IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 47, NO. 10, OCTOBER 1999 1615

Single Integral Equation for
Electromagnetic Scattering by Three-Dimensional
Homogeneous Dielectric Objects

Michael S. Yeung

inc

Abstract—A single integral equation formulation for elec- Ini
. . . . ncident

tromagnetic scattering by three-dimensional (3-D) homogeneous wave
dielectric objects is developed. In this formulation, a single Einc
effective electric current on the surfaceS of a dielectric object
is used to generate the scattered fields in the interior region.
The equivalent electric and magnetic currents for the exterior Ky
region are obtained by enforcing the continuity of the tangential
fields acrossS. A single integral equation for the effective electric n
current is obtained by enforcing the vanishing of the total field (Ey, Hy) (e 1)
due to the exterior equivalent currents inside S. The single
integral equation is solved by the method of moments. Numerical
results for a dielectric sphere obtained with this method are
in good agreement with the exact results. Furthermore, the
convergence speed of the iterative solution of the matrix equation J
in this formulation is significantly greater than that of the coupled M

integral equations formulation. ) ) ] ] ]
Fig. 1. Homogeneous dielectric objetts, 2) embedded in a homoge-
Index Terms—Boundary integral equations, electromagnetic neous mediun{zy, ¢1). (J, M) are the equivalent currents for the exterior
scattering, method of moments. region.J.¢ is a single effective electric current for the interior region.

I. INTRODUCTION In this paper, an alternative single integral equation for 3-
dielectric objects in the frequency domain is discussed.
urthermore, the single integral equation is solved by the

between two homogeneous regions of space [1]. If one 'S'If_“rtgoﬁ of mloTentsf ?r?d r?un:er_lctal reslults a:_e pr_esdgnted. d
the regions is a perfect electric conductor, it is sufficient to € formulation of Ihe single Integral équation 1S discusse
in Section Il. The expansion of the surface current densities

find the electric current or6 by solving a single integral . = . ) S . :
y 9 g g triangular-patch basis functions is discussed in Section Ill.

equation such as the electric field integral equation (EFI h luti f the single int | tion by th thod of
magnetic field integral equation (MFIE), or combined fiel € solution of the single integral equation by the method o
oments is discussed in Section IV and numerical results for

;ﬂfglj;lj aelql;?gggdg?g IE) t[(f].sg:v?eacszier sz d;glueriten(;: irr?teecggldielectric sphere are presented_in Section_ V. The problem of
equations for the equivalent electric and magnetic currents |6|ﬁernal resonance is discussed in Appendix B.

S [3]. Such a doubling in the number of unknowns may be

undesirable due to increased computation time and storage Il. SINGLE INTEGRAL EQUATION FORMULATION

requirement. _ _ Referring to Fig. 1, letS denote the surface of a 3-D
Maystre [4] first showed how a single unknown functiopomogeneous dielectric object illuminated by an incident plane
on S can be employed to solve the problem of electrQy,ye  The regions exterior and interior to the object are

magnetic diffraction by a two-dimensional dielectric gratingsparacterized by material parametdys,,e;) and (i, 2)
Marx [5], [6] generalized Maystre’s method to the Scatterinﬁbspectively. The total field€E,, H;) in the exterior region
of an electromagnetic wave with arbitrary time dependencg, given by the sums of the incident fieldg°, Hi"*) and
by a three-dimensional (3-D) dielectric object. Glisson [%he fields radiated by a set of equivalent curredtsM) on S
presented a single integral equation for 3-D dielectric objects

RFACE integral equations are widely used to solv
roblems of electromagnetic scattering by an interféce

in the frequency domain using the equivalence principle. E, =E™ ¢+ Ei (J,M) outeide S (1)
However, no numerical results were given by Marx or Glisson. He — ™ + F°(3 M i 5
1= + 1( ? )|0utside5 ( )
Manuscript received October 1, 1997. This work was supported by a MURI
Grant from AFOSR and DARPA. , o whereE; andHj3 are integral operators for the exterior region.
The author is with the Department of Manufacturing Engineering, Bosto.Fh licit f f th . | . .
University, Boston, MA 02215 USA. e exp icit forms of t ese integra _opgrators are given in
Publisher Item Identifier S 0018-926X(99)09393-X. Appendix A. By the equivalence principle, the equivalent
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currents are related to the total tangential fieldsSohy

J=nx Hl |just outside S (3)

M = —n x E1|just outside S” (4)
wheren is the unit normal taS pointing out of the object.

Taking into account the discontinuous behavior of the
integral operator@f and ﬂf acrossS (the jump condition),
(3) and (4) imply that the quantities defined by (1) and (2)
vanish everywhere inside the object

R Fig. 2. Triangle pai(T'}, T, ) associated with theth edge. Points, and
Ein¢ 4 E? (J’ M)| (5) T in(T.f, T, ) are measured by the vectar§ andq,, defined with respect
to the verticesO;F and O}, respectively.
0. (6)

H™ + H;(J, M)

inside S
inside S
In the usual coupled integral equations method [3], the fiel#dile for the MFIE, one obtains

(E2, Hz) in the interior region are expressed in terms of the

same pair of equivalent current$, M), but with the opposite  —H™ = H; [n x H5(Jeq,0), —1 x E3(Jeq,0)] | icide 5

sign by (16)
E; = E3(-J,-M)
H, = H3(-J,—M)

o @)

inside S ~ ~
o 8) In the above two equations, the integral operaldisand E3
inside are evaluated at points just inside the object.

where E5 and H3 are integral operators for the interior  ONC€ the effective currenle; has been found by solving

region. Alternatively, the fields in the interior region can b€ Single integral equation (15) or (16), the fields in the
represented by a single effective electric curr@nt interior region are found from (9) and (10). The equivalent
i currents(J, M) for the exterior region are found from (13)

(9) and (14). The fields in the exterior region are then found from
(10) (1) and (2). In the absence of internal resonance, the fields
so obtained are the correct fields because: 1) the fields in the
interior region satisfy Maxwell's equations for this region [by
(9) and (10)]; 2) the tangential fields are continuous across
(11) S [by (13) and (14)]; and 3) the fields in the exterior region
(12) satisfy Maxwell's equations for this region and the boundary
condition at infinity [by (1) and (2)]. In the presence of internal
It should be noted that the effective curreltg or M.g '€Sonance, however, condition 2) may not hold. This problem

radiates the correct fields only in the interior region. That tH& discussed in Appendix B.
representation (9) and (10) or the representation (11) and (12)
is plausible is suggested by the fact that the figlHs, Ho)
given by (9) and (10) or by (11) and (12) certainly satisfy Il CURRENT BASIS FUNCTIONS
Maxwell's equations for the interior region for arbitradys In order to transform the single integral equation (15) or
or Mcg. It remains to show that the necessary bounda(¥6) into a matrix equation, the surfaceis replaced by a
conditions can also be made to be satisfied. triangular-patch model and the unknown effective curdnpt

In this paper, the representation in terms of the effective expanded in vector basis functions associated with the edges
electric currentl.qr is used. By evaluating the right-hand sidesf the triangulated surface [8]. Fig. 2 shows two triandl&s
(RHS) of (9) and (10) at a point just insid& the tangential and 7°; associated with an edge of the triangular-patch
fields just insideS can be found. Then, by enforcing themodel of S. Points inZ;f are defined by the position vector
continuity of the tangential fields across, the equivalent o pointing from the vertexO;" of 7+ opposite the edge.

E; = E5(Jeq, 0)
H, = H;(Joq,0)

inside S

inside S

or by a single effective magnetic curreM g
E; = E3(0, Meg)|
H, = H3(0, Mog)

inside .S

inside S*

currents(J, M) for the exterior region are obtained Similarly, points inT;, are defined by the position vectqr,
5 pointing toward the vertex);; of 7', opposite the edge. A
J=nxH;(Jex, 0) just inside S (1 vector basis functiorf,, is associated with the edge
M = -nx E;(Jeﬂ, 0) just inside S~ (14) 7 .

o ot T+

. . . . . I 2A7 Aoy T INLY
A single integral equation fad.g is obtained by substituting £,(r) = L, o, rinT- (17)

(13) and (14) into either the EFIE (5) or the MFIE (6). For ’ 3‘45 " othervr\;ise

the EFIE, one obtains

~E™ = Ef [n x H}(Je,0), —1 x E3(Jerr, 0)] wherel, is the length of the common edgeand A* are the

(15) areas of the triangleg*.

inside S
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The effective currenf.; is expanded in the vector basisequire (22) to be satisfied in an average sense by integrating

functions f,, both sides of this equation along the common edgd his
; way, the expansion coefficienf§ for the equivalent electric
— Zﬁnfn (r) (18) current are found to be
IF = _li/ dlHs(r_)-1,. (23)

where NV is the total number of edges in the triangular-patch

model of S and¢,, are the unknown current coefficients.  similarly, the expansion coefficients™ for the equivalent
If the effective current (18) were substituted directly into thghagnetic current are given by

single integral equation (15) or (16), the RHS of the resulting

equation would be difficult to evaluate because of integrations m == / dl Eo(r (24)

over the singularities in the integral operatés Hi, H3, and ln

E3. Instead, it is more convenient to expand the argumenis (23) and (24), the direction of the unit vecthy has been
Of the integral operatok; or Hj, which are the tangential chosen in such a way that if a right-hand screw through the
fieldsn x H, and—n x E; just inside$S in the vector basis triangleZ;+ were rotated in the sense of the vedigrit would
functionsf,. Thus, one writes advance in the direction of the unit normalto 7.+

n x Hy(r Z Itf; (19) IV. SOLUTION BY THE METHOD OF MOMENTS

In the method of moments, the integral equation to be solved
is tested with respect to suitable testing functions. For the EFIE
(15), the usual testing procedure is to take the dot product of
both sides of this equation with each vector basis function
where E, and H are given by (9) and (10), respectivelyf, and integrate the result over the domain of supporf,of
for a pointr_ which approaches the poimton S from the [8]. For the MFIE (16), an alternative testing procedure is to
interior region andI{, ;") are the expansion coefficients taake the dot product of both sides of this equation with the
be determined. unit vectorl,, lying along each edge and integrate the result

Let r be a point on triangld’F which approaches the edgealong the edge: [9].

n andl, be a unit vector lying along this edge. Also, Bt  To construct the moment-method matrix, the coefficidfits

be the unit normal th+ pointing out of the object. Using gnd _[m are first Computed from the Coeﬁ|c|er¢§
simple vector |dent|t|es one obtains

N

—nx Ey(r_) =) I"fi(r) (20)

=1

I¢ we
Hy(r_) 1, = —n-{nx Hy(r_)] x L.} [Im} = [Wm} [£] (25)
“n. Zﬁf‘(r) <1 where [°,I"™ and £ are lengthV column vectors of the
c " respective coefficients arid® and W™ are N x N matrices.

N The elements of these matrices are obtained by using (9),
= Z[e(n x 1,) - fi(r) (21) (10), (18) (23), and (24), and the known forms of the integral
— operatorski} and H3 given in Appendix A

where (19) has been employed and use has been made ofﬁ;lze _ Oéz 5“ + P/ dl/ ds' 1, ) X VGalr — 1)
fact thatn -1, = 0. !
The quantity(n x 1,,) - f;(r) in (21) is the component of the (26)

vector basis functiodf; normal to the common edge of the R I "
trianglesZ=. Since the point is infinitesimally close to the Wi; = I / dl/ ds'; - £;(x")Ga(r — 1)
edgen, this quantity is nonzero only far= n, as can be seen

by examining the definition (17) of the vector basis function. _ . / ds' V' - £;,(r')[Ga(r; ) -r')
Hence, (21) reduces to weaki Jy
_ (=)
Ha(r ) 1, = I(n x 1)) - £,(r). 22) Ga(ri™ )] 27)

In the above equationsy; is the angle between the planes
of the trlangIeSTJr andZ; measured in the exterior region,

is continuous across the edge[8]. Hence, the RHS of (22) T T +1; an(d+1)D mea?s) that the term with = j is to
has a unique limit whether approaches the edgefrom T+ be om|tted Alsor andr; ’ are the two endpoints of the
or from I7;. Furthermore, this limit is independent of positioredges, such that the unit vectd; points from ri”) tori?
along the edger. Hence, the RHS of (22) is constant alon@nd Gz(r — r’) is the Green’s function for the interior region
the edgen, while the left-hand side of this equation in general o—ikolr—r’|

varies along the edge. This inconsistency is due to the fact Ga(r—1') =
that the expansion (19) is only an approximate representation

of the vector fieldn x H, on the surfaces. However, one can k. being the wavevector in the interior region.

It is well-known that the RHS of (22), which is the component
of the vector basis functiofi, normal to its defining edge,

(28)

4rlr — /|
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Next, the moment-method matrix equation is constructed
from the current coefficientd: and I

e v fn| =0

whereU¢ andU™ are N x N matrices and is a length&V
column vector of the incident excitation. For the EFIE (15),
one takes the dot product of both sides of this equation with
each vector basis functidi) and integrates the result over the

(29)

corresponding triangle paif; = 7,7 4+ 7;~. Using (19) and
(20) and the known form of the integral operaiﬁﬁ given
in Appendix A, the elements of the matricé& (FF1E) and
U™ EFIE) for the EFIE are obtained

U = / ds / S’ £;(r)E;(r')
T; T;

J_/ ds/
Wwey T; T,

)G — 1)

x Gi(r—r') + ds’
f

x Vi (r)V' - (30)

U7 = / ds / dS'[f;(r) x £;(r')] - VGi(r — 1)
T; T;
(31)

and the excitation vector is given by

b = / dS ER°(r) - £,(r).
T,

i

(32)

Fig. 3. Triangular-patch model of a dielectric sphere wittk = 1.0. The
number of triangles is 2400 and the number of edges is 3600. The sphere is
illuminated by a plane wave traveling in thez direction and polarized with

the electric vector in the: direction.

whereZ is an N x N matrix constructed from the product of
an N x 2N and a2N x N matrix

[Z]=[U° U™ [

i (38)

W’nl M
The above discussion has been based on the representation

(9) and (10) of the fields in thimterior region in terms of an

effective electric currenI.g. Alternatively, one can start with

a representation of the scattered fields indkgeriorregion in

terms of an effective electric current as was done in [7]. From a

programming point of view, the two approaches are similar in

complexity since the present approach requires the application

In (30) and (31),G1(r — r') is the Green’s function for the of the integral operatorﬁ‘,g andH3 to the computeceffective

exterior region

e~k [r—r’|

Gi(r—1')

k1 being the wavevector in the exterior region.

(33)

- 4rlr — /|

current J.¢, in accordance with (13) and (14), in order to
find the scattered field in the exterior region, whereas the
approach of [7] requires the application of the operzﬁl‘;r

to the incident equivalent current§n x H"¢ —n x E¥°)
before the single integral equation is solved, in order to set

For the MFIE (16), one takes the dot product of both sidé® the corresponding excitation vector. However, numerical

of this equation with the unit vectdg along each edgé and

experiments have indicated that the present approach based

integrates the result along the edg&Jsing (19) and (20) and O" the representation (9) and (10) generally leads to greater

the known form of the integral operat®f; given in Appendix
A, the elements of the matricdgeMF1E) and {7 MFIE) for
the MFIE are obtained

, 1.
UF%(]\TFIE) — %61 _ P/ dl/ dS/ ]-z . f /
(¥} 271, J 3 Tj J(r )
X VGi(r — 1) (34)
UM = ey / di / s’y - £,(r' )Gy (r — v')
l; Tj

_ I ds' v’ -£;(r') [Gl (r(+) — r’)

T

w1 JTy
— G (257 =) (35)
and the excitation vector is given by
bEMFIE) — _/ dl Hinc(r) -1, (36)
7

Combining (29) and (25), the moment-method matrix equ

tion for the unknown coefficients, can be written as

[Z][¢] = [0] 37)

convergence speed of the iterative solution, especially for
dielectric objects with large dielectric constants.

Other formulations based on the representation of the inte-
rior or exterior scattered fields in terms of a single effective
magneticcurrentM,r are also possible. However, numerical
experiments have indicated that such an approach generally
leads to lower convergence speed of the iterative solution than
the approach discussed in this paper.

V. NUMERICAL RESULTS

The single integral equations discussed in the last section
were tested on the problem of electromagnetic scattering of a
plane wave by a dielectric sphere. The surface of the sphere
was modeled by triangular patches with an average side length
A in the rangeX;/25 < A < A2/12, where X, is the
wavelength inside the sphere. To reduce computation time, the
matrix equation (37) was solved iteratively by the generalized
g]inimum residual (GMRES) method [10].

The triangular-patch model for a sphere witha = 1.0
and N = 3600 is shown in Fig. 3, where: is the radius
of the sphere andV is the total number of edges. The
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1Jl

Ml

0.4

M, ]
0.6 T 0.3 T
180 100 0 180 100 0
0 0
Fig. 4. Equivalent electri¢J) and magnetiq M) currents induced on a dielectric sphere with = 4.0 and kja = 1.0. Solid lines are the exact
results. Dashed lines are the results of the single integral equation method.
1 T 1.0x10%g; T T T
1% Coupled integral
Exact \ equations
L, 1007 \l 1
- I
‘:‘< 0.1 e 1 __
ot g Vo
. —2 3
: Single = 1.0x10 '.“ ______
= integral = [
§ equation g PO S
: 0.014 (MFIE) 3 8 l.OXIO_a‘ \\\‘ A
= \
s T \ EFIE
éé % 1.0x1074 \\ E
0.0017 1 g \‘\ CFIE (0. =0.5)
= -
S 1.0x10 \ 4
Z, \
§
| MFIE
0.0001 f ” 1.0x1076 S T
0 100 180 0 100 200 300 400 500
0
Fig. 5. Radar cross section of a dielectric sphere with = 4.0 and
kia = 1.0.

Iteration number
Fig. 6. Convergence speeds of the single integral equation formulations
based on the MFIE, EFIE, and CFIE, respectively, compared with the
convergence speed of the coupled integral equations formulation, for a
. . . . dielectric sphere witle, = 4.0 andkya = 0.5.
computed equivalent electric and magnetic currents induced
on the sphere for, = 4.0 are shown in Fig. 4. These

results compare well with the exact results given by the serigéegral equations. Unlike the case of a perfectly conducting

solution. Fig. 5 shows the corresponding computed radar cr@$gect [11], however, the CFIE-based single integral equation

section (RCS). Again, there is good agreement with the ex&&ntaining 50% of EFIE« = 0.5) converged much slower

result. than the MFIE-based single integral equation in the dielectric
Fig. 6 illustrates the convergence speeds of the single BRSE.

tegral equation formulations based on the MFIE, EFIE, andAs discussed in Appendix B, the singular integral equation

CFIE, respectively, compared with that of the coupled integréfsed on the MFIE or EFIE is singular at the resonant

equations formulation of [3], for a dielectric sphere witdrequencies of a cavity bounded by the surfageof the

€9 = 4.0,kia = 0.5 and N = 912. The convergence speeddlielectric object, but filled with the material of the exterior

of the three single integral equation formulations were great@gion (u1,21). The singularity of the MFIE-based single

than that of the coupled integral equations formulation. lintegral equation was investigated by choosing the parameter

particular, the single integral equation based on the MFIE cokra to correspond to the lowest internal resonance of the
verged almost two orders of magnitude faster than the coupledctric type, namelyk;a

2.7439. The number of edges

1619
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100 1000

kia = 2.7466 kja =4.4934

=)
d

-
=]
T

=
2

RCS (in units of 7»2)
-2
=
=

RCS (in units of A2)

Exact

CFIE (o = 0.1)

CFIE (0. = 0.1) —%>
0.1 T T

0 100 180 0 100 180

6 0
@ (b)

Fig. 7. Radar cross sections of dielectric spheres with= 2.25 and radii corresponding to the lowest resonances of the (a) electric type and (b)
magnetic type, respectively, for an empty cavity.

in the corresponding triangular-patch model wiis= 4560 1.0x10° ' ' "
for e = 2.25. In this case, the MFIE-based single integral
equation was found to converge, but to the wrong solution.
Furthermore, the range of values/gfaz over which significant
solution error was observed was found to be quite small,
namely, within+£1% of the resonant value. The RCS results
for kia = 2.7466, where the solution error was found to be
greatest, are shown in Fig. 7(a). To overcome this problem, the
calculation was repeated for the CFIE-based single integral
equation. A small value ofx = 0.1 was chosen to avoid
significant reduction of the convergence speed as Fig. 6 would
suggest. The corresponding RCS results are also shown in
Fig. 7(a). It can be seen that CFIE-based single integral MFIE =
equation effectively eliminated the solution error at resonance. Lox10kza = 27466~ ~prp
The above calculations were repeated for the lowest internal ] (a=0.1)
resonance of the magnetic type, for whig¢ha = 4.4934. Loxl6-6 . . .
The number of edges in the corresponding triangular-patch ’ 0 10 20 30 40
model wasN = 9552 for e = 2.25. The corresponding RCS Tteration number
results are shown in Fig. 7(b). It can be seen that the CFIE-

. . . . . o Eg. 8. Convergence speeds of the single integral equation formulations
based single integral equation again effectively eliminated thgsed on the MFIE and CFIE for the resonant dielectric spheres of Fig. 7.

solution error produced by the MFIE-based single integrm t_he case ofkja = 4.4934, the iteratiqn was stopped at a normalized
equation at resonance. It is of interest to note tranallvalue "esidual error of 0.001 to save computation time.
of « = 0.1 in the CFIE actually resulted in a slight increase

in the overall convergence speed at resonance compared with _ )
that of the MFIE. This can be seen in Fig. 8, which show? & plane wave by a dielectric sphere demonstrated the

the convergence speeds of the MFIE- and CFIE-based siné‘?’éidity of the formulation. The convergence speed of the
integral equations for the two resonances just discussed. GMRES method for solving the matrix equation in the MFIE-
based single integral equation formulation was found to be

significantly greater than that of the coupled integral equations
VI. CONCLUSION formulation. The CFIE-based single integral equation with
In this paper, a single integral equation formulation for eleex = 0.1 was found to be effective in eliminating solution

tromagnetic scattering by 3-D homogeneous dielectric objeeor at resonance. The formulation discussed in this paper can
is developed in which a single unknown effective current ajpe generalized to the case of a homogeneous dielectric object
pears. Crucial to the formulation is the use of triangular-paté@mbedded in a layered medium, by representing the interior

basis functions to expand the equivalent currents generat@dds in terms of a single effective current and employing the

by the effective current. Numerical results for the scatterimppropriate Green’s functions for the layered exterior region.

. ka=4.4934

1.0x107! N, E
1 ‘?j‘\\ CFIE

/oc =0.1)

-2 . 4
1.0x10 \\\ MFIE 1

1.0x1073

1.0x10~

Normalized residual error
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andn x h; just outsideS are determined by the boundary

conditions
(eq, hy) (€1, 1)
nxe =nxey— M 47

n><h1:n><h2. (48)

By the equivalence principle, the magnetic fiéld outsideS
can be written as

My
— T _
Fig. 9. Auxiliary problem for the single integral equation based on the MFIE h; = Hl(n x hy, —n x e1)|0utside5
at a resonant frequency of an empty cavity bounded by the suffadd, — s _
is the magnetic surface current density of the resonant mode, which acts as Hl(n xhy,—n x e2)|outside5 (49)

an external current source here.

where (47) and (46) have been used. By the jump condition,
when the integral operator on the RHS of (49) is evaluated
A'TPEND'XAA inside S, the result is zero
The integral operator®$ and Hf for the exterior region

are, for a time dependence of!, given by 0=H (n x hy,—n x e2)|insides

. 1 - 50
E;(J,M) = —jwA, — V&, — E—v x Fy (39) inside 5 (50)

1
where (48) has been used. It remains to show that the fields
e, andh; in the interior region can always be represented in

. 1
Hi(J,M) = —jwF; — V¥ + N—V X Aq (40)
1
terms of a single effective electric curref;; that is

where
nxe;=nxE;J3%0| (51)
Ai(r) =m / I()Gy(r — ') dS’ (41) 2o e
s nxhy =nx Hy (I, 0)| . i s (52)
Fi(r) =<, / M()Gy(x — 1) dS’ 42 _ |
s The integral operators on the RHS of the above equations are
7 , , , , the familiar EFIE and MFIE integral operators for electromag-
1(r) = w—gl/sv )G (r — 1) dS (43) netic scattering by a perfectly conducting object embedded
j , , o in @ medium of parameter§us,es). It is well-known that
Wy (r) = w—ul SV "M(r)Gy(r — 1) dS (44)  the resonant frequencies of these operators in general do not

coincide. Hence, at least one of (51) and (52) is nonsingular at
and G1(r — r') is given by (33). The integral operatofs; ~any given frequency, which allowk}; to be solved uniquely.
and H; for the interior region are obtained from the abov&ubstituting (51) and (52) into (50), one obtains

expressions by replacing the index 1 by 2 throughout. . R R
0=H;j[nx H3(J%;,0), —n x E3(IZ;,0)]

(53)

inside S

APPENDIX B Equation (53) shows that the solutial;; to the auxiliary

In this Appendix, the MFIE, and EFIE for a dielectric objecproblem of Fig. 9 is a nontrivial solution in the null space
are shown to be singular at the resonant frequencies of a cavjythe integral operator on the RHS of (16). This means that
bounded by the closed surfaceof the object but filled with the MFIE (16) is singular at the resonant frequency under
the material of the exterior regidp:y, 1). First, consider the consideration.

MFIE (16) and let the frequency coincide with a resonant By duality, the EFIE (15) is singular at the same frequency.
frequency of the cavity. Then, there exists a magnetic currapt this case, however, the corresponding solutibly in

M, on S which radiates a null field in the exterior region the null space of the integral operator on the RHS of (15)
is the solution of a different auxiliary problem, where the

Ei(07M0)|outsides:0 (45) magnetic currentM, shown in Fig. 9 is replaced by an
,ﬂ;(o,Mo)LutsideS = (46) electric currentJ; = +/¢o/pnoM, radiating a null field in

the exterior region. ObviouslyJl; is different from JY;.
Now, consider an auxiliary problem in which the magnetithis suggests that, although the MFIE (16) and EFIE (15)
currentMg acts as an external current source on the surfaceare individually singular at the same resonant frequency, a
of a cavity filled with the dielectric of parametefg., s2) and linear combination of the MFIE and EFIE, nameBFIE =
embedded in a medium of parametéiis, «1 ), as illustrated in  [(1 — a)A] MFIE + «v/€o /1o EFIE, where0 < « < 1.0 and
Fig. 9. This auxiliary problem obviously has a unique solutiorA is the average side length of the triangular-patch model,
Let the tangential fields in this solution just inside be is nonsingular at all frequencies, since the null spaces of the
n x e; andn x h,. The corresponding tangential fields< e;  integral operators in (15) and (16) are disjoint.
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