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Solution of Large Dense Complex Matrix
Equations Utilizing Wavelet-Like Transforms

Tapan Kumar Sarkar,Fellow, IEEE, and Kyungjung Kim

Abstract—This paper presents the wavelet-like transforms,
which are quite different from the wavelet transform for the
solution of large dense complex matrix equations. From a purely
numerical standpoint, these wavelet-like transforms are not true
orthogonal transforms as the condition number of the resulting
matrix changes after the thresholding. These effects are illus-
trated through examples.

Index Terms—Method of moments, wavelet transforms.

I. INTRODUCTION

CONSIDER the solution of a dense complex matrix equa-
tion of size . A wavelet transform [1], [2] takes a

large dense matrix and compresses it to a sparse matrix.
Specifically, if the matrix is generated from a kernel of the
form , where the elements decay in magnitude from
the diagonal, it is possible to compress the elements to a
sparse matrix containing elements where denotes of
the order of . However, this orthogonal transform cannot be
used for solution of matrix equations. For these problems a
different transform is used. This has been depicted in [3] with
different qualifiers. It is also an orthogonal transformation.
Hence, from a theoretical point of view, the condition number
of the matrix is preserved even though it gets sparse. This
implies that if an iterative method is used—like, say, the
conjugate gradient—it will take the same number of iterations
to arrive at the solution for both the cases of the full and the
sparse matrix. However, an advantage for the sparse system is
that only multiplications are required to obtain a matrix
vector product in contrast to that is necessary to obtain a
matrix-vector product for a dense matrix. It is important to note
that the subtle distinction between the wavelet and wavelet
like transforms are often overlooked. The two procedures are
depicted in Figs. 1 and 2 for the first case and Figs. 3 and
4 for the wavelet-like transform utilizing the terminology of
[9], [12]. The subtleties in their differences are now more
revealing. However, there are many questions that remain
unanswered [4]–[8] (e.g., the following).

1) In electromagnetic problems, the kernel is not of the
form . Then when one utilizes a wavelet-like
transform [3] does one still obtain elements?

2) It is true that the wavelet-like transform is an orthogonal
matrix transformation. However, when one utilizes a
thresholding operation, the condition number of the
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matrix is sure to change! What happens to the condition
number?

3) What is the difference between the phrases-wavelet [1],
[2] and “wavelet-like” [3] transformation?

We address these issues by considering a large dense
complex matrices of size 2048 2048 that arises in the
solution of electromagnetic scattering from wire structures.

II. SOLUTION OF LARGE MATRIX EQUATIONS

BY THE WAVELET-LIKE TRANSFORM

For the application of wavelet-like techniqueshas to be
an integer power of two. If the original matrix is not of size 2
(for an integer ), then the matrix can be augmented by a
diagonal identity matrix to make it 2 [9]. To implement and
carry out the discrete wavelet transform it is not even necessary
to introduce the concept of scaling functions and wavelets. The
basic principles, as outlined by Beylkinet al. [1] based on
[10], are that typically, one would have only
elements in the sparse system whereis the truncation level,
i.e., elements of the resultant matrix whose absolute value is
less than will be discarded. Hence, it is useful to study such
transformations. An extension of the one-dimensional (1-D)
wavelet transform was made by Mallat [2] to extend the 1-D
discrete wavelet transform to the two-dimensional (2-D) dis-
crete wavelet transform as illustrated by Figs. 1 and 2. This
algorithm was later used by Beylkinet al. in [1] to il-
lustrate how the fast wavelet transform can be utilized to
compress matrix. They illustrated that the 2-D discrete wavelet
transform is computationally efficient and it is possible to
obtain a very sparse matrix with elements out of
elements. Most of the estimates of convergence have been
developed for this approach. However, this form cannot be
used for solution of matrix equations as pointed by Alpert
et al. [3] in their second paper. The transformations for
the wavelet-like transforms are given by Figs. 3 and 4. We
call this procedure a “wavelet-like” transform [3] in contrast
to Mallat’s algorithm, which is termed as a true “wavelet”
transform [1].

To carry out the 2-D wavelet (orthogonal) transform of a
matrix utilizing a finite impulse response filter (FIR) of
length , one requires operations which has
at most elements. Since whatever product operations
we carry out are essentially convolutions one can utilize fast
Fourier transform (FFT) to reduce the computation further and
this then shows up not as , but rather as
as the dominant term. However, this result is an asymptotic
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Fig. 1. Filter representation for the wavelet transform.

Fig. 2. Transform-domain decomposition for theD wavelet transform.

one and one does not get these efficient numbers as filters of
order higher than 32 are never used for computational reasons.
Therefore, these computational counts are never reached in
practice!

The results shown in this paper are as follows.

1) For a large dense matrix, one observes that due to
round-off errors, the transformed matrix has a different
condition number and, therefore, orthogonality is not
strictly maintained from a purely numerical standpoint.

2) The transformed matrix does not reach the asymptotic
nonzero elements. The number of nonzero ele-

ments are still quite large. Also, in order to achieve
such results, we observed a diagonal preprocessing is
absolutely necessary, which is not related to the wavelet
transform.

3) The operation count of is seldom reached
as the order of the filter never goes beyond 32 for
practical reasons and, therefore, a normal matrix-vector
product is computationally more efficient than carrying
out a FFT.

III. EXAMPLE

Consider the solution of electromagnetic scattering from an
array of randomly spaced wires by utilizing the method of
moments (MoM). There are 56 thin wire antennas. Six of them
are long and of radius . The remaining 50 wires are
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Fig. 3. Filter representation for the wavelet-like transforms.

with the same radius. The 56 wires are randomly spaced
inside a cube of dimension 27 25 21 . The impedance
matrix that results from this structure is and is a
full complex matrix. Before we apply the wavelet transform,
we rescale the entire matrix elements by the square root of the
diagonal elements. This transformation is necessary otherwise
the results obtained from the wavelet applications is not good!
Without this transformation, it has been our experience that
one obtains only 30–35% compression of the matrix instead
of 90% in order to make this procedure cost effective. For
these classes of problems dealing with arbitrary oriented wire
antennas, diagonal preprocessing is not only necessary but
mandatory.

We apply the wavelet-like transform to the rescaled matrix
and the thresholding is applied separately to the real and the
imaginary parts of as the wavelet transform of a real function
is real. This is another disturbing feature of the “wavelet-like”
transform. The point here is that one can apply the wavelet-
like transform to the elements of the complex matrix directly
or apply separately to the real and the imaginary parts of. If
the transform is applied directly to the complex matrix, the
degree of compression is not good and the results are erratic.
This is because there is a large difference in the magnitudes of

the real and the imaginary parts of the matrix (typically the real
part is 10 times the imaginary part). Hence, to get reasonable
degrees of compression the transform must be applied to the
real and the imaginary parts separately along with the diagonal
scaling introduced above. For the filter (as outlined in [9]) we
choose different orders of Daubechies filters, namely, 4, 8, 16,
and 32. The goal is to see for this 20482048 complex matrix

what order of filter provide the maximally sparse matrix.
The reconstruction error is the difference between the actual
elements of the matrix and the one reconstructed from the
thresholded wavelet coefficients. The results of this numerical
experiment are summarized in Table I.

For a 2048 2048 matrix there are 41 94 304 elements.
To obtain a sparse matrix elements, one should obtain
a sparsity of the order of 99.95%. However, for an extremely
large threshold of 0.1, we observe that are nonzero
and for the threshold of 0.001 we get the best compression
when we use an eighth-order filter and it is .

We take the nonzero elements of the matrix and observe
how accurately one can reconstruct the original matrix. The
average mean squared reconstruction error for the real and
the imaginary parts of the matrices are evaluated separately
from the thresholded elements and are given in the table. The
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TABLE I
RESULTS OF NUMERICAL EXPERIMENTATION WITH A 2048� 2048 COMPLEX MATRIX

Fig. 4. Transform domain decomposition for the wavelet-like transforms.

reconstruction error both in the real and in the imaginary parts
of the matrix do not show any pattern with the increase of
the order of the filter for the matrix. For example, when the
threshold is 0.001, the reconstruction error for
decreases with the increase of the order of the filter and then
increases when the filter order becomes 32. Here, also there
is no systematic rule as to what is the best possible strategy!
However, the average error of the reconstruction is always
invariably less than, the level of the threshold. In fact, in all
our numerical experiments that we have conducted, we never
found a situation where the average reconstruction error was
not significantly less than.

Finally, we present the results of solving the sparse thresh-
olded wavelet-like transformed complex matrix by the iterative
conjugate gradient method to observe how efficient is the
solution procedure. The iteration was stopped when the error
in the residuals was. The conjugate gradient method took 22
iterations in all cases whether the matrix was full or sparse.
This is to be expected. However, for the scaled wavelet-
like transformed problem, we are performing only
multiplications per iteration as opposed to for the unscaled
problem. Also, for the scaled problem, since 98% of the matrix
is zero, we can store the entire matrix in the main memory
and thereby not incur any page faults at all. This significantly
reduces the computation time as far as the solution of the
matrix equations are concerned.

IV. CONCLUSION

Even though the wavelet-like transform does not exactly
produce sparse matrices with elements instead of the
original elements, it still can compress elements
significantly with proper additional mandatory diagonal pre-
processing. Also when an order type of result is specified,
one should always ask the question, what is the multiplicative
constant in the front. This is because the true scientific answer
may be shocking! For wire antennas, the results have been
of the order of 98%. However, such compression can only
be achieved, if the compression is applied to the real and the
imaginary parts of the matrix separately and an appropriate
diagonal preprocessing is done before hand. This is achieved
at a low computational cost of operations. Hence, it
is possible to store the entire original large matrix into the
main memory of the computer and so fast computations can
be carried out without any page faulting, which generally con-
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sumes an enormous amount of central processing unit (CPU)
time. This can be a significant contribution of the wavelet-
like transform for solution of large dense complex matrix
equations. Even though for our examples we never observed

nonzero elements of the compressed matrix, yet98%
compression can reduce the computational cost. The most
disturbing factor being that even though a set of orthogonal
transformations are used to compress the matrix, our numerical
results show a significant change of the condition number of
the original matrix! Also, what order of filter will be used to
process the data needs to be determined through numerical
experimentation for a particular matrix at hand. Hence, even
though many theoretical bounds have been derived for the
wavelet transform, they really do not hold numerically for the
wavelet-like transforms.
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