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Solution of Large Dense Complex Matrix
Equations Utilizing Wavelet-Like Transforms

Tapan Kumar Sarkarsellow, IEEE and Kyungjung Kim

Abstract—This paper presents the wavelet-like transforms, matrix is sure to change! What happens to the condition
which are quite different from the wavelet transform for the number?
solution of large dense complex matrix equations. From a purely 3) What is the difference between the phrases-wavelet [1]
numerical standpoint, these wavelet-like transforms are not true > d - let-like” [3] t f tion? '
orthogonal transforms as the condition number of the resulting [2] and “wavelet-like” [3] transformation®
matrix changes after the thresholding. These effects are illus- We address these issues by considering a large dense

trated through examples. complex matrices of size 204& 2048 that arises in the
Index Terms—Method of moments, wavelet transforms. solution of electromagnetic scattering from wire structures.
l. INTRODUCTION [I. SOLUTION OF LARGE MATRIX EQUATIONS
ONSIDER the solution of a dense complex matrix equa- BY THE WAVELET-LIKE TRANSFORM

tion of size Q. A wavelet transform [1], [2] takes a For the application of wavelet-like techniquéshas to be
large dense matrix and compresses it to a sparse matgx.integer power of two. If the original matrix is not of siz& 2
Specifically, if the matrix is generated from a kernel of thgor an integenn), then the matri§.A] can be augmented by a
form 1/|z —y|*, where the elements decay in magnitude froiagonal identity matrix to make it"2 [9]. To implement and
the diagonal, it is possible to compress 3¢ elements t0 & carry out the discrete wavelet transform it is not even necessary
sparse matrix containing(}) elements wheré denotes of tg introduce the concept of scaling functions and wavelets. The
the order of¢Q. However, this orthogonal transform cannot bgasic principles, as outlined by Beylkiet al. [1] based on
used for solution of matrix equations. For these problems[j_ao], are that typically, one would have onl§)Qlog;,(1/¢)
different transform is used. This has been depicted in [3] Widlements in the sparse system wheiis the truncation level,
different qualifiers. It is also an orthogonal transformatiof.e  elements of the resultant matrix whose absolute value is
Hence, from a theoretical point of view, the condition numbggss than: will be discarded. Hence, it is useful to study such
of the matrix is preserved even though it gets sparse. Thignsformations. An extension of the one-dimensional (1-D)
implies that if an iterative method is used—like, say, th@avelet transform was made by Mallat [2] to extend the 1-D
conjugate gradient—it will take the same number of iteratioRgscrete wavelet transform to the two-dimensional (2-D) dis-
to arrive at the solution for both the cases of the full and thgete wavelet transform as illustrated by Figs. 1 and 2. This
sparse matrix. However, an advantage for the sparse syster@@@rithm was later used by Beylkiet al. in [1] to il-
that only 6(?) multiplications are required to obtain a matriXystrate how the fast wavelet transform can be utilized to
vector product in contrast t@* that is necessary to obtain acompress matrix. They illustrated that the 2-D discrete wavelet
matrix-vector product for a dense matrix. It is important to not@ansform is computationally efficient and it is possible to
that the subtle distinction between the wavelet and wavelgtain a very sparse matrix with(QQ) elements out ofQ?
like transforms are often overlooked. The two procedures aspments. Most of the estimates of convergence have been
depicted in Figs. 1 and 2 for the first case and Figs. 3 agdveloped for this approach. However, this form cannot be
4 for the wavelet-like transform utilizing the terminology ofysed for solution of matrix equations as pointed by Alpert
[9], [12]. The subtleties in their differences are now morgt a|. [3] in their second paper. The transformations for
revealing. However, there are many questions that remajz wavelet-like transforms are given by Figs. 3 and 4. We
unanswered [4]-{8] (e.g., the following). call this procedure a “wavelet-like” transform [3] in contrast
1) In electromagnetic problems, the kernel is not of the Mallat's algorithm, which is termed as a true “wavelet”
form 1/|z — y|®. Then when one utilizes a wavelet-liketransform [1].
transform [3] does one still obtaif{(}) elements? To carry out the 2-D wavelet (orthogonal) transform of a
2) ltis true that the wavelet-like transform is an orthogonahatrix [4] utilizing a finite impulse response filter (FIR) of
matrix transformation. However, when one utilizes &ength L, one requirestQ?L? + 2QL operations which has
thresholding operation, the condition number of that most#(Q) elements. Since whatever product operations
we carry out are essentially convolutions one can utilize fast
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Fig. 1. Filter representation for the wavelet transform.
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Fig. 2. Transform-domain decomposition for thewavelet transform.
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The results shown in this paper are as follows.

1)

2)

3)

For a large dense matrix, one observes that due to
round-off errors, the transformed matrix has a different
condition number and, therefore, orthogonality is not
strictly maintained from a purely numerical standpoint.
The transformed matrix does not reach the asymptotic
6(N) nonzero elements. The number of nonzero ele-
ments are still quite large. Also, in order to achieve
such results, we observed a diagonal preprocessing is
absolutely necessary, which is not related to the wavelet
transform.

The operation count &f[L? log?(L)] is seldom reached

as the order of the filter never goes beyond 32 for
practical reasons and, therefore, a normal matrix-vector
product is computationally more efficient than carrying
out a FFT.

I1l. EXAMPLE

one and one does not get these efficient numbers as filters ofonsider the solution of electromagnetic scattering from an
order higher than 32 are never used for computational reasamsay of randomly spaced wires by utilizing the method of
Therefore, these computational counts are never reachedniaments (MoM). There are 56 thin wire antennas. Six of them

practice!

are2.7X long and of radiu®.005\. The remaining 50 wires are
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Fig. 3. Filter representation for the wavelet-like transforms.

3.0\ with the same radius. The 56 wires are randomly spacttk real and the imaginary parts of the matrix (typically the real
inside a cube of dimension 2 25 Ax 21 \. The impedance partis 107 times the imaginary part). Hence, to get reasonable
matrix that results from this structure @ = 2048 and is a degrees of compression the transform must be applied to the
full complex matrix. Before we apply the wavelet transfornreal and the imaginary parts separately along with the diagonal
we rescale the entire matrix elements by the square root of 8waling introduced above. For the filter (as outlined in [9]) we
diagonal elements. This transformation is necessary otherwitmose different orders of Daubechies filters, namely, 4, 8, 16,
the results obtained from the wavelet applications is not gocaihd 32. The goal is to see for this 2048048 complex matrix
Without this transformation, it has been our experience thdtwhat order of filter provide the maximally sparse matrix.
one obtains only 30-35% compression of the matrix instedthe reconstruction error is the difference between the actual
of >90% in order to make this procedure cost effective. F@lements of the matrix and the one reconstructed from the
these classes of problems dealing with arbitrary oriented witteeesholded wavelet coefficients. The results of this numerical
antennas, diagonal preprocessing is not only necessary é&xperiment are summarized in Table I.
mandatory. For a 2048x 2048 matrix there are 4194304 elements.
We apply the wavelet-like transform to the rescaled matriko obtain a sparse matri&(@}) elements, one should obtain
and the thresholding is applied separately to the real and thsparsity of the order of 99.95%. However, for an extremely
imaginary parts ofd as the wavelet transform of a real functiorarge threshold of 0.1, we observe tig22.5()) are nonzero
is real. This is another disturbing feature of the “wavelet-like&ind for the threshold of 0.001 we get the best compression
transform. The point here is that one can apply the wavelethen we use an eighth-order filter and itfi€235.2Q).
like transform to the elements of the complex matrix directly We take the nonzero elements of the matrix and observe
or apply separately to the real and the imaginary partd.df how accurately one can reconstruct the original matrix. The
the transform is applied directly to the complex matdixthe average mean squared reconstruction error for the real and
degree of compression is not good and the results are errati@ imaginary parts of the matrices are evaluated separately
This is because there is a large difference in the magnitudedroin the thresholded elements and are given in the table. The
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TABLE |
RESULTS OF NUMERICAL EXPERIMENTATION WITH A 2048 x 2048 GOMPLEX MATRIX

% of Elements that are zero

order of filter | 4 8 16 32
real e=0.1 98.96 98.94 98.84 98.46
part €=0.01 96.38 96.28 95.64 94.35

£=0.001 86.11 88.55 87.35 84.49
imag £=0.1 93.93 98.89 98.75 98.32
part £=0.01 96.34 96.20 95.56 9425

£=0.001 86.08 88.50 87.30 84.35

Reconstruction error X107

order of filter | 4 8 16 32
real €=0.1 3.73 3.80 4.28 4.81
part £=0.01 0.95 0.87 0.88 0.94

e=0.001 0.15 0.12 0.12 0.13
imag £=0.1 3.77 3.86 4.34 4.90
part €=0.01 0.95 0.87 0.88 0.94

£=0.001 0.15 0.12 0.12 0.13

Condition number of the original matrix = 121.9

order of filter | 4 8 16 32
after the 188.8 198.4 2474 288.6
similarity
transform
after e=0.1 201.0 197.2 2428 281.1
threshold £=0.01 184.4 192.2 246.9 298.6
e=0.001 129.2 133.0 151.1 1599

@y(row) Finally, we present the results of solving the sparse thresh-

olded wavelet-like transformed complex matrix by the iterative
conjugate gradient method to observe how efficient is the
solution procedure. The iteration was stopped when the error
in the residuals was. The conjugate gradient method took 22
iterations in all cases whether the matrix was full or sparse.
At | A An As This is to be expected. However, for the scaled wavelet-
like transformed problem, we are performing orfly)20Q>
multiplications per iteration as opposed@3 for the unscaled
problem. Also, for the scaled problem, since 98% of the matrix
is zero, we can store the entire matrix in the main memory
An | An Au An and thereby not incur any page faults at all. This significantly
reduces the computation time as far as the solution of the
matrix equations are concerned.

A | Ana A Az

Aw | Ans A Asut IV. CONCLUSION

o, (column)

Even though the wavelet-like transform does not exactly
Fig. 4. Transform domain decomposition for the wavelet-like transforms. produce sparse matrices wit(Q) elements instead of the
original @2 elements, it still can compres§? elements

reconstruction error both in the real and in the imaginary parﬁ?mﬁca.ntly with proper additional mandatory F"agon?‘.' pre-

. . ) @{ocessmg. Also when an ord#((?) type of result is specified,
of the matrix do _not show any pz_ittern with the increase ne should always ask the question, what is the multiplicative
the order (_)f the filter for the matrlx.. For example, when th((?onstant in the front. This is because the true scientific answer
threshold is 0.001, the reconstruction error 19r = 2048 4y he shocking! For wire antennas, the results have been
decreases with the increase of the order of the filter and thgiihe order of>98%. However, such compression can only
increases when the filter order becomes 32. Here, also thSéeachieved, if the compression is applied to the real and the
iS no SyStematiC rule as to Wha.t iS the beSt pOSSib|e Strate%hginary parts Of the matrix Separate'y and an appropriate
However, the average error of the reconstruction is alwaggagonal preprocessing is done before hand. This is achieved
invariably less tham, the level of the threshold. In fact, in all gt a low computational cost (ﬂ(QQ) operations. Hence, it
our numerical experiments that we have conducted, we newgrpossible to store the entire original large matrix into the
found a situation where the average reconstruction error waain memory of the computer and so fast computations can
not significantly less tham. be carried out without any page faulting, which generally con-
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6(Q) nonzero elements of the compressed matrix,y88%

compression can reduce the computational cost. The most

disturbing factor being that even though a set of orthogonal
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