Three-Dimensional Material Objects

Kenneth S. Komisarek, Nan N. Wang, Allen K. Dominek, and Raiford Hann

Abstract—Finite-element time-domain (FETD) and absorbing does not change with time. All of the geometric information
boundary condition (ABC) methods for computation of scattering about the scatterer, as well as its coupling to the surrounding
from three-dimensional (3-D) material objects are developed and g5506 is incorporated into the matrices of real constant coeffi-

investigated. The methods involve discrete-time FETD solution of . . . .
the time-domain Helmholtz equation in a region that comprises cients. The electromagnetic wave that illuminates the scatterer

the 3-D scatterer and its immediate vicinity. Coupling of the IS incorporated into a real excitation vector, thus making
solution to the surrounding infinite space is achieved through the the differential equation system nonhomogeneous. The field

ABC. This FETD/ABC formulation is examined for a number of  coefficients for a particular excitation are found by discretely

various geometries: sphere, plate, and ogive. integrating forward or stepping the differential equation system
in time. Near and far fields can then be found from the time
I. INTRODUCTION history of the field coefficients.

The earliest finite-element formulations were developed for

o the arena of computational electromagnetics, it h é)unded problems _SUCh as waveguid_es and cayities [6], [7]. An
been almost exclusively limited to its use in finite-elemerﬂnbounded scattering problem requires coupling of the scat-

frequency-domain (FEFD) methods. Up until recent timelerer and its immediate vicinity to the surrounding unbounded
\ région. In the literature, this coupling has been accomplished

finite-difference time-domain (FDTD) [1] was employed al-*
most exclusively for time-domain scattering problems. Only i hiefly by three methods, the perfectly matched layer (PML)
recent times have finite-element formulations been develo <1J [9], the bqundary-element m_e_thod (BEM) [10], [11],
for the time domain [2]—-[4]. The primary reason for the rece d the absorbing boundary condition (ABC) [12]_.[14].' _The
interest in the time domain with regards to finite elements [ BC method h.as bgen chpsen h.ere because of simplicity. A
is that of possible gains in computational efficiency, especial B‘(I;thormbulatlc;n W'Ith a;?plAellﬂrstc-jo(r:der S(:]mmlerfeld—ctjyple
in regard to economizing central processing unit (CPU) time, as been developed by All an ostache [15] an aso
Barring the development of faster computers, the only way ed by Mahadevan and M'ttr? [16]. Mahgdev_an and Mittra
achieve a decrease in time spent on complex electromagn H&ploye_d two coupled I\/_Iaxw_ell S curl_equaﬂons in their FETD
scattering calculation is to devise new and more time-efficie mulation. Presenteq n this \_/vork is a Helmholtz equation
ised FETD formulation involving a second-order ABC.

methods of solution. Hence, the development and investi Th is based on th K of Komi K171 and i
tion of three-dimensional (3-D) finite-element time-domain ne paper s based on the work o om|sare.[ Jandis or-
(FETD) methods is chronicled here ganized as follows. Section Il presents the basic FETD matrix
FETD reduces a scattering problem into a matrix of re uation. Section Il presents the second-order ABC coupling.
0 time-stepping methods employed to integrate the resulting

constant coefficient nonhomogeneous differential equatio TD matri i tined in Section IV. Th it
with time as the independent variable and a vector of electro- malrix equations are outlined in Section 1. The results

magnetic field coefficients as the set of dependent variabl«g.?g.some computations involving the new FETD methods are

These field coefficients are decoupled from the geometﬁ&esszgttii?‘ '\?I Section V. Some concluding remarks are given

guantities that describe the scatterer (i.e., position, shaBE,
composition) since it is assumed that the scatterer geometry

SNCE the introduction of the finite-element method (FEM
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where ¢ is the permittivity, p/ is the permeability,c. is where the elements of the finite-element matrices are given by

the electrical conductivity, and,,, is the magnetic conduc- )
tivity. The relationships between these four quantities and 1%, ., = /VCWm Wy dV (9)
the frequency-domain complex permittivity and complex p
- . €
permeability . are given by Rg, = A <o—€, + Eg,,,)wm -w, dV
e=d—j" (3) +/R‘1(ﬁ><w ). (A x wp)dS  (10)
W m n
and Sl
W= ul —janl (4) Sme = / —/(V X Wrn) . (V X Wn) dv
w v H
wherew is the time-harmonic radian frequency and thet +/ 0607" Wiy + Wy, dV (11)
time convention is assumed wherever the frequency domain v
is involved. where R is the resistance sheet resistivity and the elements of
Elimination of the magnetic field in (1) and (2) yields thdhe excitation vector are given by
following double curl or vector Helmholtz equation: 1 ;
Wing dotble eurt orv & Squet ful) = == [ W - (Ax V x [ +£]dS  (12)
1 c ,0%€ Ho Js ‘
VX EV XeTeay form =1,---N andn = 1,---, N, where& is the incident
¢ 08 oo, . electric field and¢” is the scattered electric field. Since the
+ |:O—e, + Eo—rn:| s + ”, £=0inV. (5) weighting and expansion functions are the same, this is a

Galerkin formulation. The dependence of the integral in (12)
V is a volume that contains the scatterer and some of the frée-eliminated through the use of the ABC presented in the
space surrounding the scatter&ris bounded by a surfacgé next section.

that exists completely in free-space and is not in contact with

the scattererS is called the truncation boundary. Equation [ll. ABSORBING BOUNDARY CONDITIONS

(5) is weakened throughout via weighting with a vector

> The ABC employed on the truncation boundatys a time-
function v,,, as follows:

domain version of the frequency domain second-order ABC

1 2¢ of Webb et al. [13] given by
/Vm- Vx =VxE+d— . .1 A
v ! ot? A XV XE® = jwc E] +~(r)V x [i(n -V x E?)]
+ {ae + e—lam} %4 ﬂs) v =0. (6 + (5= )y(n)Vi(V - E7)
. ! !
oot +(2 = s)jwes BrVi(i- B (13)
Within V, all of space is meshed into tetrahedral elementghere
The material in each element is homogeneous. Additionally, co/2

resistive card and PEC surfaces may reside on the triangular ¥(r) = m (14)

interfaces between the elements. Each triangular resistive or ) )
PEC surface is associated with one of its two adjoinirfg'S the local radius of curvature of the truncation boundayy,

elements. The electric field throughddtis expanded in terms 1S the speed of light in free-space, ané a scalar parameter.
of N vector basis functions as follows: The subscriptt denotes the transverse vector component. In

. the interest of preserving the symmetry of the matrices of the
‘ final form of the FETD formulations is set equal to two in
&€= Z en(t)Wn ) (13). Fourier transform theory yields the time domain analog

n=l of (13) given by

where the time-independentr,, are the linear edge-based AV X E

vector expansion functions of [19] and thg(t) are their 19 o It

corresponding time-varying expansion coefficients, one for = —_—&7 +V x [n(nv X —°/ T rtes d’/‘):|

each of theN edges of the mesh not on a PEC surface. Co Ot 2 Jo

The particular edge-based vector expansion employed in (7) 4V, <V- Co /t 2 (r—t) s d’r). (15)

has been chosen since it is not plagued by the spurious 2 Jo t

contributions or nonphysical resonances in the solution thatgpstitution of (15) into (12), recognizing that for a linear

are characteristic of nodal-based expansions [20]. vector expansion the last integral in (15) is zero, separation

_ Application of vector identities, one of Gauss’ theoremgyf the incident and total fields and subsequent rearrangement
time-domain resistive boundary conditions, the expansion g s to the FETD/ABC matrix equation

(7), and the choice ofV testing functionsv,, = w,,, results P2 J
in the FETD matrix equation TFWe(t) +(Rp + RA)%e(t) + Sre(t)
2

Tp %e(t) + RF%e(t) + Sre(t) =£(t) (8) + QA/ e%(T_t)e(T) dr =v(t) (16)
0
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where the elements of the ABC matiX,, are given by to (20) while approximating the integral with step integration
yields
1
R, — m o Wnt) dS 17 p
A = o [ (W W) S [6t2T+6t<2@1+ >R+(2®2+®)S

the elements of the ABC matri@Q 4 are given by t 64204 © )Q} -1
2 1

Co . .
A, = -V m)( -V 2)]dS (18 ; ; ;
Qann = 3,0 / [ Vo win ) (2 - V7 ¢ v (18) (205 + OV — (405 — D)vI~L 4 (20, — O, )vI~2
and the elements of the excitation vectdrt) are given by n ——T n @R + (405 - 1)S
| 6t2 6t
1 - i co s .
um(t) = —E SWrn (nx Vx&YdS + 6t(405 — 1 — ¢~ 7020, + @ﬂ)Q} e/l
_,_i —_— ag ds + /te%“(f—t) [ 1 1 -2
e Js m gt 2o — _6 T+6t 2@1—— R+(2@2—®1)S_e
x /(ﬁ VX wa)(h -V x EVdSdr. (19) +6t[(205 — O1) — (405 — 1)e= T
S 7 b
—2%0 6t e (i—j)bt i
Note that the first order ABC (Sommerfeld radiation condition) + (2024 O1)e 1Q ; © | (22

formulation can be recovered from (16) by ignoring the term
involving Q4 and the last integral in (19). where©; and ©; are scalar parameters.

In order to obtain a solution, a discretization scheme must

possess the property of stability. Stability ensures that errors in

IV. TIME-STEPPING METHODS the solution such as roundoff do not grow without bound. It can
The FETD/ABC matrix equation of (16) possesses the badig shown that the backward Euler scheme is unconditionally
structure given by stable; that is, it is stable for alit. The ©® method can be
shown to be unconditionally stable fé¥; > 0 and ©, > g.
d2 Appendix A provides a proof for these stability conditions.
T ze(t) + Re(t) + Se(?) In order to start a solution, initial conditions are needed. The
t initial conditions are that the fields are everywhere zerd'in
+ Q/ e T e(r) dr = v(t). (20) and, thuse® ande—* are both chosen to b& Time stepping
0

is terminated when all transients have sufficiently decayed. In
The solution for the time-domain total electric field involveéhe case of continuous wave excitation, the time history of
e’ is converted to phasor form in order to get the far field

stepping this integro-differential equation forward in tlmet the frequency of the excitation. In the case of a Gaussian
given a set of initial conditions. This is accomplished by dis
pulse excitation, the time-domain far field at a single point

cretizing (20) in time steps aft. Two discretization schemesIS computed from the time history @ and then the fast

are presented here. The first is the backward Euler meth Ourier transform is used to obtain the far field over a band of

which approximates the first derivative in time with a simpl . . )

requencies. In the computer code, the inverses in (21) and (22)
backward difference [21]. This yields the following solutlon

are not computed explicitly, but rather the conjugate gradient

J
for e/, the vector of expansion coefficients at time= ;¢ method for sparse matrices [23] is employed to compite

given by:
' 1 -1 V. RESULTS
¢ = [&QTJF 5 R+S+6tQ} Five sets of results of FETD computations on an IRIS
Indigo SGI workstation with a MIPS R4400 processor with a
vi4+ { T + R} oi-1_ L iz 150-MHz clock rate are presented here. The first set of results
6t2 ot 65t2 concern a comparison between FEFD and FETD. Fig. 1 shows
j—1 the bistatic RCS for a 0.1-m-radius PEC sphere at 0.3 GHz for
— §tQ Ze%(i—j)étei ) (21) both FEFD and FETD and various mesh densities. It is noted
el that the FEFD and FETD curves match each other for each

value of mesh density. Fig. 1 shows that FETD can produce
Note that the integral has been approximated with step intee same results as FETD. Note also that a mesh density of
gration. 20 nodes) produces adequate results.
The second discretization scheme is @henethod [2], [22], The second set of results concern the ABC order and
which is based on a local temporal quadratic approximatialistance. Figs. 2 and 3 show FETD computed backscatter radar
of the electric field coefficients. Application of ti@ method cross section (RCS) for a 0.1-m-radius PEC sphere with the
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Fig. 3. FETD backward Eulero{ = .005 ns) generated monostatic RCS
(69) for a 0.1-m-radius PEC sphere with ABC radius of 0.18 m.
excellent agreement between the FEFD and moment method

solutions. As a further check of the resistive boundary con-
ABC boundary respectively located at 0.06 m and 0.08 ghtion, backscatter RCS results for a PEC sheet of the same
above the sphere surface. It can be seen that ABC distancéifgensions are shown in Fig. 5. Two FETD curves are dis-
a critical factor in FETD computation. It can also be seen thatayed, one for the PEC edge unknowns removed and the
the second-order ABC, as implemented in Section Ill, has thgher with the edges left in the mesh and the resistive boundary
same level of performance as the first-order ABC. condition of 0.00X2/00 employed. As can be seen, both curves
The third set of results concerns the time-domain resistimeatch each other and have good agreement with the moment
boundary condition. Fig. 4 shows normal backscatter RG@&ethod solution.
for a 0.2-m-square resistive sheet of resistivity 2001 The fourth set of results concern a PEC ogive. Fig. 6 show
as computed by FEFD and the moment method. There HETD generated time-domain backscattered far fields for axial
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incidence. Superimposed over the copole far-field curve is , A
. . . . . . 2 | i 1 (I L
an ogive twice its length in light nanoseconds. A Gaussian % 2 3 4 5
pulse was employed as the excitation and the returns from the log10(Edge Unknowns)

front and back ends of the ogive are easily seen. However, i g Finjte-element free-space bar calculation timing statistics.
distance between the returns is a little shorter than expected.

This is probably due to the coarseness of the mesh near _
the tips which has the effect of making the ogive appe;[,he test geometry employed were five rectangular free-space

smaller than it is. This coarseness is also probably the caus®®fs With a cross section of 0.01 m by 0.01 m and lengths
the nonzero cross-pole return. Fig. 7 show frequency-dom&h0.01, 0.1, 1, 10, and 50 m, with a broadside incident field.
axially backscattered RCS as computed by FETD for thr&&FD and FETD CW calculations were made at 0.01, 0.1, and
meshes of the ogive and by the moment method. As can b&Hz. In the FETD CW case, 1.25 cycles were allowed to
seen, the FETD formulation is capable of producing reasonabss through the mesh before termination of the calculation
RCS results for an object such as the PEC ogive. and there were 200 time steps per cycle. As can be seen,
The fifth and last set of results concern timing issueSEFD is by far preferable time-wise to FETD CW for single
It was found that the provision of the conjugate gradieftequency calculations. Also, there is little dependence on
algorithm at each time step with an initial guess vector greafifequency as far as solution time is concerned. Also included
increased the speed of the FETD computation. The gudddig. 8 are the timing statistics for an FETD Gaussian pulse
vector was computed by fitting a separate polynomial curg@lculation. In this case, the solution time is the time required
to each of the edge unknowns based on the behavior at faethe bulk of the pulse to propagate through the mesh. As
previous few time steps. The guess vector is then obtaine@h be seen, the FETD Gaussian pulse approach produces a
from evaluating the polynomials at the present time step. Asoad-band solution in roughly the same amount of time as a
can be seen in Table | for the CW excitation and in Table fingle FETD CW calculation. It is anticipated that the FETD
for the Gaussian pulse excitation, three-point extrapolatigilse approach will be useful for resolving sharp variations in
(using the time history for the last three time steps) is tHBe RCS such as with highy resonances, where many closely
best in terms of solution time and memory requirements. Tlpaced frequency points would be required. Finally, Fig. 8 also
major benefit of extrapolation for the initial guess vector isuggests that FETD has a solve time of ordgrwherelV is
the excellent convergence characteristics acheived with the number of edge unknowns in the finite-element mesh. In
conjugate gradient algorithm (10-30 iterations per time stegpnclusion, memory requirements are generally the same for
Three-point extrapolation was employed in a timing te$tEFD and FETD, the choice of algorithm depends upon the
based on problem size, the results of which are given in Fig.@oblem: FEFD for single-frequency applications and FETD
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cobt

for broad-band applications. Note that as the unknown count(¢™+ [T 4 §tR + 6t>S 4 6t2Q])(w® 4 3w? + 3w + 1)
becomes large, FEFD techniques have convergence concerns

cobt

— 2 O»,a
while none have been observed with this FETD technique. ([T +6tR + 6t°S] + 7 2T + 6tR])
x (w® +w? —w—1)
VI. CONCLUSION (2T + §R] + ™5 T)(w® — w? — w + 1)
A FETD formulation based on the Helmholtz equation with — T(w® — 3w? + 3w —1) = 0. (27)

a second-order ABC has been developed for 3-D materjﬁlg b | inal i b ted into f
scatterers. It has been found that ABC boundary distance. 'ee Zr?g:ffrog;fhm'réa elrngf; iin .eled separated Into four
a crucial factor in FETD RCS computation. The second-ordgfequal pow vl

ABC was found to work just as well as the first-order ABC. AT + 26tR + 6£2S + §tQ]

Excellent results were obtained for various PEC and resistive

28] >
geometries. It was found that three-point polynomial extrapo- ;t [4T + 26¢R + 8¢ 2S] =0 s (28)
lation for the CG guess vector greatly improved solution time. e [4T + 46tR + 36t°S + 36t°Q]
Finally, FETD/ABC has been shown to have a potential for +[-4T +6t*S] > 0 (29)
use in timely computation of RCS with sharp variations in a cobt 2 3
small frequency band as opposed to the conventional FEFD ¢ 261R + 362 S +36°Q]
approach. — [26tR + 6t°S] 2 0 (30)
and
APPENDIX A bt

= 2 301 — §428 >
In order to obtain a solution, a discretization scheme must ¢ [6°S +6£°Q] — 6678 2 0. (31)

possess the property of stability. Stability ensures that errorsTihese four inequalities are true for afiy since the matrices
the solution such as roundoff do not grow without bound. F@, S, T, and Q are all positive definite which results in
the first-order ABC, it can be shown that the backward Eulenconditional stability.
scheme is unconditionally stable; that is, stable for @by  Following is the verification of the® method stability
Likewise, for the first-order ABC, th& method can be shown condition for the second-order ABC with a backward Euler
to be unconditionally stable f&®; > 0 and©; > 1/8. In both scheme.
cases, the property of unconditional stability can be easily Application of theZ transform to (22) yields
shown through the bilinear transformation. The stability of 1
the discretization schemes for the second-order ABC requires <T + [2@1 + —} 5tR + [202 4+ @1]6t2s> 22
similar treatment and is outlined here. 2

Following is verification of theé® method stability condition — (2T + 40,6tR + [40, — 1]6t7S)z
for the first-order ABC with a backward Euler scheme. 1 5

Application of theZ transform to (21) yields + <T + {2@1 B 5} SR + 207 — O4]¢¢ S)

(T + 6tR + 6t2S)22 — (2T + 6tR)z +6t°Q([202 + 01127 — 40, 2

i cobt s - J cobt (i)
T +682Q22 Y ()9 = 0. (23) +[202 - O1]> (7)) =0, (32)
i=1 =1
The above summation for large tinf¢ — oo) reduces to Insertion of the previous summation reduction yields
J o cobt coét 1:| 2
cobt (i colt g, - e | TH |20 + - |6tR 4 (20, 4 O1]6t°S
lim (00 = 3 )= LG < { ‘T2 202501
T k=0 (e )-1

_ _ _ o + [20, + ©,]683 )753
Insertion of the resulting summation expression into the (262 15Q

transformed equation yields

co bt

(e [T+ &8tR + 6t°S + 6°Q))2°
— ([T + 6tR + 6£2S] + ¢ 5 [2T + 6tR])2> + ™7 (2T + 40, 6tR + [40, — 1]6£°S + 4616t3Q))22
+ (2T + 6tR] + ¢ ™5 T)z — T =0. (25)

1
_ <T + |:2@1 + §:| 6tR + [2@2 + @1](5t28

+ <2T + 40, 5tR + [46, — 1]6t*S
Replacement of: with the bilinear transformation of+
yields

co 6t
v

1
+ e <T + |:2@1 — §:| 6tR + [2@2 — @1](5t28

(" [T+ 6tR + 678 + 6£°Q))(1 + w)*
o bt — 3

— ([T + 6tR + 6t°S] + e = [2T + 6tR]) 1202 — Ol Q>>Z

X (L+w)*(1 = w) + (2T + fR] + ¢ T)

x (14+w)(1—w)* — T(1—w)®=0. (26)

- <T + [2@1 - ﬂ §tR + 20, — @1]&25) =0. (33)
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Application of the same bilinear transformation as before antk]
separating for each power af yields

cobt

¢ v (4T + 80, 6tR + [80, — 1]6£2S + 4[0, + ©,]6t°Q)
+ (4T + 801 6tR + [802 — 1]6¢*S) > 0 (34)

[17]

(18]

cobt
6 T

(4T + [801 + 2]6tR + [507 + 401 — 1]6t°S

19
+ (602 + 80,]6t°Q) + (—4T + [-80; + 2]5tR (o]

x [-80, + 40, + 1]6tS) > 0 (35) a0
cott (21]
e v (26tR 4+ [40; + 1]6t%S + 40,6t°Q) 22
— (26tR + [46; — 1]6¢?S) > 0 (36)
23]
and
¢ [5t2S + [40, — 40,]68°Q) — 628 > 0. (37)

These four inequalities are true for ady when ©; > 0,
0, > 1/8, andO, > ©; since the matriceR, S, T, andQ
are all positive definite.
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