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Generalized Material Models in TLM—Part I:
Materials with Frequency-Dependent Properties
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Abstract—This paper presents the fundamentals of a unified
approach for the treatment of general material properties in time-
domain simulation based on transmission-line modeling (TLM).
Linear frequency-dependent isotropic materials are dealt with
in the first instance. The iteration schemes for one-dimensional
(1-D) and three-dimensional (3-D) models are developed from
Maxwell’s curl equations and the constitutive relations. Results
are presented showing the accuracy of this approach. In a
companion paper, the approach is extended to the treatment of
anisotropic materials.

Index Terms—Anisotropic materials, frequency-dependent ma-
terials, nonhomogeneous media, time-domain electromagnetics,
transmission-line modeling.

I. INTRODUCTION

A LONG with the finite-difference time-domain (FDTD)
method [1], [2], transmission-line modeling (TLM) [3],

[4] is a differential time-domain method for the simulation
of electromagnetic wave propagation. However, in FDTD,
the electric and magnetic fields are separated in space and
time by half a space-step and half a time-step respectively,
whereas in TLM, all fields are solved at the same point
in space (i.e., at the center of the cell) and at the same
time. For description of propagation in complex materials
such as those with anisotropic material tensors or displaying
magnetoelectric coupling [5] in which it is necessary to solve
the fields simultaneously, TLM offers a more straightfor-
ward solution than FDTD. As an introduction to this tech-
nique, in this paper, the TLM algorithms for one-dimensional
(1-D) and three-dimensional (3-D) models involving linear
frequency-dependent isotropic dielectric media are developed
from Maxwell’s equations and the constitutive relations. In a
companion paper [6], the more general formulation to include
the modeling of anisotropic materials is described. It is shown
that TLM leads to a more efficient formulation for anisotropic
problems when compared with FDTD. The method developed
here is based on that of de Menezes and Hoefer [7]. However,
the present method based ontransforms is more efficient and
offers a systematic approach to the treatment of all material
properties including anisotropy, magnetoelectric coupling, and
nonlinearities. -transform methods have been utilized by
Sullivan for the development of iteration procedures in FDTD
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TABLE I
THE ELECTROMAGNETIC QUANTITIES

[8]–[10] and extended to more general media by Weedon [11].
Applying this approach to TLM, in this paper, transforms
are used to develop models of frequency-dependent dielectric
material response. To correlate with previous studies reported
in the literature, the formulation is validated using three
examples that have been previously studied in FDTD. First,
the plasma slab of Luebbers [12] is modeled in TLM using a
frequency-dependent conductivity rather than the permittivity
approach used in FDTD. Second, as an example of a first-
order dielectric material, the reflection coefficient of Luebbers’
air–water interface [13] is modeled. Finally, propagation in
Kelley’s second-order (Lorentz) dielectric [14] is studied. All
numerical results gave close agreement with analysis.

II. FORMULATION

A. Maxwell’s Equations and the Constitutive Relations

The TLM formulation is developed from Maxwell’s curl
equations and the constitutive relations [5]. Equation (1)
expresses Maxwell’s curl equations in compact form

(1)

The electromagnetic quantities are defined in Table I.
The constitutive relations for the current and voltage den-

sities are expressed in (2). In this equation,denotes a
time-domain convolution operation

(2)
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Fig. 1. One-dimensional TLM node describing propagation inx.

Equation (3) expresses the constitutive relations for the flux
densities. In the general case, the material parameters of the
constitutive relations describe causal time functions

(3)

Substitution of (2) and (3) into (1) yields

(4)

The time-domain model represents a discrete-time solution of
(4), solving for the fields and at each time-step.

B. 1-D Formulation

In order to illustrate the physical basis of the models with
the minimum of mathematical complexity, the development
of a 1-D formulation is first described. This sets the scene
for the full 3-D formulation presented in the next section.
Considering propagation in with the electric field polarized
in and the magnetic field polarized in, Fig. 1 shows the
1-D model: This node has two ports (and ) and two total
field quantities ( and ) evaluated at the center of the cell.
The curl operations are solved using the integration contours

and . For consistency with the 3-D development, the port
numbers are from the 3-D node to be discussed in Section II-C.

Reduction of (4) to describe this simple case gives

(5)

Using regular space-steps and as the
intrinsic impedance of free-space, the transmission-line model
of (5) is found by application of the field-circuit equivalences
[4]

(6)

Because we are dealing with linear materials, by applying the
Laplace transform the time-domain convolutions in (5) are
converted to frequency-domain multiplications and the time

Fig. 2. Development of the 1-D node.

derivative is transformed using where
is the time-step. The spatial derivative is normalized using

and speed of propagation in the 1-D
model is the speed of light in free-space, [4].
Applying these transformations to (5) leads to

(7)

By application of Stokes’ theorem using the integration con-
tours and indicated in Fig. 1, (7) becomes

(8)

Converting to the traveling wave format and using superscript
to denote incident wave quantities, (8) becomes

(9)

The left-hand side (LHS) of (9) is the external excitation of
the node consisting of the traveling voltage pulses incident on
the node and any free-source excitation. Defining the LHS of
(9) as the reflected fields1 and using superscript to denote
reflected wave quantities, (9) is

(10)

Defining transmission coefficients and
, (10) becomes

(11)

The solution of (11) for various materials is detailed in
Section III. Assuming we have calculated the total fields

and , the reflected voltage pulses on the transmission-
lines now need to be evaluated. The first diagram in Fig. 2

1These quantities are defined as reflected to correlate with previous formula-
tions in the literature [7], [15] in which these are the voltages reflected into the
infinitesimal stub connecting the link-lines and the load. In this formulation,
these quantities are called the reflectedfields to distinguish them from the
reflectedvoltageson the transmission lines.
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Fig. 3. Three-dimensional node.

shows the equivalent circuit of the 1-D node. This network is
decomposed into the three circuits shown. The currentsand

flowing in the transmission lines are found by superposition
of the three circuits, i.e.

(12)

The total voltages on the transmission lines are

(13)

The reflected voltages are obtained from

(14)

By substitution of (12) and (13) into (14), the reflected voltages
are obtained as a function of the incident voltages and the
total fields

(15)

In summary, the field update process is split into three steps.
First, the reflected fields are calculated from the incident
voltages and free-sources using (10). Next, the total fields are
evaluated using (11). Finally, the reflected transmission-line
voltages are obtained using (15) The algorithm is completed
by the connection process in which the reflected voltages are
swapped between nodes to become the incident voltages of
the next time step [4].

C. 3-D Formulation The formulation of the 3-D TLM
method based on the symmetrical condensed node (SCN) [16]
is developed by extension of the 1-D model discussed in the
previous section. The 3-D cell is shown in Fig. 3.

The node has 12 ports, , and six total field
quantities and at the center of the
cell. The external excitation of the 3-D node is

(16)

Defining the matrix , the vector of incident voltages ,
the vector of free-sources and the vector of reflected fields

Fig. 4. Signal flow graph of the TLM process.

, (16) can be written compactly as

(17)

Because the speed of propagation in the 3-D model is
[4], the transmission coefficients are

and . The
3-D equivalent of (11) is

(18)

Writing the vector of total fields as and the matrix of
transmission coefficients as, (18) is written compactly as

(19)

As in the 1-D example, the reflected voltages on the
transmission-lines are required. Extending (15) to the 3-D
model yields

(20)

Writing the vector of reflected voltages as and defining the
matrices and , (18) in concise form is

(21)

where is the vector of voltages incident on the lines
opposite those used to obtain. Thus, the iteration process in
the 3-D method is simply an extended form of that previously
developed for the 1-D model. The process is summarized as
the flow diagram of Fig. 4.

For the modeling of general materials, only the transmission
block of Fig. 4 needs to be modified. The argument
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Fig. 5. Electric field update process in a dielectric material.

is the time-shift operator and emphasizes the frequency-
dependent response of this block. The development of
for description of frequency-dependent material behavior in
the time-domain is detailed in the next section.

III. FREQUENCY-DEPENDENT MATERIALS

In this section, the method for the inclusion of frequency-
dependent material properties in TLM is presented.

A. General Isotropic Materials

For clarity, models of dielectric responses in nonmagnetic
materials are developed. Because there are no magnetic effects,
the transmission coefficient of (11) is unity, thus, in all
cases studied below, the total magnetic field is found using

. Reduction of (10) to describe the dielectric case and
applying the bilinear transform gives

(22)

As detailed for particular materials in the next sections, for
the time-domain modeling of causal material functions, the
frequency dependence can always be shifted to become a
function of the field value at the previous time-step by taking
partial fraction expansions such as

(23)

(24)

Substitution of (23) and (24) in (22) and manipulating leads to

(25)

where the coefficient and the main
accumulator is

(26)

In (26), the coefficient . The process
described by (25) and (26) is illustrated as the flow graph of
Fig. 5. This is the block in Fig. 4 for this particular case.
In the next section, the block is developed for the
modeling of an unmagnetized plasma.

B. Unmagnetized Plasma

The frequency-domain electric conductivity of an unmag-
netized plasma with collisions is described by a first-order
conductivity term

(27)

In (27), is the collision time and the static electric conduc-
tivity where is the electron
density ( ), is the electron charge, is the electron mass,
and is the plasma frequency. Using normalized conductance

and transforming to the -domain using the
impulse invariant method, (27) becomes

(28)

where As described in the previous section,
the model follows from the partial fraction expansion of (23)
leading to

(29)

Comparison of (23) and (29) gives the coefficients
and with the frequency-dependent

function where .
Thus, the electric field update scheme in a TLM model of
propagation in an unmagnetized plasma with a frequency-
independent background susceptibility of is given by (25)
and (26), modified with a conductive material accumulator

. The process is

(30)

(31)

(32)

where and .
Once the total fields and and the new values of the
accumulators and have been evaluated, the reflected
voltages on the transmission lines are obtained using (15).

Using this technique, the model of an unmagnetized plasma
requires two backstores for each electric field component. The
next section details the formulation of the block for
the modeling of first-order dielectric media.

C. Debye Dielectric

The frequency-domain electric susceptibility of a first-order
(Debye) dielectric is

(33)

where is the optical susceptibility, is the susceptibil-
ity contrast of the dispersion, and is the dielectric relaxation
time. As for the plasma model, transforming to thedomain
using yields

(34)
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The partial fraction expansion shown in (24) leads to the
coefficients

(35)

and the frequency-dependent function

(36)

where . The update scheme for the elec-
tric field in a Debye dielectric with a frequency-independent
normalized conductivity is given by (25) and (26), modified
with a dielectric material accumulator , i.e.

(37)

(38)

(39)

where and .
As for the plasma model, the algorithm describing a Debye

dielectric requires two backstores per electric field component.

D. Lorentz Dielectric

The frequency-domain electric susceptibility of a second-
order (Lorentz) dielectric is

(40)

where is the damping frequency and is the resonant
frequency. Transforming (40) to the domain gives

(41)

where using and
. Defining coefficients ,

, and ,
(41) becomes

(42)

Because of the term in the numerator of the frequency-
dependent part of (42), there is no need to take a partial
fraction expansion to shift the frequency-dependent function
to the previous time-step. The coefficients of (24) are

and the frequency-dependent function is

(43)

where the coefficients are and . The
model is similar to the first-order dielectric, with the dielectric
material accumulator modified to

(44)

An efficient method for the evaluation of this function is the
phase-variable state-space form [17]. Defining state variables

Fig. 6. Phase-variable description of Lorentz media.

and , the discrete state-space and output equations are

(45)

(46)

The update scheme for the electric field in a Lorentz dielectric
is

(47)

(48)

(49)

(50)

where and .
Thus, the present method for modeling Lorentz materials

requires three backstores per electric field component. The
flow diagram illustrating the discrete state-space system is
shown in Fig. 6. This system is the block of Fig. 5
for modeling a Lorentz dielectric.

IV. RESULTS

In this section, results for propagation in three types of
frequency-dependent materials are presented.

A. Plasma Slab

The reflection coefficient of the plasma slab originally
studied in FDTD [12] was calculated using TLM. The material
parameters were , s,
and . The space-step was chosen as m
and the total length of the problem space inwas 800 cells
with the plasma slab having thickness 1.5 cm. In the 3-D
model, the cross-section in and was 2 2 cells. The
calculated reflection coefficient of the slab for both 1-D and
3-D cases shows agreement with the analytic solution obtained
from classical boundary matching methods [5] in Fig. 7. As
noted in [12], it was necessary to run the FDTD simulations
at half the free-space time-step (the Courant limit) in order to
avoid instabilities. In the TLM discretization, the models were
run at the free-space time step and no stability problems were
encountered.
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Fig. 7. Plasma slab: frequency-domain reflection coefficient.

Fig. 8. Air–water interface: frequency-domain reflection coefficient.

B. Air–Water Interface

The technique was used to calculate the reflection coeffi-
cient of the air–water interface studied in [13]. The material
parameters were , ,
s, and . The 1-D and 3-D models used 1000 nodes in

of space-step m. As in the previous example,
the cross section of the 3-D model was two cells in both
and . The calculated frequency-domain reflection coefficient
is compared with the analytic solution in Fig. 8.

C. Air–Lorentz Material Interface

As an example of a second-order material, propagation in
the Lorentz material of [14] was studied. The parameters
were: , , , and

. The space-step was m, the problem
space had 1000 cells in, 50 of free-space, and 950 of
Lorentz material. The 3-D domain had a cross section of 2
2 nodes. In Fig. 9, the calculated frequency-domain reflection
coefficient of the interface shows close agreement with the
analytic solution. Because of the smaller time-step used in 3-
D, the 3-D model performs slightly better than the 1-D model
at higher frequencies.

The electric field initial condition and distribution after
737.5 ps is shown in Fig. 10. In agreement with the results
presented in [14]; a sinusoidal precursor is forming ahead of
the main pulse. Careful examination of Fig. 10 at
m reveals that in the 3-D model, a small spurious pulse of a

Fig. 9. Air–Lorentz material interface: frequency-domain reflection coeffi-
cient.

Fig. 10. Air–Lorentz material interface: electric field distribution after
737.5 ps.

derivative Gaussian form is propagating at the speed of light
through the Lorentz material.

V. CONCLUSION

In this paper, the iteration schemes for 1-D and 3-D TLM
simulations of linear isotropic frequency-dependent materials
were developed from Maxwell’s equations and the constitu-
tive relations. -transform methods were used to incorporate
frequency-dependent material properties into the TLM algo-
rithm, leading to a formal technique applicable to all linear
materials. Results have been presented that show that the
method yields accurate results and suffers from no stability
problems. Although this paper has concentrated on isotropic
dielectrics, a unified approach has been introduced that can
be extended to deal with very general material properties.
In a companion paper, the case of materials with frequency-
dependent anisotropic parameters is considered.

REFERENCES

[1] K. S. Yee, “Numerical solution of initial boundary value problems in-
volving Maxwell’s equations in isotropic media,”IEEE Trans. Antennas
Propagat., vol. AP-14, pp. 302–307, May 1966.

[2] A. Taflove, Computational Electrodynamics: The Finite-Difference
Time-Domain Method. Norwood, MA: Artech House, 1995.

[3] P. B. Johns and R. L. Beurle, “Numerical solution of 2-dimensional
scattering problems using a transmission-line matrix,”Proc. Inst. Elect.
Eng., vol. 118, no. 9, pp. 1203–1208, Sept. 1971.



1534 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 47, NO. 10, OCTOBER 1999

[4] C. Christopoulos,The Transmission-Line Modeling Method: TLM. Pis-
cataway, NJ: IEEE Press, 1995.

[5] J. A. Kong,Electromagnetic Wave Theory. New York: Wiley, 1986.
[6] J. Paul, C. Christopoulos, and D. W. P. Thomas, “Generalized material

models in TLM—Part 2: Materials with anisotropic properties,”IEEE
Trans. Antennas Propagat., this issue, pp. 1535–1542.

[7] L. de Menezes and W. J. R. Hoefer, “Modeling of general constitutive
relationships using SCN TLM,”IEEE Trans. Microwave Theory Tech.,
vol. 44, pp. 854–861, June 1996.

[8] D. M. Sullivan, “Frequency dependent FDTD methods using Z-
transform,” IEEE Trans. Antennas Propagat., vol. 40, pp. 1223–1230,
Oct. 1992.

[9] , “Nonlinear FDTD formulations using Z transforms,”IEEE
Trans. Microwave Theory Tech., vol. 43, pp. 676–682, Mar. 1995.

[10] , “Z-transform theory and the FDTD method,”IEEE Trans.
Antennas Propagat., vol. 44, pp. 28–34, Jan. 1996.

[11] W. H. Weedon and C. M. Rappaport, “A general method for FDTD
modeling of wave propagation in arbitrary frequency-dispersive media,”
IEEE Trans. Antennas Propagat., vol. 45, pp. 401–410, Mar. 1997.

[12] R. J. Luebbers, F. Hunsberger, and K. S. Kunz, “A frequency-dependent
finite-difference time-domain formulation for transient propagation in
plasma,”IEEE Trans. Antennas Propagat., vol. 39, pp. 29–34, Jan. 1991.

[13] R. Luebbers, F. Hunsberger, K. S. Kunz, R. B. Standler, and M. Schnei-
der, “A frequency-dependent finite-difference time-domain formulation
for dispersive materials,”IEEE Trans. Electromagn. Compat., vol. 32,
pp. 222–227, Aug. 1990.

[14] D. F. Kelley and R. J. Luebbers, “Piecewise linear recursive convolution
for dispersive media using FDTD,”IEEE Trans. Antennas Propagat.,
vol. 44, pp. 792–797, June 1996.

[15] P. Russer, P. P. M. So, and W. J. R. Hoefer, “Modeling of nonlinear
active regions in TLM,”IEEE Microwave Guided Wave Lett., vol. 1,
pp. 10–13, Jan. 1991.

[16] P. B. Johns, “A symmetrical condensed node for the TLM method,”
IEEE Trans. Microwave Theory Tech., vol. 35, pp. 370–377, Apr. 1987.

[17] R. T. Stefani, C. J. Savant, B. Shahian, and G. H. Hostetter,Design
of Feedback Control Systems. Orlando, FL: Saunders College Publ.,
1994.

John Paul was born in Peterborough, U.K., in
1960. He received the M.Eng. and the Ph.D. degrees
in electrical and electronic engineering from the
University of Nottingham, U.K., in 1994 and 1999,
respectively. His Ph.D. dissertation involved the
application of signal processing and control system
techniques to the modeling of general materials in
time-domain TLM.

He is currently employed as a Research Associate
with the Electromagnetics Research Group, Univer-
sity of Nottingham. His research interests are in

the application of signal processing techniques to the modeling of complex
electromagnetic systems, the design of novel electromagnetic wave absorbers,
and the time-domain modeling of general wave phenomena.

Christos Christopouloswas born in Patras, Greece,
in 1946. He received the Diploma in electrical and
mechanical engineering from the National Technical
University of Athens, Greece, in 1969, and the
M.Sc. and D.Phil. from the University of Sussex,
U.K., in 1970 and 1975, respectively.

In 1974, he joined the Arc Research Project at the
University of Liverpool, U.K., and spent two years
working on vacuum arcs and breakdown while on
attachment to the United Kingdom Atomic Energy
Authority (UKAEA) Culham Laboratories. In 1976

he joined the University of Durham, U.K., as a Senior Demonstrator in
electrical engineering science. In October 1978 he joined the Department
of Electrical and Electronic Engineering, University of Nottingham, where
he is now a Professor of electrical engineering. He has published five
technical books. His research interests are in electrical discharges and plasmas,
electromagnetic compatibility, electromagnetics, and protection and simulation
of power networks.

Dr. Christopoulos received the Institute of Electrical Engineers Snell
Premium and Institute of Electrical Engineers Electronics Letters Premium
Awards in 1995.

David W. P. Thomas(M’95) was born in Padstow,
U.K., on May 5, 1959. He received the B.Sc.
degree in physics from Imperial College of Science
and Technology, U.K., the M.Phil. degree in space
physics from Sheffield University, U.K., and the
Ph.D. degree in electrical engineering from the
University of Nottingham, U.K., in 1981, 1987, and
1990, respectively.

In 1990, he joined the Department of Electrical
and Electronic Engineering, University of Notting-
ham as a Lecturer. His research interests are in

electromagnetic compatibility, electrostatic precipitation, and the protection
and simulation of power networks.


