IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 47, NO. 10, OCTOBER 1999 1555

A Numerical Approach for the Diffraction of a
Gaussian Beam from a Perfectly Conducting Wedge

Giuseppe PelosiSenior Member, IEEEand Stefano Selleriiember, IEEE

Abstract—A finite difference (FD) solution to the problem Y

of high-frequency scattering from a perfectly conducting wedge
of arbitrary external angle illuminated by a Gaussian beam is
presented. The solution is obtained through the application of
the parabolic equation method. The solution is compared with
the analytical asymptotic solution available in the literature.

Index Terms—Electromagnetic scattering, Gaussian beams,
wedges.

I. INTRODUCTION

INITE-DIFFERENCE (FD) techniques applied to the par- ~ .

abolic equation method have been used for the determi- ~
nation of the field scattered from isotropic [1] and anisotropic !
[2] impedance wedges in the high-frequency approximation.
Recently, this method has also been extended to cover the ¢=nn
problem of inhomogeneous plane wave scattering from an
impedance wedge [3]. In this paper, the same method is gﬁg-'
plied to analyze the high-frequency scattering from a perfectly
conducting wedge illuminated by a Gaussian beam. Gausskarmonic time dependence is implicitly assumed. The TE
beams are useful wave objects for charting the transition frqi)(E. = 0) case can, of course, be treated with a similar
an extended aperture excitation to the far field and they alspproach.
are advantageous in studying the passage through compleRccording to the definition provided in [4], the fiel’ of a
propagation environments. These attributes have contribut@dussian beam in free-space can be seen as the field radiated
to make Gaussian beams really attractive as base eleméyts line source parallel to the direction and located in the
in field representations. Although more than one definition @bmplex space in poir(tz’ = —;¥,%/ = 0). This corresponds
Gaussian beam exists, the one reported in [4] is the matea Gaussian beam being generated at the origin afan
appealing for its properties and is thus used in this studyvordinate system and focused in the positive direction of the
Since in [4] a nonuniform solution is shown, a validation of axis (Fig. 2). A more general formula can be obtained by
the present solution is sought by comparison with the uniforan appropriate coordinate transformation aimed at focusing
solutions presented in [5] and [6]. the beam in a generic directia®’ and at having the beam

The formulation of the problem is presented in Section Igenerated at an arbitrary poifit), ;) of the plane (Fig. 1).

Section Ill discusses the parabolic approach. Finally, sorfféis corresponds to placing the source in pdihts (z/,y') =
numerical results for the scattering of Gaussian beams are gre;b’ cos o’ +zf, —jb’ sin o/ +1}). The relative field incident
sented and compared with the results obtainable analyticadly the wedge, is
for the simpler problem of the half-plane in the context of the .
uniform geometrical theory of diffraction (UTD) [5]-[7]. Eix,y; 2 ,y) = —ﬁHé”(kR) Q)

1. Geometry of the wedge problem.

Il. FORMULATION where HéQ)(kR) is the zero-order Hankel function of the

The geometry for the two-dimensional (2-D) scattering S£¢0nd kind/ is the free-space propagation constant, &hd
the edge of a perfectly conducting wedge is depicted [ the distance in the complex plane between the source in

Fig. 1. The exterior angle of the wedge #sr. The wedge a’,y') and the observation poin? = (z,y). The complex
is illuminated by a 2-D Gaussian beam with the electric fieBlsplacementR has two branch point singularities described

parallel (TM. (), H. = 0) to the edge of the wedge. Anin [4] that can be re_gardgd, for this generallz_ed case of source
placement and orientation, as corresponding to the points
Manuscript received September 26, 1997; revised July 20, 1999. T sina’ + z)), £V cos o’ + y’ ) In order forR and. hence
The authors are with the Department of Electronic Engineering, Universi . o . 0 . ' !
of Florence, Florence, 150134 Italy. e incident field to be single valued, it is necessary to connect
Publisher Item Identifier S 0018-926X(99)09847-6. the branch points with a cut and one can imagine the beam
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Fig. 2. Isotropic line source in the complex plane, generating a directive
beam source in the real plane.

as generated by an appropriate set of real equivalent SOUIEES3  incident and reflected Gaussian beams for a perfectly conducting
along such segment. In Fig. 1 and subsequently, the bramtime.

points are indicated by bullets and the branch cut connecting

them is shown by the wavy line. In Fig. 1, the anglegives

the direction of maximum radiation of the beam. To describe

the incident beam, besides paramétethree quantities have

been chosen in place af, andy{ for an easier handling of the

beam in polar coordinates. These quantities drg’ and ¢'. 0

Angle ¢’ exhibits an immediate link with the beam focusing

direction o’ = 7 + ¢'. p’ is the distance between the edge

of the wedge and the line perpendicular to the beam focusing

direction; that is, the line passing for the branch points. Finally, -10 .

d’ is the distance along this latter line between the origin of the 180 240 300 360

Gaussian beam itself and segmghtThis parameter represent Angle ¢ (degrees)

an offset in the beam focusing. #f = 0, then the beam is Fig. 4. Behavior of R&V1) and In(W;) as a function of for different

focused exactly on the edge of the wedge (see Fig. 3). values of distance. The zeroes of R@&V ) for which Im(W;) < 0 gives the
The total field is, of course, the solution of Helmholt2°Cation @i(p) of the ISB.

equation with Dirichlet boundary conditions on the wedg

faqt(-is (¢ :tr?’d) - m;)t;hm our ap;pro?ch,t_the ggl fﬂggi S and, thus, a function of the distance from the eggenly
wii .Zn ?SI € Sflljmtod edgtehorr:je_ﬁrlcat %pfgz (Th )f ' for the cased’ = 0 are these boundaries straight lines as in
(incident plus reflected) and the diffracted fidld. The former st%Pdard ray theory.

can be seen as a superposition of an incident and of a reflecte b show the typical behavior of such boundaries, the

beam [4, eq. (15)] function W7 is represented in Fig. 4 as a function of the
go . T @ observation angle) for different values of the observation
B2 =ul¢ ¢1(p))< 4H0 (kR1)> distancep. The beam parameters ape = 2,¢' = 30°,b =
7 @ 3,d = 3. As may be noted, the anglg, which would have
—u(g - ¢2(P))<—ZH0 (/fR2)) (2)  been266° regardless ofp for b = 0, is a function of the
distance. The displacement fra2fi6® and the relatively large

where u(t) is the unit step functionk, and R, are the variation of ¢, (p) are due to the small value gf and to the
complex distances from the source and from the relativ@(ge value ofp = 3.

image source, respectively, the latter being characterized by
o, = 2 —ad, pp = p, ¢ = —¢', d. = =d', and

by the same parametdr (Fig. 3). The first term in (2)
represents the incident field and the second the reflected fieldBy introducing one scalar auxiliary functidi(p, ¢) so that
Finally, ¢1(p) and¢(p) are the equations of the incident andZ2(p, ¢) = U(p, ¢) exp(—jkp) and by assuming:p > 1,
reflected shadow boundaries (ISB and RSB), respectively.@ne can neglect the term involving the second derivative
particular,; »(p) are the solution of RéV; ») = 0 for which Wwith respect top in the Helmholtz equation in cylindrical
Im(W12) <0, being coordinates. This process transforms the elliptic Helmholtz

1 equation into the parabolic equation
p— 1 — p— /
Wop = 20wt ke J =m0 =)

S ) a gk 1 & B
p+p + Rip cos%(d)—i—(/)’) {—2jk$—7+?w}U(p,¢)—0. (4)
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Eor a Gaussian beam, the ISB and RSB are generally curved

I1l. PARABOLIC APPROACH
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If the value of the auxiliary functio/(p, ¢) or an approx- . £
imation of it is known atp = 0, (4) can be solved on an
open domain by a marching in space FD procedure [1]-[3].
Suitable conditions at the ISB and RSB and on both faces of
the perfectly conducting wedge have to be established for the
auxiliary functionU(p, ¢). This because the total field must
be continuous, while the GO solution is not. Consequently,
the diffracted field, of whichU(p, ¢) is the slowly-varying
component, must be discontinuous too and its discontinuities
must cancel out those of the GO field. We will refer to these 00 20 a0 20 30 3%
conditions in the following as the compatibility conditions. Angle ¢ (degrees)

The solution of (4) is generally different from that of the @

Helmholtz equation, but it is a good approximation of the
latter for kp > 1. It is important to note the difference
between our procedure, where only the phase is extracted,
from the procedure in [8] for the same problem but with a
source in the real space, thus, a cylindrical wave illumination;
there, not only the phase teraxp(—jkp) is extracted, but
also the amplitude factot/\/kp. Reference [8] is anyway
extremely interesting since it contains the demonstration that
the asymptotic solution of the parabolic equation coincides
with the asymptotic solution of Helmholtz equation.

The singularity of (4). forp — 0 does r]ot upset the 0180 2;0 24"0 2‘70 360 3;30 360
convergence or the stability of the FD solution as has been Angle ¢ (degrees)
shown in early papers on the parabolic equation [9], [10]. ®)

By assuming the nonrestrictive hypothesis that only the face

o .. . - ’ Fig. 5. Comparison between the solution provided by the parabolic equation
¢=0 of the Wedge is illuminated, i.eQ < S (n - 1)7r), method () and the analitycal uniform solution in [5] {-) for a beam
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the following compatibility conditions are obtained: focused on the edge of a perfectly conducting half plane.
Ulp, ¢7 —Ul(p, o7 = 5
v ¢1’2(p)) (e ¢1’2(p)) m.240) ®) set of equation is obtained [9]
du,

1 9U(p, ¢(p)) 1 .9U(p, ¢(p)) d;g@ —0

¢ ) _
P =0T, P $=01 () Pun()

=%1,2(p) (6) 12 =Jjk(2n — L)un—1(¢). (11)

where both the discontinuity of the GO field and of its T0 haveU(0,¢), it is sufficient to compute the solution
derivative have been taken into account. Furthermore, at evefythe first equation of the set, which, taking into account
given p of the FD space iteration process, the location df€ boundary at the perfect conducting faces and conditions
the discontinuities; »(p) must be computed by solving (3)(7)—(10), gives

numerically. The actual values of the discontinuities of (5) and U(0, ) =uo($)

(6) on the basis of the GO field [4]-[6] are

B 0<p<
_ @ =< B+(0) P1<Pp<¢p2 (12)
() ?2)(kR1)|”’¢1<”> . % B+71(0) +72(0) ¢a <p<nrw
12(p) = Ho (KR .00 (p) = Ho™ (kB2 .00 () (8)
aH(Q)(le) where
A1(p) = Oa—¢ ©) B = _M. (13)
P,d1(p) 2
R OH? (kRky) OH? (kRy) This holds even ifd’ # 0 since the presence of the term
Ao(p) = A - Y (10) 1/p for p — 0 annihilates the contribution af; »(0) coming
pib2(p) pi2(p) from (9) and (10). This is actually the exact solution of (4) for
being 41 2(p) = 0 only if & = 0; that is, if the beam is p =0 and not an approximate one.
focused on the edge of the wedge.
As previously stated, to start the FD solution process of IV. NUMERICAL RESULTS
(4), the value ofU(p,¢) for p = 0 is needed. This is In a first series of results, a comparison has been carried
done by expanding the solution in a Taylor serfé&, ¢) = out with respect to the uniform solution presented in [5] (see

Y2 o un(¢)p™. Substituting this series into (4), a recursivéig. 5). In this case, the beam is characterizedpby= 90°,
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Fig. 6. Comparison between the solution provided by the parabolic equation Angle ¢ (degrees)
method () and the uniform solution in [6]-¢-) for a beam focused
away from the edge of a perfectly conducting half-plane. Fig. 8. Total field computed dtp = 20 for an = 5/3 perfectly conducting
wedge illuminated by a Gaussian beam with= 60°, kp’ = 5, kb =1,
15 : — . . and different values ofd’.
— k=1
_ - kb'=2
2ol =3 ] Fig. 8, on the other hand, presents the results for the much
§ , more complex problem of an offsetted beam. The case is again
s JPERA TM, (H_ = 0) and the wedge configuration is the same, but
2 s the beam width is fixed akt’ = 1 and the offset varies
S 05} 7 . assuming the valuegd’ = 0,0.5,1,1.5. We note that the
e N direction of maximum forward radiation for the beam gets
closer to 240 as the offset increases, being 240e direction
0 A . . 1 . S of the maximum if no wedge is present. Even if the distance
0 60 120 180 240 300 remains the same, the contribution due to edge diffraction
Angle ¢ (degrees) decreases since the edge illumination decreases as the offset
Fig. 7. Total field computed dtp = 20 for an = 5/3 perfectly conducting Increases. )
wedge illuminated by a Gaussian beam with= 60°, kp' = 5, kd' = 0, As a last example, Fig. 9 reports the contours at equal
and different values okb'. amplitude of the GO field [Fig. 9(a)] and of the total field

. ~ [Fig. 9(b)] for the same wedge configuration in th¥ = 2,
kp' = 8, kd" = 0, and various values of the beam width, — 1 ¢ = 60°, andky = 5 case. In Fig. 9(a), three
kb. In particular, Fig. 5 reports the normalized valueg Bf| giscontinuities can be noted: the ISB and RSB, which, being
for kb = 2,4,8,16. The results in [5] are far-field diffraction gy £ 0, are curved and the branch cut (BC) itself. In Fig. 9(b),
patterns; that is, fop > o’ since the technique exploitedon the other hand, the GO discontinuities at the ISB and RSB
there is asymptotic. In the present work, a distakpe= 80 are completely canceled out by the diffracted field while the
has been chosen to ha¥p = 10kp'. The agreement is goodBC discontinuity still holds. This is due to the fact that the
and is better for lowkb values since this parameter is linked tequivalent real sources generating the beam are located along
an equivalent aperture of the source in the real plane and thi line and the total field is thus physically discontinuous
parameter too should be kept much smaller than the distankere. The directivity of the source itself can, of course, be
of the observation point in an asymptotic approximation. noted in both Fig. 9(a) and (b), since the contours shows how

A second test has been carried out on the more critical cake field is much stronger in the direction pointing toward the
of an offsetted beam over a half plane, a problem for whiaudge.
exists a uniform solution [6]. The chosen configuration has Although both plots in Fig. 9 present data in the <
¢ = 75° kp' = 16, kd' = 4.14, and beam widthtb = 2. [0,20] range, it has been stated before that the solution
These values corresponds to the first offsetted case presefethe parabolic equation is a good approximation of the
in [6]. The results, after taking into account the differencesplution of the original elliptic problem fokp > 1. Previous
between the reference systems used in this paper and ini[8jestigations showed [1]-[3] that the agreement is already
are reported in Fig. 6, where the normalizZéd | is reported. good forkp as small as four. Thus, in Fig. 9(b), to point out
A third series of numerical result is presented in Fig. the area of lower accuracy, the diskigt< 4 has been grayed
where a TM (H. = 0) Gaussian beam impinges on arPut.
n = % perfectly conducting wedge. Various coefficients of
beam widths are considered, in particulakd’ = 1,2, 3.
The other geometrical parameters gfe= 60°kp’ = 5 and V. CONCLUSIONS
kd’ = 0, thus, a beam focused on the edge itself. The figureA complete numerical approach in the framework of the
reports the modulus of the total field at a distaige= 20 parabolic equation method to the problem of electromagnetic
from the edge of the wedge. scattering from a perfectly conducting wedge of arbitrary
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for an = 5/6 perfectly conducting wedge illuminated by a Gaussian beam

with ¢/ = 60°, kp’ = 5, kd’ = 1, andkb’ = 2. (a) Only the GO field.
(b) Total field.

internal angle illuminated by a Gaussian beam has be
presented.

The solution can then be further developed since the pi
abolic equation method, suitable to treat impedance wedc

[1]-[3], may be applied in this case to the scattering fror..
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