
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 47, NO. 10, OCTOBER 1999 1535

Generalized Material Models in TLM—Part 2:
Materials with Anisotropic Properties
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Abstract—Transmission-line modeling (TLM) can be used for
the time-domain simulation of electromagnetic wave propaga-
tion in anisotropic and bi-anisotropic media. In this paper,
Z-transform methods are utilized to obtain the time-domain iter-
ation procedures for propagation in anisotropic and bi-isotropic
materials. For clarity, the method is first developed for one-
dimensional (1-D) propagation and then extended to the three-
dimensional (3-D) case.

Index Terms—Frequency-dependent materials, nonhomo-
geneous media, time-domain electromagnetics, transmission-line
modeling.

I. INTRODUCTION

A NISOTROPIC materials with constant material param-
eters have been modeled in the finite-difference time-

domain (FDTD) method [1]. FDTD was extended to include
the frequency-dependent anisotropic material properties of a
magnetized plasma [2] and to a magnetized ferrite material
[3]. However, because of the offsets between the electric and
magnetic fields of half a space-step and half a time-step in a
FDTD grid, the resulting update scheme requires spatial and
temporal interpolation of fields and as noted in [1] and [2]
for three-dimensional (3-D) problems the update scheme is
somewhat cumbersome. The main difference between FDTD
and transmission-line modeling (TLM) is that in TLM the
electric and magnetic fields are solved at the same point in
space-time. Thus, it is proposed that TLM is more naturally
suited to the modeling of anisotropic and bi-isotropic materials.
The modeling of anisotropic materials with constant material
parameters in TLM was presented in [4]. The TLM model
for propagation in both magnetized plasma and ferrite were
developed by Hein [5], [6]. This paper presents an exten-
sion of the technique presented for isotropic materials [7]
to include frequency-dependent anisotropic and bi-isotropic
material properties in the time domain. Although the approach
is first developed for one-dimensional (1-D) propagation, the
3-D method follows directly by extension of the 1-D case.
The formulation presented here is elegant, efficient, and fits
into a unified scheme for dealing with general electromagnetic
material properties in the time domain.
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II. FORMULATION

A. Maxwell’s Equations and the Constitutive Relations

The TLM formulation is developed from Maxwell’s curl
equations (1) [8]

(1)

The constitutive relations for the current and voltage densities
are expressed in the following:

(2)

Equation (3) expresses the constitutive relations for the flux
densities. In the general case, the 33 material tensors of
the constitutive relations describe causal time functions

(3)

Substitution of (2) and (3) into (1) yields

(4)

The TLM model is a discrete time solution of (4), solving
for the fields and at each time step.

B. 1-D Formulation

In this section, the TLM formulation for anisotropic and bi-
anisotropic materials is presented. For clarity, the development
here is presented for the case of 1-D propagation in, with
no coupling to the -directed field components. In the next
section, the approach is extended to the 3-D method based on
the symmetrical condensed node (SCN) [9]. Fig. 1 shows the
1-D cell: it has four ports , , , and and four total
field quantities , , , and which are evaluated at
the center of the cell. The curl operations on the left-hand side
(LHS) of (4) are solved using Stokes’ theorem with integration
contours and shown in Fig. 1. For consistency with the
3-D development, the port numbers used in the 1-D case are
from the 3-D node of Section II-C.

Reduction of (4) to the 1-D case with propagation in,
assuming no coupling from the component into the and
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Fig. 1. 1-D anisotropic and bi-anisotropic TLM node.

components and vice versa, and transforming to the frequency
domain using gives

(5)

where for example

(6)

and is the component of pointing in . Using
the field-circuit equivalences [7], (5) becomes

(7)

Converting (7) to the traveling wave format [7] using super-
script to denote incident wave quantities gives

(8)

Fig. 2. Signal flow graph for a bi-anisotropic material.

Defining the LHS of this equation as the external excitation

(9)

where the superscript denotes reflected wave quantities.
Equation (8) can be written as

(10)

Equation (10) can be expressed as

(11)

Defining a frequency-dependent transmission matrix
, (11) becomes

(12)

The discrete time-domain model is obtained from (11) using
the bilinear transform and the
partial fraction expansions

(13)

(14)

leading to

(15)

where and . Defining
the function of the previous time step on the right-hand side
of (15) as the main accumulator vector, the update scheme
for the total fields is

(16)

The process described by (16) is illustrated by the signal
flow diagram of Fig. 2. This figure shows the detail of the
block required in [7, fig. 4] for modeling anisotropic and
bi-anisotropic material properties.
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C. 3-D Formulation

Before discussion of the 3-D method, the iteration process of
the 1-D node developed in the previous section is summarized.
The TLM scattering process consists of three steps. In the first
step of (17), the curls of the incident voltages and the free-
source excitations are evaluated, in the second step of (18),
the total fields are calculated using the recursive convolution
process described by the transmission matrix. In the final step
of (19), the reflected voltages are calculated from the total
fields and incident voltages. Note that for general material
modeling, only the process described by matrixneeds to
be modified. This system is represented by the flow diagram
shown in [7, fig. 4]

(17)

(18)

(19)

The basic element of the 3-D TLM method is the symmetrical
condensed node (SCN) shown in [7, fig. 3]. The iteration
process is identical to that detailed in [7, eq. (16), (18), and
(20)], with the matrix now a full 6 6 matrix. The
iteration procedure is of the same form developed above for
the 1-D case. The speed of propagation on the transmission-
lines of a 3-D mesh is , thus, in the 3-D case,
(11) is modified to

(20)

III. FREQUENCY-DEPENDENT MATERIALS

A. Magnetized Plasma

From the equation of motion of an electron plasma subject
to a static bias magnetization , the differential equation
governing the conduction current density is [8], [5]

(21)

where is the collision frequency, is number density of
electrons, is the electron charge, is the electron mass and
the cyclotron frequency vector . The Laplace
transform of (21) is

(22)

By taking the dot product and cross product with of (22)
gives

(23)

For the bias field in (23) becomes

(24)

using static conductivity . Reducing to the
1-D example with propagation in gives the elements of
the electric conductivity tensor of (5) for description of a
magnetized plasma. Using and
gives the normalized electric conductivity tensor

(25)

The elements of this tensor are second-order functions of
frequency and as shown in [10], an efficient technique for
the solution of second-order functions involves a complex
recursive convolution, with the real part () of the complex
accumulator used in the update of the total fields. The com-
ponents of can be written as the real part of two complex
first-order functions, i.e.

(26)

(27)

The impulse invariant transforms of (26) and (27) are

(28)

The conductivity tensor in the domain is

(29)

using Assuming the background permit-
tivity is that of free-space, i.e., , the transform of
the top line of (10) is

(30)

For a causal function , which is exponential in nature (i.e.,
can be solved recursively) it is always possible to take a
partial fraction expansion to obtain a constant tensorand a
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frequency-dependent tensor , which is a function of the
previous time step, i.e.,

(31)

Substitution of (31) into (30) and manipulating gives

(32)

The matrix contains constant elements and,
thus, can be found, leading to the iteration process

(33)

Taking the partial fraction expansion of (29) as in (31) gives

(34)

and defining

(35)

Inverting the matrix gives

(36)

Declaring an accumulator vector , (33) is

(37)

In this method, the convolution is complex with the real part of
used in the total field update. In full, the total field update

equation for the 1-D case is

(38)

The accumulator update is

(39)

The matrix in (39) indicates the expected Faraday rotation
of a linearly polarized wave traveling through a magnetized
plasma. This algorithm requires the storage of one real and
one complex number (i.e., three real numbers) per electric
field component.

IV. M AGNETIZED FERRITE

The modeling of a magnetized ferrite follows from a similar
approach to the previous model of propagation in magne-
tized plasma. The damping in ferrite media is introduced
phenomenologically [11], leading to two distinct forms of
the equation of motion of the magnetization vector. In the
Landau–Lifshitz form, the equation of motion is

(40)

By taking the cross product with and neglecting small
terms, (40) becomes Gilbert’s equation of motion, i.e.

(41)

Alternatively, in the Bloch–Bloembergen form the equation of
motion is

(42)

In (40)–(42), is the magnetization vector,is the gyromag-
netic ratio, is a dimensionless damping parameter, subscript

denotes the vector quantity transverse to the bias fields
and is the transverse relaxation frequency. Assuming the
magnetization vector and the magnetic field vector have the
form

(43)

where is the static bias field, is the saturation magneti-
zation, is the time-varying magnetic field vector andis the
time-varying magnetization vector. Furthermore, by assuming
small-signal conditions , and that the bias
field vectors and point in the direction, the cross
products in (41) and (42) can be approximated as

(44)

(45)

Defining the precessional frequency and magne-
tization frequency , both Gilbert’s equation (41)
and Bloch’s equation (42) lead to expressions connecting the
magnetization with the magnetic field

(46)

where the susceptibility tensor from Gilbert’s equation is

(47)

and the susceptibility tensor from Bloch’s equation is

(48)

A. Bloch Damping

The model of propagation in magnetized ferrite with the
Bloch damping term follows from the transform of (48),
i.e.,

(49)

As in (14), the model is found by the expansion

(50)

This step leads to the matrix of coefficients

(51)
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and the recursive convolution function

(52)

From the bottom line of (10), the update equation for a
frequency-dependent anisotropic magnetic medium is

(53)

Defining and accumulator
vector where

(54)

Equation (53) can be written as

(55)

Defining matrix and main accumulator
, the iteration scheme is

(56)

B. Gilbert Damping

To include the Gilbert damping term in a model of prop-
agation in a magnetized ferrite, it is necessary to take the

transform of (47), i.e.,

(57)

The expansion gives the
coefficient matrix

(58)

and the recursive convolution function

(59)

The iteration procedure follows by a similar development
to that given for Bloch damping, i.e., by defining

and accumulator vector where

(60)

Both models of a magnetized ferrite require the storage of one
real and one complex number per magnetic field component.

V. BI-ISOTROPICMEDIUM

For simplicity, consider a bi-isotropic material [12], i.e.,
the susceptibility and magnetoelectric coupling tensors of (3)
have the form

(61)

where is the unit matrix. Furthermore, in a chiral bi-isotropic
medium, e.g., an artificial material constructed by a dispersal
of scatterers in a background material, to a first approximation
the effective material parameters are Lorentzian (second-order)
in form [12]. The electric susceptibility is given by

(62)

where is the dc electric susceptibility, is the resonant
frequency, and is the damping frequency. The magnetic
susceptibility is given by

(63)

where is the magnetic susceptibility at high frequencies.
The frequency dependence of the magnetoelectric coupling
parameters obey the one resonance Condon model [12], [13]

(64)

where is the chirality time constant. In this case, (10) is
reduced to

(65)

As in (10), expressing (65) in matrix form gives

(66)

Applying the bilinear transform to (66) gives (in shorthand
form)

(67)

Utilizing the transforms of the second-order functions in
(26)–(28) in (62)–(64) gives the transforms of the material
parameters

(68)

where and the complex
coefficients are
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As in previous examples, performing the time differencing and
partial fraction expansion of these functions gives, for example

(69)

with similar expressions for and .
Substitution of these into (67) yields

(70)

where

The iteration process is

(71)

where and as shown
in Fig. 2. Defining , the accumulator update
equation is

(72)

Thus, the TLM model of a bi-isotropic material requires
the storage of one real and one complex number per field
component.

VI. RESULTS

In this section, results are presented for propagation in
anisotropic and bi-isotropic materials.

A. Magnetized Plasma

One example of a frequency-dependent anisotropic conduc-
tive material is a magnetized plasma. Following the example
of [2], the reflection and transmission coefficients for a slab
of magnetized plasma was calculated using TLM. The slab
had depth 9 mm, the space-step m, and the time
step was . In the FDTD formulation a time-
step was required for stability, whereas the
TLM model was stable at the free-space time-step. After
launching a delta function at the slab, the copolarized and
cross-polarized reflected and transmitted electric fields were
saved for transformation to the frequency-domain. Assuming
the incident wave was linearly polarized in, the transmission
coefficients for left-hand circularly polarized (LCP) and right-
hand circularly polarized (RCP) waves were obtained using

(73)

The reflection coefficients were calculated with similar expres-
sions involving the reflected fields.

Fig. 3. Frequency-domain transmission coefficients of the magnetized
plasma slab.

Fig. 4. Frequency-domain reflection coefficients of the magnetized plasma
slab.

Fig. 5. Faraday rotation in a magnetized plasma.

B. Magnetized Ferrite

Based on the FDTD simulation of 1-D propagation in a
magnetized ferrite [3], the reflection and transmission coeffi-
cient of a slab of this material was obtained using TLM. The
space-step was 75m, the time-step was , the
slab had a depth of 25 cells and had background parameters

. For the model of Gilbert damping, the ferrite
parameters were and .
The parameters selected for the model of Bloch damping
were , ,
and . Figs. 6 and 7 compare the
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Fig. 6. LCP transmission and reflection coefficients.

Fig. 7. RCP transmission and reflection coefficient.

reflection and transmission performance of the slab obtained
using TLM with the analytic solution for Gilbert damping
[15]. As shown, both the Bloch and Gilbert damping methods
gave similar performance. In agreement with the discussion
in [11], the analytical (not shown) and numerical solutions
for the transmission coefficient of LCP waves in the Bloch
damped ferrite slab were found to be greater than one. Because
the magnetized ferrite is a passive material, this indicates a
limitation of the Bloch model.

C. Bi-Isotropic Medium

Finally, as an example of propagation in a chiral material,
the reflection and transmission coefficients of a slab were
obtained using TLM and frequency domain analysis [12].
The properties were , resonant
frequency , and damping frequency

. The background relative permittivity and
permeability of the slab were selected as . The
simulation space-step was mm and the slab thickness
was 200 mm. Fig. 8 shows the analytic and TLM solutions
for the transmission and reflection coefficients of the structure
for circularly polarized waves. The transmission/reflection
response is similar to the magnetized ferrite, indicating an
application of chiral materials as microwave isolators.

To examine the absorbing performance, the slab was ter-
minated with a metal backing and the simulation repeated.
Fig. 9 shows the copolarized reflection coefficient for this case,

Fig. 8. Transmission and reflection coefficients of a chiral slab.

Fig. 9. Copolarized reflection coefficient of a metal backed chiral slab.

indicating that chiral materials may be employed as absorbing
structures.

VII. CONCLUSION

In this paper, the iteration schemes for the time-domain
modeling of propagation in frequency-dependent anisotropic
and bi-isotropic materials have been developed. Although for
clarity the analysis has concentrated on the 1-D scheme,
it has been shown that the 3-D case follows directly by
simply increasing the order of the matrices and vectors of
the 1-D case. Results have been presented for propagation in
magnetized plasma and magnetized ferrite media and the TLM
solution has been found to be stable, yielding results which
correlate with the analytic solutions. Finally, a chiral material
has been modeled in the time-domain showing that TLM can
be applied to materials that display magnetoelectric coupling.
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