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Generalized Material Models in TLM—Part |I:
Materials with Frequency-Dependent Properties
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TABLE |

Abstract—This paper presents the fundamentals of a unified
THE ELECTROMAGNETIC QUANTITIES

approach for the treatment of general material properties in time-

domain simulation based on transmission-line modeling (TLM). Quantity Symbol |  Units
Linear frequency-dependent isotropic materials are dealt with Electric field E Vm T
in the first instance. The iteration schemes for one-dimensional Magnetic field il Am™!
(1-D) and three-dimensional (3-D) models are developed from Electric current density L A m‘z
Maxwell's curl equations and the constitutive relations. Results Magnetic voltage density S | VT
are presented showing the accuracy of this approach. In a Electric flux density D C m
companion paper, the approach is extended to the treatment of Magnetic flux density B Wb m,
anisotropic materials. Free ele(:trl(.: current den31§y Ios A 11172
Free magnetic voltage density | J,,, Vm
Index Terms—Anisotropic materials, frequency-dependent ma- Electric conductivity o Sm-?
terials, nonhomogeneous media, time-domain electromagnetics, Magnetic resistivity Om Qm™!
transmission-line modeling. Electric susceptibility Xe
Magnetic susceptibility Xm
Free-space permittivity €0 FmT
|. INTRODUCTION Free-space permeability 10 Hm™!

LONG with the finite-difference time-domain (FDTD)

\ method [1], [2], transmission-line modeling (TLM) [3], g}-[10] and extended to more general media by Weedon [11].
[4] is a dlfferenugl time-domain mgthod for the S|.mulat|or]g\pp|ying this approach to TLM, in this papeg transforms
of electromagnetic wave propagation. However, in FDTDye ysed to develop models of frequency-dependent dielectric
the electric and magnetic fields are separated in space @hglerial response. To correlate with previous studies reported
time by half a space-step and half a time-step respectively, the |iterature, the formulation is validated using three
whereas in TLM, all fields are solved at the same poillyamples that have been previously studied in FDTD. First,
in space (i.e., at the center of the cell) and at the samgy plasma slab of Luebbers [12] is modeled in TLM using a
time. For description of propagation in complex materialgequency-dependent conductivity rather than the permittivity
such as those with anisotropic material tensors or dlsplaylagproach used in FDTD. Second, as an example of a first-
magnetoelectric coupling [5] in which it is necessary to SONgqer dielectric material, the reflection coefficient of Luebbers’
the fields simultaneously, TLM offers a more straightforsj,_\vater interface [13] is modeled. Finally, propagation in

ward solution than FDTD. As an introduction to this techgeliey's second-order (Lorentz) dielectric [14] is studied. Al
nique, in this paper, the TLM algorithms for one-dimensiong|ymerical results gave close agreement with analysis.
(1-D) and three-dimensional (3-D) models involving linear

frequency-dependent isotropic dielectric media are developed
from Maxwell’s equations and the constitutive relations. In a [l. FORMULATION
companion paper [6], the more general formulation to include
the modeling of anisotropic materials is described. It is showx Maxwell’s Equations and the Constitutive Relations
that TLM leads to a more efficient formulation for anisotropic
problems when compared with FDTD. The method developg
here is based on that of de Menezes and Hoefer [7]. Howev,
the present method based Briransforms is more efficient and
offers a systematic approach to the treatment of all material Vx H J 8 D
properties including anisotropy, magnetoelectric coupling, and {_v x_E} = {frj + ot [E} (1)
nonlinearities. Z-transform methods have been utilized by N - B
Sullivan for the development of iteration procedures in FDTDhe electromagnetic quantities are defined in Table I.

The constitutive relations for the current and voltage den-
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Fig. 1. One-dimensional TLM node describing propagation:.in

1 1 1 1
Equation (3) expresses the constitutive relations for the flux
densities. In the general case, the material parameters of the
constitutive relations describe causal time functions Fig. 2. Development of the 1-D node.
Q _ EOE+50X€ *E (3)
B |poH + poxm xH |’ derivative is transformed using/dt — s = /At where At

is the time-step. The spatial derivative is normalized using

Substitution of (2) and (3) into (1) yields 9/0x — (1/A)0/9z and speed of propagation in the 1-D

VxH Jes model is the speed of light in free-spac&//At = ¢ [4].
-VxE| T g Applying these transformations to (5) leads to
oexE d €0E+€0X,*E} d [i i v, V, + x. V,
= |77 = |+ = = er= 1, 4 _ Y |ty | e Yy =Yy T Xe Vy
|:a"l * E:| ot |:I“LOE + HoXm * E ( ) oT |:Vy :| |:sz :| |:7’rn iz :| ts |:Lz + Xm iz :| ) (7)
The timg—domain m(_)del represents a discr_ete—time solutiongy application of Stokes’ theorem using the integration con-
(4), solving for the fields&’ and H at each time-step. toursC, andC, indicated in Fig. 1, (7) becomes
B. 1-D Formulation Vit Vsl lipy | _ |9 Yy +5 Vy+xeVy . ®
‘/4 - V’) sz Tm iz iZXrn iz

In order to illustrate the physical basis of the models with
the minimum of mathematical complexity, the developmer@onverting to the traveling wave format and using superscript
of a 1-D formulation is first described. This sets the scendo denote incident wave quantities, (8) becomes
for the full 3-D formulation presented in the next section. i .

Considering propagation im with the electric field polarized 2[‘/4 + Vﬂ — [ny } = 2[%} + {ge Vy} +§{X€' Vy }
in y and the magnetic field polarized in Fig. 1 shows the Va5 Vi tz T'm bz Xm
1-D model: This node has two portgy(andV;) and two total ()

field quantities £, and H) evaluated at the center of the Ce"'The left-hand side (LHS) of (9) is the external excitation of

The C(;m operations are solv_ehd rL]Jsmg tze m:egratlon c;ontoqﬁ% node consisting of the traveling voltage pulses incident on
Cy andc.. For consistency with the 3-D development, the PO}, oge and any free-source excitation. Defining the LHS of

numbers are from the 3-D nqde to.be Qiscussed in Section II—@) as the reflected fieldsand using superscript to denote
Reduction of (4) to describe this simple case gives reflected wave quantities, (9) is

9 |H. Jefy -
| | = ;" Vi Vi eV —|xeV,
oz [EJ [Jmfz 2{_;2} = 2[& + {;‘{m LJ} +s|:;<m LJ} (10)
e x E, 0 | eoF, +coxe * E
i } LLOHZy—i- HOXm * hylz - ) Defining transmission coefficients, = 2/(2+ g. +3 x.) and

o [am * H,

ot
. tme = 2/(2 4 7m + 5 xm), (10) becomes
Using regular space-stegs: = Ay = Az = Af andry as the .
intrinsic impedance of free-space, the transmission-line model [Vy} _ [tey } , {Vy } . (11)
of (5) is found by application of the field-circuit equivalences [ tmz —z
[4] The solution of (11) for various materials is detailed in

E,=-V,/Af H.=—i./(Aln) Section Ill. Assuming we have calculated the total fields
) V, and ., the reflected voltage pulses on the transmission-
Jepy ==y / (AP M0)  Tpg. = =Vi /AL y ANt ge p

lines now need to be evaluated. The first diagram in Fig. 2
O¢ Ige/(Agﬁo) Om = 7’771770/A£~ (6) " ) ) )
1These quantities are defined as reflected to correlate with previous formula-

Because we are deallng with linear materials by applylng tﬁ s in the literature [7], [15] in which these are the V0|tage$ reflected into the
; infinitesimal stub connecting the link-lines and the load. In this formulation,

Laplace transform the tlme-dpmaln .co.nvqlutlons In (5) .artﬁese quantities are called the reflecfedlds to distinguish them from the
converted to frequency-domain multiplications and the timeflectedvoltageson the transmission lines.
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Fig. 4. Signal flow graph of the TLM process.

, E Po% 3
ERVASS ra v
* c, v F", (16) can be written compactly as
Fig. 3. Three-dimensional node. 2@? 'Zi - Kf =2F". 17)

Because the speed of propagation in the 3-D model is
shows the equivalent circuit of the 1-D node. This network ia¢/At = 2¢ [4], the transmission coefficients atg, =
decomposed into the three circuits shown. The curranésd 2/(4 + g. +52x.) and t,,,.. = 2/(4 + r,, +352%,). The
5 flowing in the transmission lines are found by superpositiacg+D equivalent of (11) is
of the three circuits, i.e.

iy =—Vy+i.+Vi+VE, dis=-V,—i.+Vi+Vi. (12) ‘12” o tey 5’;
The total voltages on the transmission lines are Z: = fez e ’ _V;
Vi=2Vi —iy, Vo= 2Vi—is, s | - :iy
The reflected voltages are obtained from ’ " ’ (18)
Vi=V,-Vi V&i=Vs—Vi (14) Writing the vector of total fields ag” and the matrix of

o i transmission coefficients ds (18) is written compactly as
By substitution of (12) and (13) into (14), the reflected voltages =

are obtained as a function of the incident voltages and the F=t-I". (19)

total fields .
As in the 1-D example, the reflected voltages on the

Vi=V,—i.— V;, Vi=V,+i.— Vi (15) transmission-lines are required. Extending (15) to the 3-D

] ] o model yields
In summary, the field update process is split into three steps. ) ‘
First, the reflected fields are calculated from the incident Vo 7’ (Ve — iy — ‘ﬁ 1
voltages and free-sources using (10). Next, the total fields are Wi Ve +iy = Vg
evaluated using (11). Finally, the reflected transmission-line Va Vo +iz = V3
voltages are obtained using (15) The algorithm is completed Vs Vo —itz— Vo
by the connection process in which the reflected voltages are Va Vy—i. = V3
swapped between nodes to become the incident voltages of Vsl _ | Vute—-V) (20)
the next time step [4]. Ve Vy iz = V7 |7
C. 3-D Formulation The formulation of the 3-D TLM Vr Viy =iz = Vg
method based on the symmetrical condensed node (SCN) [16] Vs Vi—ia = Vg
is developed by extension of the 1-D model discussed in the Vo Vetin— Vg
previous section. The 3-D cell is shown in Fig. 3. Vio Vot -V
The node has 12 portgV,--- V1), and six total field V11 LV, =iy = Vi
quantities(E.,, £y, B, H., H,, and H.) at the center of the \yiting the vector of reflected voltages & and defining the
cell. The external excitation of the 3-D node is matricesR and P, (18) in concise form is
Vo+Vi+Va+Vs) 1" T[ige V" i 4
(Vi Vs + Vo + Vi) iry Yy V=R E-EV=FF-V @)
o MB+VotVio+Vi) | i | _o | Vo i . .
—(Vo— Vo= Va4 Vo) Vie | =7 |=ia | where_z is the vector of.yoltages quent_ on the Ilngs
~(Vio— Vi1 — Vo + W) Vi —iy opposite those u_sed_ to obtdiff. Thus, the iteration process in
—(Va—Va—Vi+V5) Vi —i. the 3-D method is simply an extended form of that previously

(16) developed for the 1-D model. The process is summarized as
the flow diagram of Fig. 4.
Defining the matrixﬁlT, the vector of incident voltageg”, For the modeling of general materials, only the transmission
the vector of free-scIJrceLsf and the vector of reflected fieldsblock £(z) of Fig. 4 needs to be modified. The argument
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Vy' 2 +® T, v, B. Unmagnetized Plasma
+ The frequency-domain electric conductivity of an unmag-
z'S,, netized plasma with collisions is described by a first-order
I conductivity term
VA
Te0
o.(s) = . 27
Sey « (s) 1+ s7. @7
e
+ X In (27), 7. is the collision time and the static electric conduc-
N tivity 0.0 = Nog?7e/m = wleor. Where Ny is the electron
S -9{z) density (»?), ¢ is the electron charge is the electron mass,
e andw, is the plasma frequency. Using normalized conductance
— Jee = Te0lAlng and transforming to theZ-domain using the
S 2X(z) impulse invariant method, (27) becomes
ed
1-3
Fig. 5. Electric field update process in a dielectric material. ge(2) = ‘?fc(—_l//;) (28)
— 218,

2 is the time-shift operator and emphasizes the frequendybere . = e~/7. As described in the previous section,
dependent response of this block. The development(of the model follows from the partial fraction expansion of (23)
for description of frequency-dependent material behavior {gading to
the time-domain is detailed in the next section. gee(1 — 82)
(1+27Hg.(2) = gee(1 = B.) + z_lﬁ. (29)
Ill. FREQUENCY-DEPENDENT MATERIALS ) ‘
Comparison of (23) and (29) gives the coefficiengty =
yg_ec(l — B.) and g.; = 0, with the frequency-dependent
functiong () = a./(1 — 2713,.) wherea, = g..(1 — 32).
Thus, the electric field update scheme in a TLM model of
propagation in an unmagnetized plasma with a frequency-
For clarity, models of dielectric responses in nonmagnetiedependent background susceptibilityxof,, is given by (25)
materials are developed. Because there are no magnetic effeatsl, (26), modified with a conductive material accumulator
the transmission coefficiert},,., of (11) is unity, thus, in all S... The process is
cases studied below, the total magnetic field is found using

In this section, the method for the inclusion of frequenc
dependent material properties in TLM is presented.

A. General Isotropic Materials

— r —1
i = —i”. Reduction of (10) to describe the dielectric case and Vy =Te(2Vy + 2" 5ey) (30)
applying the bilinear transform — 2(1—z~1)/(1421) gives See = — a.Vy + 27 BeSee (31)
1— Z_l Sey = 2Vy1 + /‘Je,Vy + Sec (32)

V7 = 2V, + g.(2)V, + 2< ) X2V  (22)

where T, = (2 4 geo + 2Xeoo) F aNd ke = —(2 — 2xco0)-
As detailed for particular materials in the next sections, fénce the total fields/, andi. and the new values of the
the time-domain modeling of causal material functions, ttRccumulatorsS,. and S, have been evaluated, the reflected
frequency dependence can always be shifted to becom&o#ages on the transmission lines are obtained using (15).
function of the field value at the previous time-step by taking Using this technique, the model of an unmagnetized plasma

1421

partial fraction expansions such as requires two backstores for each electric field component. The
= = B next section details the formulation of the blogk, (#) for
(14 277)ge(7) =geo + 2 (ger +7c(2)) (23) ' the modeling of first-order dielectric media.

(1= 27xe(2) =xe0 = 27 xer + Xe(2). (24)
C. Debye Dielectric

Substitution of (23) and (24) in (22) and manipulating leads to ) ) o )
The frequency-domain electric susceptibility of a first-order

Vy =T.(2V,) +2715,) (25) (Debye) dielectric is
where the coefficient, = (2 + g.o + 2x.0)~! and the main . Axe
accumulatorsS.,,, is Xe(8) = Xeoo + 1T s (33)

Sey =2V, + K Vy — 3. (2)V, + 2X.(2) V- (26) Wherex. is the optical susceptibilityAx. is the susceptibil-
ity contrast of the dispersion, and is the dielectric relaxation

In (26), the coefficienk. = —(2 + ge1 — 2x.1). The process time. As for the plasma model, transforming to tHedomain
described by (25) and (26) is illustrated as the flow graph gfsing B. = e~ yields

Fig. 5. This is the block(z) in Fig. 4 for this particular case.
In the next section, the block g, (z) is developed for the Xe(2) = xemo + Axe(l—fe)

. . T (34)
modeling of an unmagnetized plasma. 1—2715
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The partial fraction expansion shown in (24) leads to the
coefficients y

Xe0 = Xeoo + AX@(]- - /36)7)(61 = Xeoo (35)

and the frequency-dependent function

e /2

1o 2710, (36)

Xe(2)

wherea, /2 = Ax.(1—3.)?. The update scheme for the elec-
tric field in a Debye dielectric with a frequency-independerfig. 6. Phase-variable description of Lorentz media.
normalized conductivity;. is given by (25) and (26), modified

with a dielectric material accumulatdt.,, i.e. X, and X;, the discrete state-space and output equations are

V, =T.2V] +27'5.) (37)
Sea =0V + 2 S (38) PR F R P H e
Sey =2V, + KeVy + Sed (39) X
sa=ih w13 (46)
whereT, = (2 + ge + 2xc0) * andre = —(2+ ge — 2xe1)- X2

As for the plasma model, the algorithm describing a Debye o . _
dielectric requires two backstores per electric field componenfie update scheme for the electric field in a Lorentz dielectric

is
D. Lorentz Dielectric
The frequency-domain electric susceptibility of a second- Vy =12V, + Zflsey) 47
order (Lorentz) dielectric is X1 =2 X1+ 2 ax Xa + V, (48)
Axew? X, =2"1X, (49)
Xe(8) = Xeoo + Y S (40) Sey =2VI + K.V, + b, X1 + U Xo (50)

where 6 is the damping frequency and, is the resonant

! =y whereT. = (24 g. + 2xe0) * andr. = —(24 g. — 2ver).
frequency. Transforming (40) to th& domain gives (249 Xe0) " 2+ Xer)

Thus, the present method for modeling Lorentz materials
Axe(1 — 2A, + A2 + B?)z~! requires three backstores per electric field component. The
Xe(2) = Xeoo + T 154 (AT 1 BY) (41) flow diagram illustrating the discrete state-space system is
¢ c e shown in Fig. 6. This system is the blo&g,(~) of Fig. 5
where using8 = Wi — 62, A, = e~ cos(fAt) and for modeling a Lorentz dielectric.
B. = %2t sin(BAt). Defining coefficientsa; = 2A.,
ay = —(A%2 + B?), and K; = Ax.(1 — 24, + A% + B?),
(41) becomes IV. RESULTS
In this section, results for propagation in three types of
(42) frequency-dependent materials are presented.

Klz_l

1—z2"ta; — 2 2ay

XF,(Z) = Xeoo T

Because of thee=! term in the numerator of the frequency-a. Plasma Slab
depgndent part_ of (42),.there is no need to take a par.t|al.|_he reflection coefficient of the plasma slab originally
fraction expansion to shift the frequency-dependent function .~ . .
: . g Studied in FDTD [12] was calculated using TLM. The material
to the previous time-step. The coefficients of (24) arg = - 9 g 192
= and the frequency-dependent function is parameters were, = 2r x 28.7 x 107, 7. = 50 x 10~ 7 s,
Xel = Xeoo and x... = 0. The space-step was chosen&é = 75 um

V)2 + 2 /2 and the total length of the problem spaceziwas 800 cells

Xe(2) = T— 2 la; — 2 2ay (43)  with the plasma slab having thickness 1.5 cm. In the 3-D
model, the cross-section ip and = was 2 x 2 cells. The
where the coefficients arg; = —2K; andb, = 2K:. The calculated reflection coefficient of the slab for both 1-D and
model is similar to the first-order dielectric, with the dielectri(g_D cases shows agreement with the ana|ytic solution obtained
material accumulator modified to from classical boundary matching methods [5] in Fig. 7. As
b, + 21, noted in [12], it was necessary to run the FDTD simulations
Sea = Vy. (44)  at half the free-space time-step (the Courant limit) in order to

1—2"1a; — 2 2as o . R
avoid instabilities. In the TLM discretization, the models were

An efficient method for the evaluation of this function is theun at the free-space time step and no stability problems were
phase-variable state-space form [17]. Defining state variabkrscountered.
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Fig. 10. Air-Lorentz material interface: electric field distribution after
737.5 ps.
B. Air—Water Interface

~The technique was used to calculate the reflection coeffierivative Gaussian form is propagating at the speed of light
cient of the air-water interface studied in [13]. The materighrough the Lorentz material.

parameters wWerg. .. = 1.8, Ay, = 79.2, 7. = 9.4 x 10712
s, andg, = 0. The 1-D and 3-D models used 1000 nodes in
x of space-ste@d? = 37.5 um. As in the previous example,
the cross section of the 3-D model was two cells in bgth
and z. The calculated frequency-domain reflection coeﬂ‘iciegﬁ
is compared with the analytic solution in Fig. 8.

V. CONCLUSION

In this paper, the iteration schemes for 1-D and 3-D TLM
mulations of linear isotropic frequency-dependent materials
were developed from Maxwell’'s equations and the constitu-
tive relations.Z-transform methods were used to incorporate
frequency-dependent material properties into the TLM algo-
rithm, leading to a formal technique applicable to all linear
As an example of a second-order material, propagation ffaterials. Results have been presented that show that the
the Lorentz material of [14] was studied. The parametefgethod yields accurate results and suffers from no stability
Were: Xeoo = 0.5, Axe = 1.5, wo = 27 x 20 x 10%, and problems. Although this paper has concentrated on isotropic
6 = 0.1wg. The space-step wad/ = 250 um, the problem dielectrics, a unified approach has been introduced that can
space had 1000 cells im, 50 of free-space, and 950 ofpe extended to deal with very general material properties.
Lorentz material. The 3-D domain had a cross section &f 2 In a companion paper, the case of materials with frequency-
2 nodes. In Fig. 9, the calculated frequency-domain reflectigependent anisotropic parameters is considered.
coefficient of the interface shows close agreement with the
analytic solution. Because of the smaller time-step used in 3-
D, the 3-D model performs slightly better than the 1-D model
at higher frequencies. [1] K. S. Yee, “Numerical solution of initial boundary value problems in-

Lo P e b : volving Maxwell’s equations in isotropic medialEEE Trans. Antennas
The ele_ctrlc f|eld_ |n|t!al condition and d|str|_but|on after Propagat, vol. AP-14, pp. 302-307, May 1966.
737.5 ps is shown in Fig. 10. In agreement with the result®] A. Taflove, Computational Electrodynamics: The Finite-Difference

presented in [14]; a sinusoidal precursor is forming ahead CE% Time-Domain Methad Norwood, MA: Artech House, 1995.

. L . ] P. B. Johns and R. L. Beurle, “Numerical solution of 2-dimensional
the main DUIse- Careful examination of Fig. 10sat- 0.24 scattering problems using a transmission-line matidc. Inst. Elect.

m reveals that in the 3-D model, a small spurious pulse of a Eng, vol. 118, no. 9, pp. 1203-1208, Sept. 1971.

C. Air—-Lorentz Material Interface
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