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Generalized Material Models in TLM—Part 2:
Materials with Anisotropic Properties

John Paul, Christos Christopoulos, and David W. P. Thom@syber, IEEE

Abstract—Transmission-line modeling (TLM) can be used for Il. FORMULATION
the time-domain simulation of electromagnetic wave propaga-
tion in anisotropic and bi-anisotropic media. In this paper, A - pavvell’s Equations and the Constitutive Relations
Z-transform methods are utilized to obtain the time-domain iter- )

ation procedures for propagation in anisotropic and bi-isotropic The TLM formulation is developed from Maxwell's curl

materials. For clarity, the method is first developed for one- equations (1) [8]

dimensional (1-D) propagation and then extended to the three-

dimensional (3-D) case. VxH | |J, n 9 |D (1)
—V X E o l’rn at E ’

The constitutive relations for the current and voltage densities
are expressed in the following:

le _ lef +E*E
l. INTRODUCTION [J } - |:Jmf +£*ﬂ] @

“m =z

Index Terms—Frequency-dependent materials, nonhomo-
geneous media, time-domain electromagnetics, transmission-line
modeling.

NISOTROPIC materials with constant material param- ) - )
eters have been modeled in the finite-difference tim&duation (3) expresses the constitutive relations for the flux

domain (FDTD) method [1]. FDTD was extended to includdensities. In the general case, the<33 material tensors of
the frequency-dependent anisotropic material properties othg constitutive relations describe causal time functions

magnetized plasma [2] and to a magnetized ferrite material D el coxe &rfc E

[3]. However, because of the offsets between the electric and [Q } - Loﬂ } {g,,ﬁ ,Exm} * [ﬂ } (3)
magnetic fields of half a space-step and half a time-step ina = | — s

FDTD grid, the resulting update scheme requires spatial angPstitution of (2) and (3) into (1) yields

temporal interpolation of fields and as noted in [1] and [2] VxH s

for three-dimensional (3-D) problems the update scheme is {_v X E} N [lmJ

somewhat cumbersome. The main difference between FDTD 9 [eoE 0.+ E

and transmission-line modeling (TLM) is that in TLM the = 5 [uoﬁ} [azm *;I}

electric and magnetic fields are solved at the same point in — —

space-time. Thus, it is proposed that TLM is more naturally 9 roé &o/e } “ [E} @)
suited to the modeling of anisotropic and bi-isotropic materials. ot g/c HoXm H

The modeling of anisotropic material_s with constant material The TLM model is a discrete time solution of (4), solving
parameters in T.LM was preser_nted in [4]. The TLM. mod&h, the fieldsE and H at each time step.

for propagation in both magnetized plasma and ferrite were

dgveloped by Heiln [5], [6]. This paper presents an_exteg—_ 1-D Formulation

sion of the technique presented for isotropic materials [7] ) ] ) ) ) )

to include frequency-dependent anisotropic and bi-isotropic'" this section, the TLM formulation for anisotropic and bi-
material properties in the time domain. Although the approa@fisotropic materials is presented. For clarity, the development
is first developed for one-dimensional (1-D) propagation, tH€re is presented for the case of 1-D propagatiom,imwith

3-D method follows directly by extension of the 1-D casd!© coupling to thez-directed field components. In the next
The formulation presented here is elegant, efficient, and f€Ction, the approach is extended to the 3-D method based on

into a unified scheme for dealing with general electromagneffé€ Symmetrical condensed node (SCN) [9]. Fig. 1 shows the

material properties in the time domain. 1-D cell: it has four portgVi, Vs, V1o, andVi; ) and four total
field quantities(£,, E., H,, and H.) which are evaluated at
the center of the cell. The curl operations on the left-hand side

. ) ) (LHS) of (4) are solved using Stokes’ theorem with integration
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Fig. 1. 1-D anisotropic and bi-anisotropic TLM node. S 21\=/KZ)
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components and vice versa, and transforming to the freque&y > Signal flow graph for a bi-anisotropic material.

domain usingd/dt — s gives
Defining the LHS of this equation as the external excitation

(VxH), Jegy i . r
(V X ﬂ)z _ ']efz ‘/4 + ‘/5 ny Vy
—(Vx E), Tty 9 Vie+ Vi | _ |dg= | 5 V4 )
—(V X E)z Jrnfz Vii — Vio ny _Ly
EoEy Ey Vi — V') sz —1z
— ek + Te | £ where the superscript denotes reflected wave quantities.
T T woHy, Om H, Equation (8) can be written as
I’LOHZ Hz r
V V e V
5] i)+ [ ] [
|:50Xe §7+/C:| F. (5) ¢ ¢ _m ¢
+ S e == . z e ”
Gfe poxm H, —1—3[L 52} . [Z} (10)
I ¥ & Xm] |4
Equation (10) can be expressed as
where for example g (10) P
2F" = (2+a+35M)-F. (12)
oYy o¥* ny XZJZ - - -
Oe = |:O_Zy aiz} Xe = |:X§y Xiz} (6) Defining a frequency-dependent transmission mateix2(2+
¢ ¢ ‘ ‘ o +3M)~*, (11) becomes
and(V x H),, is the component o x H pointing inu. Using F=t.F". (12)

the field-circuit equivalences [7], (5) becomes ) _ ] ) ) )
The discrete time-domain model is obtained from (11) using

Vi+Vs ify V, V, the bilinear Z transforms = 2(1 — z71)/(1 + 2z~1) and the
Vio+ Vi | |ig= | _ Ve 4% Ve partial fraction expansions
Vii —Vio Vig | 7|y  Tm iy -1 _ -1 —
Vi— Vs V. i - e (1427 )glz) = 20+ 27 (a1 +2(2)) (13)
v, (L= )M(2) = Mo+ My + M(2))  (14)
+§{% f% } . ‘L/‘ (7) leading to
&r Xm y
- iz T4 F=2F +z'(2F +£-F -3(2)

Converting (7) to the traveling wave format [7] using super- E+2M(2) - F) (15)

script ¢ to denote incident wave quantities gives whereT ™! = 2400+2M, ands = —(2+401—2M,). Defining
the function of the previous time step on the right-hand side

Vit Ve 7" Tigy Yy Yy of (15) as the main accumulator vectsy the update scheme
G[Vio Vi | ig | _o |V [gze } V2|  for the total fields is
A +
Vir — Vio Viy by Tm Ly v -1
Vi-V; Vi i L F=T -2 +2°5). (16)

Vi The process described by (16) is illustrated by the signal

+§{& 5_1} . Vz G) flow diagram of Fig. 2. This figure shows the detail of the
ty block ¢(z) required in [7, fig. 4] for modeling anisotropic and
tz bi-anisotropic material properties.
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C. 3-D Formulation For the bias field inz, (23) becomes

TeolVe

Before discussion of the 3-D method, the iteration process of n
s+ v,

the 1-D node developed in the previous section is summarized.
The TLM scattering process consists of three steps. In the first, , =
step of (17), the curls of the incident voltages and the free-
source excitations are evaluated, in the second step of (18),
the total fields are calculated using the recursive convolution

- Ue ) E (24)
process described by the transmission métrix the final step =
of (19), the reflected voltages are calculated from the totasing static conductivity.o = N¢?/m .. Reducing to the
fields and incident voltages. Note that for general materidtD example with propagation i gives the elements of
modeling, only the process described by matrixeeds to the electric conductivity tensar. of (5) for description of a
be modified. This system is represented by the flow diagramagnetized plasma. Using = noAlo. and geg = nyAloeg

shown in [7, fig. 4] gives the normalized electric conductivity tensor

TeoVe(s+ ve)
(s+1e)? +w?
TeolcWp
(s+ve)?+w]

TelVeWp
(s+1ve)? +w?
Teove(s +1ve)
(s+ve)?2+w]

Vy 1" Vit Vs 77 ity B Jeo Ve S+, wp
‘/,:/ _ ‘/10+‘/11 1 Lf;./ (17) &_(34—1/(:)24—&)3 |:—wb 3—|—]/c:|
—iy Vit — Vio 21V Gy g
_iz V;L - V:') sz = |:g:Zy ggz:| . (25)
Vy Yy The elements of this tensor are second-order functions of
V‘ =t- V‘ (18) frequency and as shown in [10], an efficient technique for
Ly B Ly the solution of second-order functions involves a complex
v - b . 4 recursive convolution, with the real pafR)Y of the complex
Vi Vy - tz — VOZ accumulator used in the update of the total fields. The com-
Vs — Vy +[?Z - V? . (19) ponents ofg. can be written as the real part of two complex
Vio Vatiy = Vi first-order functions, i.e.
Vil VZ_ILy_Vvle . s+ v
The basic element of the 3-D TLM method is the symmetrical g2¥(s) = gZ7(s) = geo ch
condensed node (SCN) shown in [7, fig. 3]. The iteration _ 1 T
process is identical to that detailed in [7, eq. (16), (18), and = geo Ve R| ———M (26)
(20)], with the matrix#(z) now a full 6 x 6 matrix. The L5+ (e = jws) ]
iteration procedure is of the same form developed above for g% (s) = — g7¥(s) = gw%*
the 1-D case. The speed of propagation on the transmission- _ (s+v ) + wj
lines of a 3-D mesh i2c = Af/At, thus, in the 3-D case, — R —J @7
(11) is modified to Jeo¥e | S (e — jun) |
2" = (4+0 +352M) - F. (20) The impulse invarianZ transforms of (26) and (27) are
1-p,
Ill. FREQUENCY-DEPENDENT MATERIALS 0(2) = g7 (2) = geoveR 1;/c _;7;%
-z13,
A. Magnetized Plasma
From the equation of motion of an electron plasma subject —j(1—7,)
to a static bias magnetizatioB,, the differential equation v 4 Ve — Jwp
governing the conduction curre(rJn density is [8], [5] 9:°(2) = — 9% (2) = georeR | 5 Z 13, (28)
al,, Ng
Ot tredo. = Et+d..xw, (21) The conductivity tensor in th& domain is
wherev, is the collision frequency)V is number density of 1-8,
electronsy is the electron chargey, is the electron mass and Ve —juwp [1 —j
the cyclotron frequency vectar, = Byq/m. The Laplace &(z) = geoveR 1-213, L 1 } (29)

transform of (21) is
2

N
(st ve)doe =~ Bt . X w, (22)
m

By taking the dot product and cross product with of (22)
gives

using B, = e~ (e—i«e)A Assuming the background permit-
tivity is that of free-space, i.ex. = 0, the Z transform of
the top line of (10) is

J = Ng? s+, E 1 E =2+ gze(z)) V. (30)
e m [(s+ve)? 4 wi T B (s +ve)? +w? (w, x E) For a causal functiog., which is exponential in nature (i.e.,
1 can be solved recursively) it is always possible to take a
+ wywy - E|. (23) partial fraction expansion to obtain a constant tenggrand a

(s +ve) ((s +ve)? +w?)
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frequency-dependent tensgr(z), which is a function of the Alternatively, in the Bloch—-Bloembergen form the equation of

previous time step, i.e., motion is
- —1—
9e(#) = geo + 27 (). (1) Othir — (M x H)yo 1M, (42)
Substitution of (31) into (30) and manipulating gives t
(24 geo) -V =2V — 27g2(2) - V. (32) In (40)—(42),0 is the magnetization vectot,is the gyromag-

netic ratio,« is a dimensionless damping parameter, subscript
The matrix&fl = 2 + geo CONtains constant elements and,, denotes the vector quantity transverse to the bias fields

thus, T, can be found, Iﬁding to the iteration process and v, is the transverse relaxation frequency. Assuming the
- . 1 magnetization vector and the magnetic field vector have the
V=T @V —2g) V). (33) o9 ?

Taking the partial fraction expansion of (29) as in (31) gives

vy uz . H=Ho+hM=M+m 43
e e I sorh A >
= 190 Yeo ' ve—jwy [J 1 whereH, is the static bias field}/, is the saturation magneti-
and definingey, = geore(1 — B,)8,/ (Ve — jwi) zation, A is the time-varying magnetic field vector andlis the

a, 1 —j time-varying magnetization vector. Furthermore, by assuming
ge(z) = §R<m L. ! D (35)  small-signal conditions\y > m, Hy > h and that the bias
_ R field vectorsM, and Hy point in thex direction, the cross
Inverting the matrixZ. * gives products in (41) and (42) can be approximated as
1 2 +gzz _gyZ R
T, = _ — Je .. M x H ~ — §(Moh. — Hym.)
—€ 2+yy 2+zz_y~~y|:_€y 2+é/y = = <
(2+920)(2+92) — 9:0920 L —9<0 9eo - 5(Mohy — Homy) (44)
(36) oM g , ’ g
. m. . m,
Declaring an accumulator vectst, = g.(z) - V, (33) is M x —= ~ = §Mo— = +2Mo aty' (45)
V= E'(ZZT - 2_1&)- 37) Defining the precessional frequeney = vHgy and magne-

In this method, the convolution is complex with the real part dfzation frequencyw,, = vMo, both Gilbert's equation (41)
Se used in the total field update. In full, the total field updatgnd Bloch’s equation (42) lead to expressions connecting the

equation for the 1-D case is magnetization with the magnetic field
=T.- (2|, 2| —z2"R[7¥]|). 38 My | _ | Xm Xm | | _ .
|:Vz = "V Se: (38) |:m:| [Xf,% Xf,f} [h} m=xm b (46)

The accumulator update is .. . S
where the susceptibility tensor from Gilbert's equation is

Syl _ 1 =] Vo] L c1g [Sey
|:S€Z:| = Qp |:j 1 :| |:‘/z:| + =z BP |:S€Z . (39) Wi |:SC¥+(U0 s :|

—S S + wo

(47)

The matrix in (39) indicates the expected Faraday rotation == s+ (sa+wg)?
of a linearly polarized wave traveling through a magnetizea(lj
plasma. This algorithm requires the storage of one real an'a
one complex number (i.e., three real numbers) per electric Wn { wo 3+1/5:|

—( :

field component. Xm = (s +vs)2+ w3 s+vs)  wo

d the susceptibility tensor from Bloch’s equation is

(48)

A. Bloch Damping
IV. MAGNETIZED FERRITE

. . ) ... The model of propagation in magnetized ferrite with the
The modeling of a magnetized ferrite follows from asmﬂagloch damping term follows from the transform of (48)

approach to the previous model of propagation in magne;
tized plasma. The damping in ferrite media is introducedg"

phenomenologically [11], leading to two distinct forms of 1—Bm
the equation of motion of the magnetization vector. In the (2) = w R v,—jwg |—j 1 (49)
Landau-Lifshitz form, the equation of motion is XmlZ) = @m 1—218, |-1 ’
aM Yo
ot —V(M x H) - M] (M x (M x H)). (40)  As in (14), the model is found by the expansion
(1- 271)&(2) = Xmo — zilg(z). (50)

By taking the cross product witd/ and neglecting small

terms, (40) becomes Gilbert's equation of motion, i.e. This step leads to the matrix of coefficients

OM v oM L= f =i
= =AM xH)+ - (M x ). (41 mo = wim N ~ 1 51
ot YL H)+ | M| <_X 8t> ) Amg = <l’s—Jw0 {_1 _JD oy
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and the recursive convolution function V. BI-ISOTROPIC MEDIUM
(1= Bn)? For simplicity, consider a bi-isotropic material [12], i.e.,
—= _ the susceptibility and magnetoelectric coupling tensors of (3)
() =wy R| 20 |77 2L (52) have the form
Xn(?) =eom B 72050 121 = (52)

Xe = Xeév@ = X"’;’g = 57‘&7% = C7% (61)

From the bottom line of (10), the update equation for \évhere; is the unit matrix. Furthermore, in a chiral bi-isotropic

frequency-dependent anisotropic magnetic medium is medium, e.g., an artificial material gonstruct_ed by a d|§per§al
of scatterers in a background material, to a first approximation

. o p eer o . the effective material parameters are Lorentzian (second-order)
(2+2xmo) &= —2" 427 [2" = 204 2Xm(2) -2 (33) i form [12]. The electric susceptibility is given by

X owd
Defining ay, = 2w (1 — Bm)?/(vs — jwo) and accumulator Xe(s) = 53— — (62)
vector S,,1 Where $* 4526 +wp
where .o is the dc electric susceptibilityy, is the resonant

¢ o -5 1 iy ” frequency, and$ is the damping frequency. The magnetic
mL = T 18, {_1 _j} ’ [j (54) susceptibility is given by

X’nlOOSQ
Equation (53) can be written as xm(s) = — (63)

$2 4 526 + w?

94 2y 0) i = —2" 4 2N (—2" — 2+ R[S,.]). (55 wherex .. iS the magnetic susceptibility at high frequencies.
2+ 2xmo) -1 SRR L4 R Sma])- - (55) The frequency dependence of the magnetoelectric coupling
parameters obey the one resonance Condon model [12], [13]

Defining matrix&fl = (;+ 2xmo) and main accumulator

2
] — STW
S = —2¢7 — 2t + R[9,n1], the iteration scheme is (8= —(o(s) = ——90 64
Sm i i+ R[Smil iterati [ &(s) = —G(s) 52 1 o (64)
i=T, (21" +271S,,). (56) Where 7 is the chirality time constant. In this case, (10) is
T reduced to
B. Gilbert Damping “iy " 1‘;1, Xe ¢, . Y;y
To include the Gilbert damping term in a model of prop-2 _: =2 [L.VZ +3 ¢, Xe N e ,L;Z
agation in a magnetized ferrite, it is necessary to take the| _,’ iy ' ¢, " N Iy
Z transform of (47), i.e., - - ' " 4(65)

Xm(z)

_ Wm < 1— B [ 1 JD (57) As in (10), expressing (65) in matrix form gives

w 1—27183, |—j 1 »
° TGl EDE

The expansioffl — 2~ ") xm(2) = xmo — 2~ ' Xm(z) gives the

coefficient matrix Applying the bilinearZ transform to (66) gives (in shorthand
form)
N (O S R N B CE R Tl CE VR SRR I AN )
wo —J —
Utilizing the transforms of the second-order functions in
and the recursive convolution function (26)—(28) in (62)—(64) gives th& transforms of the material
, parameters
Wm (1 - /3m) 1 j
TR e Ll I ) B (- B)C. (1= B)Con
-z -J 1 <) = mi\<c) —
wo 1 z ﬁrn J X€(7) §R 1— Z_lﬂc ) X (7) §R 1— Z_lﬁc
The iteration procedure follows by a similar development ¢ (z) :m[w} (68)
to that given for Bloch damping, i.e., by defining, = 1—2715,
2 .
2w (1 — Bn)* /we) and accumulator vectd$,,,; where where 3 = \/W and 8, = e—6=iMAt_ the complex
L . coefficients are
_ Um J . Ty
Sm1 = 1- 2_1/37" |:_J 1:| |:LZ:| ' (60) Ce = Xeo0 <1 - J%)’ Cim = Xmoo <1 +J%>

. . . 2
Both models of a magnetized ferrite require the storage of one  ~ _ ;7%

. c=1
real and one complex number per magnetic field component. B
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As in previous examples, performing the time differencing and . 0 o o JEBREEEEEE T ITT
partial fraction expansion of these functions gives, for example c s e
B -10
-1 _ _ -1 (1—p.)*C. '5; a5t §
(1 z )Xe(z) - m[(l ﬁc)ce] z §R|: 1— Z_lﬁc g 20 L S
= Xeo — 2% (2) (69) i =
with similar expressions fofl —z ™" ) x (2) and(1—z~1)&(2). § | LOP@nayig ¢
Substitution of these into (67) yields E 40} RCP (Anaiytic) -
g . RCP (TLM
T F=20-2z)F +z2F+2M-F  (70) N

0 20 40 60 80 100
Frequency (GHz)
where

Fig. 3. Frequency-domain transmission coefficients of the magnetized

2+ 2X;0 2600 plasma slab.

rt= [ —260 2+XrnO:|
) = {X—e_,(z) &(2) }

I

—&(2) Xm(2)

The iteration process is

g
F=T - Q2F +z1'9) (71) g o ; i
o & -25
whereS = 2F" +2F + R[S,] andS; = 2M(z) - F as shown § Q0L LOR (Anayte) o
in Fig: 2. pefiningac = 2(1 — 3.)?, the accumulator update § B ché’?’"ﬂ’ﬂﬁ% '
equation is 8 4t
g _45 L
(o C. C, } . . . ,
Sy=—-"— |7 ¢ FE (72) 50
P71 1 A [—Cc Cr, 0 20 Fr‘guency (ngz) 80 100

Thus, the TLM model of a bi-isotropic material require$ig. 4. Frequency-domain reflection coefficients of the magnetized plasma
the storage of one real and one complex number per filap-

component.
1 T v r T
VI. RESULTS E osr 0 cele
. . . . T 06}
In this section, results are presented for propagation in 2 .
anisotropic and bi-isotropic materials. g .
= 2l
. 5 ot
A. Magnetized Plasma 5 o2l /
. . g | 400 cell
One example of a frequency-dependent anisotropic conduc- £ a4t oo
tive material is a magnetized plasma. Following the example § 06
of [2], the reflection and transmission coefficients for a slab r 08
of magnetized plasma was calculated using TLM. The slab 4

had depth 9 mm, the space-st&yf = 75 pum, and the time o8 Ey component of transmied fold (vim) |
step wasAt = Al/c. In the FDTD formulation a time- Fio 5. Faraday rotation in a maanetized plasma

step At = Af/(2c) was required for stability, whereas the 9> Y g P '

TLM model was stable at the free-space time-step. After

launching a delta function at the slab, the copolarized agd Magnetized Ferrite

cross-polarized reflected and transmitted electric fields were . . L
saved for transformation to the frequency-domain. AssumirllrggBasefj on thg FOTD S|mulat|qn of 1-D propa}ggtlon n a
the incident wave was linearly polarized inthe transmission _agnehzed ferrite [.3]’ the r_eflect|on anql transr_mssmn coefi-
coefficients for left-hand circularly polarized (LCP) and rigthIent of a slab of this material was obtained using TLM. The

hand circularly polarized (RCP) waves were obtained using"Pace-step was 7pm, the time-step was\t = Al/c, the
slab had a depth of 25 cells and had background parameters

Trep = Ey(w) + jEL(w) e = . = 2. For the model of Gilbert damping, the ferrite
Trep = E;(w) — JE' (w). (73) Pparameters werep = wn, = 21 X 20 X 10° and o = 0.1. _
The parameters selected for the model of Bloch damping
The reflection coefficients were calculated with similar expresere wy = 27 x 19.8 x 10%, w,, = 27 x 20.2 x 107,
sions involving the reflected fields. and v, = 27 x 1.98 x 10°. Figs. 6 and 7 compare the
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o
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I} Transmission (Analytic) -+ S Y 9
£ 06 | Transmission (Gilbert damping) ---- ks 20 F e oy ' aocaogla, jedn s9% o
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S 8 B0 e L9y ¢ 1
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. hs PO -60 : i cp/Rre e

ol Tyt e pesoeed g 3 p/Rrep(TLM)
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Frequency (GHz) o 0 0.5 5 2 25

1 1.
Frequency {(GHz)

Fig. 6. LCP transmission and reflection coefficients. . o . . )
Fig. 8. Transmission and reflection coefficients of a chiral slab.

T T T T

1 Pray, —_
k] EN TR e i) 5 ! ) !
£ 3 0 foorerss ]
3 0.8 ke 2 Soy,.
5] g >
s Reflection (Analytic) o & St E po0g
D ' Reflection (Gilbert damping) - E L
E 0.6 Reflection (Bloch damping) 1 g -10 + 3 P
A W Transmission (Analytic) -+ ‘c PP f
& «. Transmission (Gilbert damping) ---- s 15 | 4 ¢ =f
= Transmission {Bloch damping) o
= 04 1 3
S v < -20 -
8 2
2 & ©
=2 % o 25 ¢
o o2+ / S 4 o Analytic o
b5 ? L a > TLM —- |
8 J ¥ S v 2 -30 +
i/ b e, pos £
o ¥ R L% . LY ol K] -35 + 1
0 20 40 60 80 100 g
Frequency (GHz) 8 -40 0 0'5 1‘ g 2
’ Frequency (GHZ) '

Fig. 7. RCP transmission and reflection coefficient.
Fig. 9. Copolarized reflection coefficient of a metal backed chiral slab.

reflection and transmission performance of the slab obtained
using TLM with the analytic solution for Gilbert dampingindicating that chiral materials may be employed as absorbing
[15]. As shown, both the Bloch and Gilbert damping methodsructures.
gave similar performance. In agreement with the discussion
in [11], the analytical (not shown) and numerical solutions
for the transmission coefficient of LCP waves in the Bloch
damped ferrite slab were found to be greater than one. Becauskn this paper, the iteration schemes for the time-domain
the magnetized ferrite is a passive material, this indicategmdeling of propagation in frequency-dependent anisotropic
limitation of the Bloch model. and bi-isotropic materials have been developed. Although for
clarity the analysis has concentrated on the 1-D scheme,
it has been shown that the 3-D case follows directly by
_ ) _ simply increasing the order of the matrices and vectors of
C. Bi-Isotropic Medium the 1-D case. Results have been presented for propagation in
Finally, as an example of propagation in a chiral materialhagnetized plasma and magnetized ferrite media and the TLM
the reflection and transmission coefficients of a slab weselution has been found to be stable, yielding results which
obtained using TLM and frequency domain analysis [12¢orrelate with the analytic solutions. Finally, a chiral material
The properties werg.o = xmeo = wor = 0.5, resonant has been modeled in the time-domain showing that TLM can
frequencywo = 27 x 1000 x 10°, and damping frequency be applied to materials that display magnetoelectric coupling.
8 = 27 x 100 x 10°. The background relative permittivity and
permeability of the slab were selected @s= pu,. = 2. The REFERENCES
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