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A Numerical Approach for the Diffraction of a
Gaussian Beam from a Perfectly Conducting Wedge
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Abstract—A finite difference (FD) solution to the problem
of high-frequency scattering from a perfectly conducting wedge
of arbitrary external angle illuminated by a Gaussian beam is
presented. The solution is obtained through the application of
the parabolic equation method. The solution is compared with
the analytical asymptotic solution available in the literature.

Index Terms—Electromagnetic scattering, Gaussian beams,
wedges.

I. INTRODUCTION

FINITE-DIFFERENCE (FD) techniques applied to the par-
abolic equation method have been used for the determi-

nation of the field scattered from isotropic [1] and anisotropic
[2] impedance wedges in the high-frequency approximation.
Recently, this method has also been extended to cover the
problem of inhomogeneous plane wave scattering from an
impedance wedge [3]. In this paper, the same method is ap-
plied to analyze the high-frequency scattering from a perfectly
conducting wedge illuminated by a Gaussian beam. Gaussian
beams are useful wave objects for charting the transition from
an extended aperture excitation to the far field and they also
are advantageous in studying the passage through complex
propagation environments. These attributes have contributed
to make Gaussian beams really attractive as base elements
in field representations. Although more than one definition of
Gaussian beam exists, the one reported in [4] is the more
appealing for its properties and is thus used in this study.
Since in [4] a nonuniform solution is shown, a validation of
the present solution is sought by comparison with the uniform
solutions presented in [5] and [6].

The formulation of the problem is presented in Section II.
Section III discusses the parabolic approach. Finally, some
numerical results for the scattering of Gaussian beams are pre-
sented and compared with the results obtainable analytically
for the simpler problem of the half-plane in the context of the
uniform geometrical theory of diffraction (UTD) [5]–[7].

II. FORMULATION

The geometry for the two-dimensional (2-D) scattering at
the edge of a perfectly conducting wedge is depicted in
Fig. 1. The exterior angle of the wedge is . The wedge
is illuminated by a 2-D Gaussian beam with the electric field
parallel (TM ) to the edge of the wedge. An
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Fig. 1. Geometry of the wedge problem.

harmonic time dependence is implicitly assumed. The TE
case can, of course, be treated with a similar

approach.
According to the definition provided in [4], the field of a

Gaussian beam in free-space can be seen as the field radiated
by a line source parallel to the direction and located in the
complex space in point . This corresponds
to a Gaussian beam being generated at the origin of an
coordinate system and focused in the positive direction of the

axis (Fig. 2). A more general formula can be obtained by
an appropriate coordinate transformation aimed at focusing
the beam in a generic direction and at having the beam
generated at an arbitrary point of the plane (Fig. 1).
This corresponds to placing the source in point

, . The relative field incident
on the wedge, is

(1)

where is the zero-order Hankel function of the
second kind, is the free-space propagation constant, and
is the distance in the complex plane between the source in

and the observation point . The complex
displacement has two branch point singularities described
in [4] that can be regarded, for this generalized case of source
placement and orientation, as corresponding to the points

, . In order for and, hence,
the incident field to be single valued, it is necessary to connect
the branch points with a cut and one can imagine the beam
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Fig. 2. Isotropic line source in the complex plane, generating a directive
beam source in the real plane.

as generated by an appropriate set of real equivalent sources
along such segment. In Fig. 1 and subsequently, the branch
points are indicated by bullets and the branch cut connecting
them is shown by the wavy line. In Fig. 1, the anglegives
the direction of maximum radiation of the beam. To describe
the incident beam, besides parameter, three quantities have
been chosen in place of and for an easier handling of the
beam in polar coordinates. These quantities are and .
Angle exhibits an immediate link with the beam focusing
direction . is the distance between the edge
of the wedge and the line perpendicular to the beam focusing
direction; that is, the line passing for the branch points. Finally,

is the distance along this latter line between the origin of the
Gaussian beam itself and segment. This parameter represent
an offset in the beam focusing. If , then the beam is
focused exactly on the edge of the wedge (see Fig. 3).

The total field is, of course, the solution of Helmholtz
equation with Dirichlet boundary conditions on the wedge
faces ; in our approach, the total field is
written as the sum of the geometrical optics (GO) field
(incident plus reflected) and the diffracted field. The former
can be seen as a superposition of an incident and of a reflected
beam [4, eq. (15)]

(2)

where is the unit step function. and are the
complex distances from the source and from the relative
image source, respectively, the latter being characterized by

, , , , and
by the same parameter (Fig. 3). The first term in (2)
represents the incident field and the second the reflected field.
Finally, and are the equations of the incident and
reflected shadow boundaries (ISB and RSB), respectively. In
particular, are the solution of Re for which
Im , being

(3)

Fig. 3. Incident and reflected Gaussian beams for a perfectly conducting
plane.

Fig. 4. Behavior of Re(W1) and Im(W1) as a function of for different
values of distance�. The zeroes of Re(W1) for which Im(W1)< 0 gives the
location �1(�) of the ISB.

For a Gaussian beam, the ISB and RSB are generally curved
and, thus, a function of the distance from the edge. Only
for the case are these boundaries straight lines as in
standard ray theory.

To show the typical behavior of such boundaries, the
function is represented in Fig. 4 as a function of the
observation angle for different values of the observation
distance . The beam parameters are

. As may be noted, the angle , which would have
been regardless of for , is a function of the
distance. The displacement from and the relatively large
variation of are due to the small value of and to the
large value of .

III. PARABOLIC APPROACH

By introducing one scalar auxiliary function so that
and by assuming ,

one can neglect the term involving the second derivative
with respect to in the Helmholtz equation in cylindrical
coordinates. This process transforms the elliptic Helmholtz
equation into the parabolic equation

(4)
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If the value of the auxiliary function or an approx-
imation of it is known at (4) can be solved on an
open domain by a marching in space FD procedure [1]–[3].
Suitable conditions at the ISB and RSB and on both faces of
the perfectly conducting wedge have to be established for the
auxiliary function . This because the total field must
be continuous, while the GO solution is not. Consequently,
the diffracted field, of which is the slowly-varying
component, must be discontinuous too and its discontinuities
must cancel out those of the GO field. We will refer to these
conditions in the following as the compatibility conditions.

The solution of (4) is generally different from that of the
Helmholtz equation, but it is a good approximation of the
latter for . It is important to note the difference
between our procedure, where only the phase is extracted,
from the procedure in [8] for the same problem but with a
source in the real space, thus, a cylindrical wave illumination;
there, not only the phase term is extracted, but
also the amplitude factor . Reference [8] is anyway
extremely interesting since it contains the demonstration that
the asymptotic solution of the parabolic equation coincides
with the asymptotic solution of Helmholtz equation.

The singularity of (4) for does not upset the
convergence or the stability of the FD solution as has been
shown in early papers on the parabolic equation [9], [10].

By assuming the nonrestrictive hypothesis that only the face
of the wedge is illuminated, i.e., ,

the following compatibility conditions are obtained:

(5)

(6)

where both the discontinuity of the GO field and of its
derivative have been taken into account. Furthermore, at every
given of the FD space iteration process, the location of
the discontinuities must be computed by solving (3)
numerically. The actual values of the discontinuities of (5) and
(6) on the basis of the GO field [4]–[6] are

(7)

(8)

(9)

(10)

being only if ; that is, if the beam is
focused on the edge of the wedge.

As previously stated, to start the FD solution process of
(4), the value of for is needed. This is
done by expanding the solution in a Taylor series

. Substituting this series into (4), a recursive

(a)

(b)

Fig. 5. Comparison between the solution provided by the parabolic equation
method ( ) and the analitycal uniform solution in [5] (� � �) for a beam
focused on the edge of a perfectly conducting half plane.

set of equation is obtained [9]

(11)

To have , it is sufficient to compute the solution
of the first equation of the set, which, taking into account
the boundary at the perfect conducting faces and conditions
(7)–(10), gives

(12)

where

(13)

This holds even if since the presence of the term
for annihilates the contribution of coming

from (9) and (10). This is actually the exact solution of (4) for
and not an approximate one.

IV. NUMERICAL RESULTS

In a first series of results, a comparison has been carried
out with respect to the uniform solution presented in [5] (see
Fig. 5). In this case, the beam is characterized by ,
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Fig. 6. Comparison between the solution provided by the parabolic equation
method ( ) and the uniform solution in [6] (� � �) for a beam focused
away from the edge of a perfectly conducting half-plane.

Fig. 7. Total field computed atk� = 20 for an = 5=3 perfectly conducting
wedge illuminated by a Gaussian beam with�0

= 60
�, k�0 = 5, kd0 = 0,

and different values ofkb0.

, , and various values of the beam width
. In particular, Fig. 5 reports the normalized values of

for . The results in [5] are far-field diffraction
patterns; that is, for since the technique exploited
there is asymptotic. In the present work, a distance
has been chosen to have . The agreement is good
and is better for low values since this parameter is linked to
an equivalent aperture of the source in the real plane and this
parameter too should be kept much smaller than the distance
of the observation point in an asymptotic approximation.

A second test has been carried out on the more critical case
of an offsetted beam over a half plane, a problem for which
exists a uniform solution [6]. The chosen configuration has

, , , and beam width .
These values corresponds to the first offsetted case presented
in [6]. The results, after taking into account the differences
between the reference systems used in this paper and in [6]
are reported in Fig. 6, where the normalized is reported.

A third series of numerical result is presented in Fig. 7,
where a TM Gaussian beam impinges on an

perfectly conducting wedge. Various coefficients of
beam width are considered, in particular, .
The other geometrical parameters are and

, thus, a beam focused on the edge itself. The figure
reports the modulus of the total field at a distance
from the edge of the wedge.

Fig. 8. Total field computed atk� = 20 for an = 5=3 perfectly conducting
wedge illuminated by a Gaussian beam with�0

= 60
�, k�0 = 5, kb0 = 1,

and different values ofkd0.

Fig. 8, on the other hand, presents the results for the much
more complex problem of an offsetted beam. The case is again
TM and the wedge configuration is the same, but
the beam width is fixed at and the offset varies
assuming the values . We note that the
direction of maximum forward radiation for the beam gets
closer to 240 as the offset increases, being 240the direction
of the maximum if no wedge is present. Even if the distance
remains the same, the contribution due to edge diffraction
decreases since the edge illumination decreases as the offset
increases.

As a last example, Fig. 9 reports the contours at equal
amplitude of the GO field [Fig. 9(a)] and of the total field
[Fig. 9(b)] for the same wedge configuration in the ,

, , and case. In Fig. 9(a), three
discontinuities can be noted: the ISB and RSB, which, being

, are curved and the branch cut (BC) itself. In Fig. 9(b),
on the other hand, the GO discontinuities at the ISB and RSB
are completely canceled out by the diffracted field while the
BC discontinuity still holds. This is due to the fact that the
equivalent real sources generating the beam are located along
this line and the total field is thus physically discontinuous
there. The directivity of the source itself can, of course, be
noted in both Fig. 9(a) and (b), since the contours shows how
the field is much stronger in the direction pointing toward the
edge.

Although both plots in Fig. 9 present data in the
range, it has been stated before that the solution

of the parabolic equation is a good approximation of the
solution of the original elliptic problem for . Previous
investigations showed [1]–[3] that the agreement is already
good for as small as four. Thus, in Fig. 9(b), to point out
the area of lower accuracy, the disk at has been grayed
out.

V. CONCLUSIONS

A complete numerical approach in the framework of the
parabolic equation method to the problem of electromagnetic
scattering from a perfectly conducting wedge of arbitrary



PELOSI AND SELLERI: NUMERICAL APPROACH FOR DIFFRACTION OF GAUSSIAN BEAM 1559

(a)

(b)

Fig. 9. Field map representing the modulus of the field fromk� 2 [0; 20]
for a n = 5=6 perfectly conducting wedge illuminated by a Gaussian beam
with �0 = 60�, k�0 = 5, kd0 = 1, and kb0 = 2. (a) Only the GO field.
(b) Total field.

internal angle illuminated by a Gaussian beam has been
presented.

The solution can then be further developed since the par-
abolic equation method, suitable to treat impedance wedges
[1]–[3], may be applied in this case to the scattering from
an impedance wedge illuminated by a Gaussian beam once a
suitable description for the GO field is available.
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