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A Three-Dimensional Parabolic Equation Applied to
VHF/UHF Propagation over Irregular Terrain

Chris A. Zelley, Member, IEEE and Costas C. Constantinodember, IEEE

~ Abstract—The two-dimensional (2-D) parabolic equation (PE) is that it can readily model the effects of atmospheric refrac-
is widely used for making radiowave propagation predictions tive index gradients and absorption [6]. However, the work
in the troposphere. The effects of transverse terrain gradients, presented here was undertaken in order to develop a coverage

propagation around the sides of obstacles, and scattering from L . .
large obstacles to the side of the great circle path are not modeled, prediction tool for short to medium ranges (up to 20 km) in

leading to prediction errors in many situations. In this paper, the very high frequency (VHF) and ultrahigh frequency (UHF)
these errors are addressed by extending the 2-D PE to three bands for vehicle or man-portable equipment (i.e., ground-

dimensions. This changes the matrix form of the PE making or near-ground-based antennas). For our purposes, experience
it difficult to solve. A novel iterative solver technique, which is shows that terrain effects are dominant over atmospheric

highly efficient and guaranteed to converge, is being presented. In .
order to confine the domain of computation, a three-dimensional effects and, therefore, the latter can be safely ignored. Thus,

(3-D) rectangular box is placed around the region of interest. A the inclusion of atmospheric refractivity is beyond the scope of
new second-order nonreflecting boundary condition is imposed this paper. Here, a three-dimensional (3-D) scalar PE code for

on the surface of this box and its angular validity is established. free-space propagation over terrain has been developed, which
The boundary condition is shown to keep unwanted fictitious makes use of a novel iterative solver technique to “march” a

reflections to an acceptable level in the domain of interest. field ol th h a 3-D ) A iterion i
The terrain boundary conditions for this 3-D PE method are Ield plane though a 5-D region. A convergence criterion 1S

developed and an original technique for incorporating them into  €stablished and convergence is formally proven for free-space
the matrix form of the iterative solver is described. This is done propagation.

using the concept of virtual field points below the ground. The  |n order to restrict the 3-D PE computational domain, a rect-
prediction accuracy of the 3-D PE in comparison to the 2-D PE g 1ar box is placed around the area of interest. Nonreflecting
'S tesﬁ_adhb? th agamst\u;]g'c:)orf_scl:; If d ;‘requency measurements andboundary conditions (NRBC) are imposed on the surfaces of
very gn freduency (. ) .Ie nes: ) . ) this box. A new nonreflecting boundary condition is derived
prclargl)ieg)z(at?-srszeza,\?r?b”e radio, parabolic equation, radiowave  anq jis accuracy examined. The boundary condition is then
’ ' tested by propagating a Gaussian beam in free-space within a
rectangular box and comparing the simulation predictions to
I. INTRODUCTION the exact solution. A novel 3-D terrain boundary condition is

HE parabolic equation (PE) models propagation of enerdiforporated into the 3-D PE scheme using the principle of
T predominantly in one direction only. The field distributionirtua! field points below the terrain, also presented here for
on a plane transverse to the direction of propagation the f|rstt|me_.An_lmportantllmngtlpn of this work that needst_o
“marched” forward in a step-by-step manner, provided the fiche emphasised is that by rgstrlf:tlng our;elves to a sca]ar fleld
is known on an initial plane. The field values at each step dfédel, we are severely limited in modeling the depolarization
calculated from the field values at the previous step. This §§€cts of a general 3-D terrain. This introduces irreducible
done subject to a radiation boundary condition at the top Bf0rS in our prediction capabilities which have been found
the field plane and a terrain boundary condition at the bottdift t©© be too severe. _ _
of this plane. Using this method, the shape and the electricaP’redictions made by the 3-D PE using the terrain boundary
constants of the terrain can be accurately incorporated irggndition were then compared to propagation measurements
the model. The majority of long-range propagation predictigh@de in both indoor and outdoor environments. The indoor
methods in use are two-dimensional (2-D) and consider prdp€asurements were made in the University of Birmingham
agation along the great circle path between the transmitlBfl0Or propagation range at 30 GHz and make use of the
and receiver [1]-[5]. However, when steep transverse terr&fNCePt of scaled frequency modeling. These results clearly
gradients exist along the great circle path or when the extent3foW the significant improvement in prediction accuracy that
horizontal Fresnel zone obstruction is comparable to the ext&Af! € achieved using a 3-D model in a 3-D environment.
of vertical Fresnel zone obstruction, significant errors caputdoor measurements were taken in the VHF and UHF bands

occur. One of the strengths of the parabolic equation meth@dr@nges up to 20 km. Examples of these along with 2-D PE
and 3-D PE predictions are presented.
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Fig. 1. Three-dimensional Crank—Nicholson scheme. Indéxes, and n u"'H _ 2u"+1 + u"'H
correspond to discretized, ¥, andz coordinates, respectively. — =lm Lm H1m
2Ay2
) ] ] ) ur —2u} 4 ul 1
Cartesian coordinates by factoring out a fast varying phase 4+ ZAMZ Hlm e, <n + 5). (7)
term in thez direction. The refractive index term is assumed 4

to be unity for the reasons explained in the introduction, givirghe leading terms in the discretization errors are given by

ou 7 o? o? 1 Az O3y 1
it N= 2 (L 1+ Z ). 1 3 ) = il -
az(x7y77) 2]€0 <a$2 +ay2>u(x7y77) ( ) 6~<7’L+2> 24 82’3 <n+2> (5a)
This is the 3-D PE. The range of angles over which the 3-D PE e, <n " 1) _ Az? @ <n 1)
is valid can be assessed by substituting a reduced plane wave 2 12 Jx* 2
solution into (1) and evaluating the error expression produced. Az 8% 8% 1 5
The reduced plane wave solution is given by + 8 2o \" - 2 (6a)
. . . Ag? 8ty 1
u(z,y, ) = Aexp(jhox + jkyy + jk.2) 2 , 1) _ Ay du -
! w\"t3 12 af\" T2
where Az? 8?7 9u 1
ko= kosinfsing, k= Fosinbeoss Y o ae (” + 5)- (7a)
k. = ko(cost — 1) The derivatives (5)—(7) can be substituted into the 3-D PE (1),

and A is a constant amplitude term. The anglés the angle and this equation can then be rearranged such that the field
of propagation measured from theaxis and¢ is the azimuth POINtS on thez, ., plane are expressed in terms of the field
angle about the: axis. On substitution the terms can be POINts on thez, plane

eliminated to yield 2 i jAz <<u7;11 - 2u}f;;l1 1 U?#ﬂ)
C3DPE = 1-— COSQ — S 9 (4) 7 4k0 A-T
?——'—llrn - 2“?;’7—11 + U’?—:Llnl

This is identical to the error expression of the 2-D PE. The + N ’
3-D PE is, therefore, accurate up to anglestdf® [7] for all ) n n n
anglesg. The relative error aff = 15° is 0.00058. The range Y JAz <<ul:ml — 2 ul:m+1>
of angles over which the 3-D PE is valid is dependent on the Ak Ax?
level of accuracy required by the user. Uy = 2ULy F ULy,

In order to solve the 3-D PE numerically, (1) can be + < Ay? ))
expressed using finite differences. This is done using a 3-D (8)

version of the Crank—Nicholson scheme [8], [9]. In this scheme

the 3-D PE is written using finite differences which ar&xpressing the 3-D PE using finite differences allows (8) to
centered on a point midway between two successive planed6f cast into matrix form. The use of matrices permits the
field points. A schematic diagram of the 3-D Crank—Nicholsogimultaneous calculation of field values over the entire field

scheme is shown in Fig. 1. plane. The errors introduced by writing the 3-D PE using
The first-order derivative with respect toat the midpoint finite differences can be found by summing the error terms
can be written as of (5a)—(7a). The size of the error can be controlled by the
ntl " selection of the discretization interval&z, Ay, andAz. We
Ou 1 Uim — Uim 1 h f d ; ical si |ati f
n+-) =5 ™ 4o n+= (5) have performed extensive numerical simulations for ranges up
9z 2 Az 2 to 20 000 and for step sizes df6 )\, in the z direction and up
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to 2) in the z—y plane, which reveal that the prediction erroPrevious 3-D PE methods have traditionally dealt with this
is well below 1 dB. However, we have established that th@roblem by adopting an alternating direction implicit (ADI)
main contribution to the error is introduced by the boundamparching method [6], [9]. This method effectively implements
conditions discussed in the next section. Since the field plaae equivalent 2-D marching step in the> plane, followed
is 2-D, the matrix equation can be expressed in the genebgl an equivalent 2-D marching step in the> plane. This
form given by technique has been used extensively for underwater acoustic
1 iy " " propagation where refractive effects are significant. However,
AU +UB=DU" + U'E ©) for ground-based antennas on mountainous or hilly terrain,
whereU” andU"** are matrices describing field points on th&idnificant energy coupling on the sloping terrain boundary
n andn+1 field planes, respectively. The repeated solution Q_ptween the _two transverse directions can occur within a
this equation allows the field distribution to be found over thgingle marching step. The ADI method would then result
entire region of interest, provided an initial field is knowd, N the introduction of significant errors, thus the marching

B, C, andD are square tridiagonal operator matrices given ﬁ’lf the vertical and horizontal field planes must be done
simultaneously.

x r o ... 0 0 An iterative equation is found by rearranging (12) to give
r xr ... o o0
. . n+1l __ —1 —1lymn+1l
A— o Uity =ATC-ATU"B. (13)
0 0 0 X T The use of tridiagonal matrices means that this equation can
L0 0 0 I X be solved efficiently. An iterative solver approach will only
v I 0 0 0 be useful provided that (13) converges rapidly. By using an
I vV I 0 0 initial estimate of the field at,,; plane and repeating the
B — - (10a) iteration N times, we arrive at
0 0 0 VoI N , ) )
n+1 1—1 —1yi—1 Ao —1 1—1
o 0 0 I Vv Uit =Y (- Ay AT eB) ]
=1
'y H 0 0 O o —1\Nvin .
H Y H 0 0 +(-DNATHY UGB (14)
D= o For the iterative solver to converge, the field planes alfer
0 0 0 Y H iterations must tend to a limiting spatial field distribution. This
o 0 o H Y will occur provided that the two following conditions are met:
rW K 0 . 0 0 . —1I\Nytn+l N .
X W K - 0 0 i [(A™H) Ulgy (B) ] — Null Matrix (15)
E— C (10b) Jim (A~HNYAtC(B)Y] — Null Matrix.  (16)
8 8 8 I;(/ I‘fI(/ These conditions will be met provided tat~!) and(B)"™
} both tend toward the null matrix &8 becomes large or if one
where of the terms tends toward the null matrix faster than the other
Az Az term grows. This requires that the norm of matriées* and
X=1+ TN = TN B is as small as possible. To make the normAof! as small
Az jA; as possible, the norm @& must be as large as possible. This
Y=1- TN = A2 must be done within the constraints of the 3-D PE in the
S0ae oSy (11) Crank—Nicholson scheme. It is possible to transfer the leading
_ o idr Az : . A wi .
=—-——— =———— diagonal terms from matriB to matrix A without affecting
koA ko Ay the formulation of the 3-D PE. This has the effect of reducing
_ JAz K= _ JAz ) the norm of matrixB while increasing the norm of matriA.
dkoAz? dkoAy? The matrix terms for the 3-D PE now become
This facilitates the use of existing efficient tridiagonal linear jAz jAz
equation solver routines. The right-hand side of the matrix X=1+ TN + s V=0
. . AV 2/€0Ay
equation (9) can be evaluated to give Az Az (17)
I'=- - I=- -
AU L UMHB = C. (12) Ak Az AkoAy?

However, this type of matrix equation is difficult to solveTaking these values and examining the effect of the iterative
due to the presence of pre- and post-matrix multiplicatiosolver on an arbitrary field point within the field plane,
This means that (12) cannot be rearranged algebraically secmvergence is guaranteed. This is done using the substitution
that Unt! can be expressed in terms &€, B and C. of a reduced plane wave solution. Taking the finite-difference
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equation (8), we can evaluate the right-hand side to give It can be seen that the magnitude of the derivative is always
less than unity irrespective of the discretization grid chosen.

. n+l o, ntl n+1 . . .
u7+1 _JAz [ [ Ymay 2+ Uy This means that convergence is guaranteed for an arbitrary
Ak Ax? plane wave. Performing the same analysis for a spectrum of
ntl gyl 4 el plane waves will produce the same result. Selecting values
U’lfl,rn U’l,rn U’l+l,rn _ .
+ A2 = Cim (18) of Az, Ay, and Az that make the numerical value of (24)
Yy significantly smaller than one guarantees faster convergence.

where ¢;,, is an arbitrary point in theC matrix of (12). If the first convergence criterion given by (15) is satisfied,
Rearranging this equation in the form of the iterative solvéf€n the final solution given by (14) is independent of the

that converges as discussed above we get @nitiaI. estimate of the.field aftnﬂ plane. This means that the
. ) ) iterative solver technique will converge to the correct solution
nit  JAZ uptt = 2wt regardless of the initial estimate given. This is very useful
Ym — Ako Ax2 since a bad initial estimate cannot lead to an incorrect result,

oL although a bad initial estimate will require more iterations in
+ <_ “,m ))] order to converge. In this work the final solution at plane
(+1) has been used as the initial estimate of the field at plané.
After each iteration step, a test for acceptable convergence is

"AV n_—l—lrn + n—l—lnl
Jaz <ul 1, 41, . Q9) HUn+1 _ Un+1” <e (26)
@)

=Clm +

4ko Ay? (i+1) (4)
wheree is the maximum allowable norm of the error vector
Now using the substitution of the reduced plane wave solutiamd can be chosen arbitrarily.
of (2) we obtain While (13) is satisfactory for propagation in free-space,
. ik A e A it cannot be used when the boundary conditions around the
JAz [ [eTIF=BT 2 4 @It -2 X . . .
U(it1) {1 I << N >+ <A 2))} field plane vary, as is the case for radiowave propagation
0 e v over irregular terrain. This is due to the operator on each
JAz <6_J’“9Ay + elhvy )} (20) column of field points being dependent on the height, gradient,
4ko Ag? and surface impedance of the terrain below that column. To
propagate a field solution forward in this situation we must
generalize (13). To do this we replace matAxwith a number
of matricesA,, each operating on th¢h column in the matrix

=Cm + U(3) |:

where the indexe§ m, andn + 1 are implicitly assumed and
are hereafter omitted for clarity. This leads to

s 1— JAz ([ 2cos(ksAz) — 2 I =2 of field pointsU and, hence, providing the correct boundary
(+1) 4ko Az? Ay? conditions for each column (a column corresponds to a vertical
Az [ 2cos(k,Ay) column of field points). We similarly recast matrR in this
= Cm UG [ o < A )} (21)  form to obtain

To find if this expression is convergent, we use the theory of {Av Az Ay AU

fixed-point methods [10]. For (21) to converge, the inequality +U"B,By,---B,,,---By}=C  (27)
dugi i1y which is written symbolically as
< 1 (22) n+1 n+1 o

dug;) {A U + U {By} =C. (28)

This generalized matrix equation can then be solved us-

must hold. Differentiating (21) we obtain ) - ’ :
ing the same iterative solver method described above. For

dugign) 10z (2oosthy Bu)y] the generalized iterative solver matrix inversions must be
— 0 Y . . . . . .
dug) - [1 jAz((Qcos(kIAa;)—Q) (,2 ))] (23) performed at each iteration instead of a single inversion.
T — =3 e E—— . . .
ko Az Ay? We postpone any consideration of convergence and stability

A small number of straightforward algebraic steps yields until the implementation of the boundary conditions has been
discussed.

Az . . . . . .
dugip1y| (—szAy2)|COS(kyAy)| This generalized iterative solver has been implemented
duy) N 1 Az )2 AuN2 - 2 (k,Azy]  and used to solve a Crank-Nicholson implementation of a
4 + == 14+2(%2) sin . . .
\/ (mtaee) | (52) (53] narrow angle 3-D PE. The ability of the iterative solver to
(24) converge rapidly is demonstrated by propagating a Gaussian
The worst case occurs whenos(k,Ay) = =1 and beam of unity amplitude, with 4/¢ beamwidth of 4.5 to
Y - : i
sin(k,Az/2) = 0 since the denominator is positive-definite® d|st_ance_0f 20000 wavelengths. The cross section of the
giving domain of interest measure@), x 48)¢. The second-order

nonreflecting boundary condition presented in Section Il of

dugitr) [Mf—‘yz] 1 25 this paper was employed to bound the region of interest.
du 1 A- 12 <t (25) The resolution and propagation stepsize defined by Nyquist
* [2koAy2] sampling areAz = Ay = 2) (due to the limitation of
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g where propagation is predominantly along thaxis andz is
® 10 the vertical axis. Taking a Laplace transform of the 3-D PE
28 with respect toz, we obtain
S 6
2 4 I — 9* 9%
£ — 4+ = + 2jkoptt =0 30
2 g. : . t { ax2+892+J0pu (30)
0 5000 10000 15000 20000 where the initial fieldu(z = H,y,» = 0) at the boundary
Range (wavelengths) is assumed to be zero. The Laplace transformed 3-D PE of
Fig. 2. Number of iterations required for convergetiee< 0.00058). (30) can be eXpressed using two equations for sthend Y
components
. : A 2
opoptsgice boxenclsing <a_ +Aw)“= 0 1)
o2 5
(2 +45)a=0 (32

where A2 + A2 = AJ and A§ = 2jkop. We can also express
A, and A, using
A, = cos Ay
A, =singhAy

Terrain

(33)

Equation (31) can be factored into an upward and downward
Fig. 3. Rectangular box around region of interest. traveling wave component. Discarding the downward traveling

) ) _component, we arrive at
f < £15°) andAz = 16g. The number of iterations required

at each step as determined using a maxir_num_ allowable norm <£ — jcos ¢A0>a —0. (34)
for the error vector of 0.00058 is plotted in Fig. 2. Oz

F|g. 2 shows that the_number of iterations requ_|red _at ea"IK'lﬂis boundary condition, however, is only valid for a single
step is small. As range increases the number of iterations &lhe wave. incident on the boundary with azimuth angle

step decreases. ThIS.IS because the rate of change of the 8 boundary condition of (34) can be generalized such that
decreases as the radius of curvature of the beam increases )}:1

. discrete number of plane waves can be perfectly absorbed.
the phase front tends toward that of a plane wave. This wi P P y

not occur over irregular terrain, because as the field solution g
marches forward, new scattered fields will be generated each I <— — jcos </>qu> 4 =0. (35)

time the solution passes over a terrain feature. It is possible g=1

to redgce the number of iterations per step b)_/ reducing theis expression is the same as thgh-order generalized

step size, however, the total number of steps is then highgraedance boundary condition given by Senior and Volakis
therefore, no _overall_galn is ach|eve0!. Over |rregular_ te_rra 11, eq. (8.22)] applied to the Laplace transformed field.
the st_ep size is restrl_cted by the gradient of the terrain in theo rigorous derivation of generalized impedance boundary
direction of propagation. conditions was first performed by Rytov [12] and is reproduced
in Senior and Volakis [11]. The Crank—Nicholson scheme

[8], used with the 3-D PE, is accurate to second order and,

~Computational calculations in three dimensions can requiigerefore, we restrict the generalized boundary condition to
significant computer resources. Restricting the size of tR@cond order for consistency

computational domain to include only the region of interest is )

an important method for controlling the computational costs. a . - .

Here the region of interest is enclosed using a nonphysical H <% —Jcosdgy 2jk0p>“ =0 (36)

rectangular box (see Fig. 3). A new nonreflecting boundary o=t

condition is imposed on the surface of this box. This boundawhere ¢, are Brewster angles [11]. Material boundaries can

condition is now derived and evaluated. possess one or more Brewster angles, depending on whether
The nonreflecting boundary condition is derived for ththey exhibit anisotropy or consist of thin layers, etc. For

upper numerical boundary on the top of the box, but can ber purposes, we are dealing with a fictitious nonreflecting

easily applied to the sides of the box simply by interchangirgurface and, thus, we have the freedom of imposing @ny

the z and y coordinates. convenient arbitrary Brewster angles. In reality, we would
The 3-D PE in the absence of an atmosphere is given byequire an infinite number of such Brewster angles to guarantee

the exactness of the nonreflecting boundary condition over all
0 (29) incidence angles and, thus, a perfect simulation of free-space.
0z However, a compromise between exactness and computational

I1l. N ONREFLECTING BOUNDARY CONDITIONS

Pu P o
ox2 Oy TR0, =
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Validation of non-reflecting boundary condition RMS error caused by non-reflecting boundary condition
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Fig. 5. Gaussian beam propagation in free-space.

beamwidth of 4.5 was propagated to a distance 26f000)
inside a rectangular box whose cross section @k, x
48Xo. In Fig. 5 the root mean square (rms) error across
effort is to select just twap,, which is consistent with the the field plane, compared to the exact analytical solution,
second-order accuracy of the PE method itself. The Brewstgrplotted against propagation distance. It can be seen that
angles in (36) give a degree of control over the boundatlye nonreflecting boundary condition results in an rms error
condition. If the angle of incidence is known, valuesfgfcan across the field plane of less than 1 dB up to a distance
be chosen to make the boundary condition exact (within tla@ 20 000)\,. However, it must be noted that the 1-dB rms
approximation of the 3-D PE). If the angle of incidence is n@rror bound shown includes both the errors arising from the
known or the incident energy consists of many componerifiplementation of the nonreflecting boundary condition as
with different angles of incidence, near-optimum values afell as the cumulative errors due to the discretization of the
¢4 can in principle be selected. These optimum values a8eD PE method itself.

chosen such that the boundary condition performs to theThe inclusion of the nonreflecting boundary condition into
level of accuracy implicit in the parabolic equation over théhe Crank—Nicholson scheme is straightforward. Because of
widest possible range of azimuth angles. Equation (36) canthe flexibility in placing the new boundary condition terms

Fig. 4. Three-dimensional PE NRB@® = 14°).

expanded and inverse Laplace transformed to give appearing on the diagonal either in matAxor B in (28), the
du  cos By cosda(—1 +5) \/,70 au dr convergence _of the _itergtive algorithm described in Section |l
— = can be readily maintained. Thus, the enforcement of the
Ox cos ¢y + cos (7)2 T ; Vi—k convergence conditions (15) and (16) can be guaranteed. The
_ 8 drs . @37 guestion of stability of the algorithm after the inclusion of the
(cos ¢y +cos </>2)\/2J/€o7r 0 dx? VZ—K boundary condition has been found numerically not to pose
This equation can be descretized and incorporated into fheProblem, as illustrated in the discussion of the previous
Crank-Nicholson scheme. paragraph and Fig. 5.
Validation of the 3-D PE NRBC is done by substituting a
uniform plane wave solution into (36) for various azimugh, IV. TERRAIN BOUNDARY CONDITION

and elevationg angles of incidence. The variahlds taken to
be a differential operator with respect to The error is then
given by (38) in terms of the anglésand ¢

At the lower field points, the boundary condition for the
air-ground interface must be met. This condition is given by
the Leontovich boundary condition, which links the value of

COS 1 COS P2 2(1 — cos ) the field at the interface to the derivative of the field normal
€OS @1 + cOs P2 to the surface of the interface
1 sin? 0 sin? ¢ oUu .

cos ¢1 + cos ¢ /2(1 — cos ) (38) 9, = kool (39)
Equation (38) is plotted in Fig. 4 and the range of angles ovéheres is the normalized surface impedance.
which the boundary condition is valid is assessed. The errorA mathematical derivation of the Leontovich boundary
introduced by the boundary condition is plotted for an angkondition is given by Maclean and Wu [13]. The method
of propagation from the axis set at = 14°. This is close to commonly used to implement the terrain boundary condition
the maximum angle allowable by the narrow angle 3-D PEfor the 2-D PE is that of Levy [14]. This boundary condition

It can be seen in Fig. 4 that the NRBC is valid (error i derived by factoring the fast varying phase term out of the
less than the paraxial approximation of the 3-D PE itself) LJ.FEOI’IIOViCh boundary condition. Substituting the 2-D PE into
to +50°. This is achieved withp; = 22° and ¢, = 45°. It this gives
should be noted that had a smaller valu# dfeen chosen, the
angular domain over which the NRBC is satisfactory would sin
then be larger. The angular limits given above can be thought
of as worst-case limits. that can be expressed using finite differences. This boundary

A numerical experiment was performed to test the boundargndition can then be applied to irregular boundaries as
condition in free-space. A Gaussian aperture field wviifla  described by Levy, “For upward sloping terrain, one vertical

ec=sinfcos¢p —

2
g, J Tu

. |
9ok da egd_z — sinfyjkou + jkobu  (40)
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Vertically polarised
i incident field

Terrain Normal field
component

Tangential field
component

Terrain

Fig. 6. Virtual field point below the terrain.

grid point is eliminated at each range step. For downwaff- 7- Field components in transverse plane.

sloping terrain, one vertical grid point is added at each range

step. Since the vertical grid is fixed, the horizontal step size du, [ —(1+ 2a) 2a 1-2a

is adapted to the terrain slope, so that the number of vertical 9z 2Azx to + Az )™ 28z )
grid points is either conserved or increased h§ at each (43)

step.” This may result in long integration times for complex g2, 1 —9 1
g = < )U,O+< )UII—’_(A.’L’Q)UQ' (44)

boundaries. 2 A2
This approach has been shown to work well in 2-D, how-

ever, the terrain surface must coincide with the field pomt"f’hese expressions can be substituted into (40) to give an
This condition severely restricts the choice of step size. Wh‘éauation that can be incorporated into the Crank—Nicholson

the 2-D PE is extended to 3-D, the terrain height is likely pome and imposes the Leontovich boundary condition on a
to vary across the plane of field points transverse to tg’ ound that falls between two grid points.

direction of propagation, therefore, it will not be possibl This method gives a greater degree of control over the

oz 2

to meet the above conditions at all points across the f'eslglect'

uses the concept of virtual field points below the terrain surfa ‘écuracy improvements over Levy's method [14]

and is presented below. First, the concept is explained using §,es of§ are given for field components that are normal
2-D example, then the boundary condition is extended 0 3-R e terrain in the transverse plane (vertical polarization

in 2-D) and for field components that are tangential to the
A. 2-D Virtual Field Points Below the Ground terrain in the transverse plane (horizontal polarization in 2-
In this section, a novel method for implementing bounda@). In three dimensions, there will be terrain gradients that
conditions on terrain that falls between grid points in 2-D igre transverse to the direction of propagation. In this case,
presented. assuming the incident energy is vertically polarized there will
In Fig. 6, the ground lies between the grid pointsandw,. be a normal field component and a tangential field component
The field on the ground is given hy,. The vertical distance in the transverse plane. This is illustrated in Fig. 7, where
between the ground and point is given bya as a proportion propagation is into the page.
of Az. The field pointsuo, %, andu, can be expressed as At the terrain surface, the normal and tangential field
a Taylor series expansion about the field point on the grouagmponents must be found subject to the Leontovich bound-

u,. Here they are given in matrix form ary condition using the normal and tangential valueséof
o respectively. Since the values ®fre different the ratio of the
1o 1 —(1-a)Ax % Ug normal and tangential field components will change, causing
u | =1 alAx # %l;" . (41) depolarization. This is a vector field scattering mechanism
2 . . .
() 1 (14a)Az (1+agjm2 ) and, therefore, cannot be rigorously incorporated into a scalar

field propagation model. In order to proceed we must either
The square matrix can be inverted to find the field and iggproximate the boundary condition or extend the parabolic
derivatives on the ground in terms @, u;, andus equation method into a vector form.
2 a 2 a _ The assumption made hgre is that when the terrain.gradient
ug :< )uOJr(l_aQ)ulJr( )m (42) in the transverse plane is less than®43he normalized
2 2 impedance for the normal field component alone can be used.
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Also, when the terrain gradient in the transverse plane is ‘
greater than 45 the normalized impedance for the tangential
component alone can be used. This assumes that the amount
of depolarization is small. This assumption is likely to lead 5
to an overprediction of signal strength because the energy
being coupled into horizontal polarization is not modeled’ u
and, therefore, remains as vertical polarization, giving a larger . X X —K -
signal strength prediction. The assumption made is thoughtto i"

be fairly crude and the development of an effective surface * g \\ Terrain
impedance term, which is a function of the transverse terrain u u u T
gradient forms part of planned further work.

Using the definition of a directional derivative Fig. 8. Field points in transverse field plane (direction of propagation into
the paper).
aUu

n
The surface normal unit vector can be written as

=n-VU. (45)
For the first-order derivative iy we use

Ouyg <a2+a>8u0 +a _GQ)% 4 <a2 —a) Ouo

A =1+ naf + naz @) 3y —\"2 )y ay 2 ) oy
using the surface normal unit vector we can find the surface (51)
normal derivative operator to be where in (51)—(59) the field points are clearly illustrated in

g g g g Fig. 8 and
— = — . 47
an = Maz Mg, T, (47 ou [ -1 1
. o = <—>U3 + <—>U6 (52)
Also, we can write that dy 2Ay 2Ay
T aul -1 1
_ Jjkoz paC e _-
U=uw(z,y,z)e (48) 3y <2Ay>U4 + <2Ay>u7 (53)
substituting (47) and (48) into (45) we find that Ouy (-1 1
Ay  \2Ay s+ 2Ay us- (54)

711% +7’Lga—y +n3 s

substituting the 3-D PE of (1) we obtain

o o i [8? 2

ma—u + nQa—u +n3 [ﬁ <a—7; + a—?j) +jkou} + jkobu.  Pu, _ (a®4a) Pug (- a2)32u1 a® —a uy
—x() Y 0\GL Yy 50 ayr 2 oy? oy? 2 oy
= (50) (55)

Ou 2 O ikou| = —jkobu (49)
Jhot) ==k Equations (52)-(54) are found from (43), ther terms are
replaced byAy terms, anda is set to zero. For the second-

order derivative iny we use

This is the Leontovich boundary condition for the 3-D P
In order to incorporate the Leontovich boundary conditions o )
(50) into a matrix system they must be expressed using finite 9 %o _ <L)u n <—_2)u n <L)u (56)
differences. The method described above allows the terrain  J%? Ay? )P T\ A2 )0 T A2 )
height to lie between field grid points and, hence, can be used  9%u; 1 -2 1

across the width of the field plane. In the next section this g2 — <A—y2>“4 - <—> Lt <A_y2>“7 (57)

method will be extended for use in 3-D. 92 1 _9 1
o N S VYT (i VYT (I P (58)
Ay? s A2 )7 Ay2 )%

o 2
B. 3-D Virtual Field Points Below the Ground Y
. . ... _The derivatives iny can be substituted into the Leontovich
In order to implement the Leontovich boundary Cor]dltlo?)oundar condition equation along with the derivatives:jn
of (50), the field and its derivatives with respectiaand y y d 9 J

at the surface of the terrain must be found. Since the fictd/€" in the previous section, to give a finite difference form

point on the ground lies vertically between two grid points(? the 3-D Leontovich boundary condition. This is in the form

the field and its derivative, with respect #9 can be found oo + g1u1 + gattn + Gtz + Gats + g5Us + Gels
dlre_ctly using .(42) to_ (44) given abov_e. These equat|on§ can ¥ grur + gsug = 0 (59)
be inserted directly into the Leontovich boundary condition
equations for the 3-D PE. and can then be directly inserted into the Crank—Nicholson
The derivatives with respect t@ cannot be found directly scheme.

because the terrain surface lies in between the rows of fieldf the transverse terrain gradient is such that the terrain
points, as shown in Fig. 8. Therefore, the derivatives are fountbsses the central row of field points next to the vertical plane
along the rows using finite differences and combined usimg interest, as shown in Fig. 9, left or right finite differences
(42). must be used. In Fig. 9 the terrain is sloping from left to right

here

[}

(V)
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X Transmitter

Terrain obstacle
30 L . .
1 —&— 7 axis receiver path

~—y axis receiver path

Transverse distance {(cm)
<
X:

1 t t + i
0 50 100 150 200 250 300 350 400 450

uy’y u, . \ Distance (cm)
‘ Terrain ™ Fig. 10. Terrain obstacle map and receiver paths. Antennas were open-ended
- errain WR28 waveguides.Tz height = 0 cm; Rz height = 3.25 cm;
| \ Frequency= 30 GHz.

Fig. 9. Calculation ofy derivatives using right-hand differences.

trength (dBm)
&

causing both the field points; andu4 to be below the terrain
surface. This is not allowed because the number of field points
would then be greater than the number of equations leadirig-s
to an ambiguous solution so field poinis, ©1o, andu,; are e 0 250 30 250 50
incorporated into a right difference scheme. Distance (cm)

Using the method described, the Leontovich boundary con- , - .

" . . . . . Fig. 11. Indoor propagation measurements and predictions alamés path
dition can be written in terms of nine field points for any,’n pe mean error 10.64 dB, s.d. 5.61 dBI 3-D PE mean ex95 dB,
transverse gradient. The edges of the field plane are dealt with 1.68 dB).
by using left finite differences at the left-hand side and right
finite differences at the right-hand side boundary. V. RESULTS

In this section, predictions made by the 3-D PE are com-
pared to propagation measurements. Two sets of measurements
were taken; the first in an indoor propagation range at 30 GHz

It can be seen from Fig. 8 that to implement the Leontovialising the principle of scaled frequency modeling. The indoor
boundary condition on the terrain surface that lies betwegropagation range provides a controlled idealized environment
field points, requires a square grid of field points. This cannipi which propagation models can be quickly and rigorously
easily be incorporated into the matrix (28) because eAg¢h validated. In Fig. 10, a pyramidal hill structure of 4.25 cm
matrix can only operate on a single column of field pointseight is shown along with the transmitter and the receiver
at a time. Likewise, eaciB,, matrix can only operate on paths. The hill structure was made of aluminum and was
a single row of field points at a time. In order to proceed, #aerefore treated as perfectly conducting. The ground was also
special method was devised to incorporate the 3-D Leontovighflat aluminum ground plane. Vertical polarization, with one
boundary condition into the matrix system. This method intenna ground-based and the second antenna at a small height
described with reference to Fig. 8. First, the matrix valuesbove ground level, is used throughout. This represents a
representing the field points just below the terrain surface Worst-case propagation environment in terms of the magnitude
matrix C in (28) are set to zero. This satisfies the right-hanef the reflected and diffracted field components. In Fig. 11,
side of (50). Second, the coefficients related to the field pointseasurements taken along thexis are compared to 2-D PE
ug, u1, anduy are placed at the appropriate row in thg and 3-D PE predictions. In Fig. 12, measurements along the
matrix. The coefficients for the field pointg; and us are transverse path are compared to predictions.
placed in the appropriate column in mati,,. At this stage It can be seen from Fig. 11 that the 2-D PE underpredicts
the term inu"*!{B,,, } is calculated giving ugsus+gsus. The the signal strength by up to 30 dB. This is because the 2-D
term (gsuq +gsus +grur + gsug) is then calculated separatelyPE method treats the pyramid as if it is an infinitely wide
and added directly to the points just below the terrain surfaggdge, neglecting the diffraction of energy around the sides.
in the matrixu/+'{B,,}. The same procedure can be useTthe predictions made by the 3-D PE follow the trend of the
when left and right finite differences are used. experimental data very well. The standard deviation for the

The comments made at the end of Section Ill about tl8D PE model 1.68 dB, whereas the standard deviation for the
convergence of the iterative solver once the 3-D nonreflectidgd models is 5.61 dB. There are no large errors present in
boundary condition has been incorporated also hold for thiee predictions made by the 3-D model, as seen in Fig. 11.
3-D terrain boundary condition. The issue of stability (i.ekFlowever, the 3-D PE results show an overprediction of signal
prediction accuracy) is much more difficult to establish bestrength by approximately 3 dB. This overprediction is due
cause no canonical solution exists for a nontrivial 3-D terraio the fact that depolarization effects caused by the terrain
boundaries. The simulation results, when compared to tbbstacle are not modeled as explained earlier. Depolarization
experimental results performed in a controlled laboratory eig-caused by terrain slopes in the transverse direction causing
vironment (described in Section V), indicate that the iterativenergy to couple from one vector component of the field
algorithm is stable. (vertical polarization) to another vector component of the

C. Incorporation into Matrix Scheme
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Fig. 12. Indoor propagation measurements and predictions, glangs path -100 +
(2-D PE mean error 1.05 dB, s.d. 4.74 dB; 3-D PE mean exndrR3 dB,
s.d 1.05 dB). -120
field (horizontal polarization). This COUpIing of vector field Distance along receiver route (km)

components cannolt be incorporated -|nt0 a S_Calar model Sll‘l—'?gh 13. Propagation predictions and measurements at 149.875 MHz (2-D
as the current version of the parabolic equation method. pg mean error 13.58 dB, s.d. 5.02 dB: 3-D PE mean error 6.76 dB, s.d. 8.34

In Fig. 12 the 3-D PE model shows good agreement witl®).
the experimental data. Again, there is a small amount of
overprediction due to the coupling between vertical and hori-
zontal polarization that is not modeled. In the shadow regiorEL AT
there is a large discrepancy between the 2-D models and tBe ¢ -
experimental data, highlighting the need for 3-D modeling. At;
distances approaching30 cm from the line of symmetry, the 2 b
2-D model gives accurate predictions because the receiver §s 100 {_; &4 QN
not in the shadow of the obstacle and, therefore, the dire& '
energy path component dominates.

The second set of measurements were collected in the”
Bromyard Downs area of Herefordshire, U.K., in the VHF
band. Herefordshire was selected for the hilly nature of the
countryside. The 10 W of power was transmitted via a disEig- 14. Propagation predictions and measurements at 149.875 MHz (2-D

. E mean error-3.29 dB, s.d. 6.02 dB; 3-D PE mean erre6.41 dB, s.d.
cone antenna which was mounted on a 11-m mast. T%@3 dB).
receiver was vehicle mounted so that measurements could
be taken on the move. Measurements were taken at 13-m#gion upto 2.5 km and between 7 and 9 km, the 3-D PE
intervals, allowing fast fading to be averaged out. The receivgethod is seen to more accurately predict the level of signal.
antenna was a monopole mounted on the vehicle roof. Tiis is reflected in the mean errors for the route, which are
Figs. 13 and 14, measurements taken along two routes13t58 dB and 6.76 dB for the 2-D PE and 3-D PE methods,
149.875 MHz are compared to 2-D PE and 3-D PE predictionsspectively. These results give an indication that improved
(the horizontal axis is distance along the receiver rauseé propagation predictions can be achieved by extending the 2-D
distance from transmitter). Terrain height information wagsarabolic equations to 3-D.
obtained from a digital terrain database with a resolution For the case shown in Fig. 14, measurements taken along
of 50 m. The measurements were taken in cold mildly wet 20-km section of road between Leominster and Bromyard
conditions in November 1995 with low atmospheric pressugelerefordshire, U.K.) are plotted against the predictions of
conditions prevailing throughout. Therefore, the normalizetie 2-D PE and 3-D PE. The mean errors for the 2-D PE
surface impedance values for wet ground [15] were usedand 3-D PE are-3.29 dB and-5.41 dB, respectively, with
all the PE simulations. error standard deviations of 6.02 dB and 7.33 dB. These

Due to computer memory limitations the step size amasults are considered to be good. The 2-D PE model has
resolution of the 3-D PE were set at the limit given by Nyquisin overprediction of the signal strength of3.29 dB. This
sampling. The use of the Nyquist sampling values leads tdsamainly due to overprediction in the region of 16—19 km,
level of accuracy for the 3-D PE, which is below the optimumwhere a line of sight path exists. In Fig. 14, the 3-D PE is seen
achievable due to the additional errors introduced by the finit® closely follow the 2-D PE and the measurements. Spikes
difference representation of the PE. Errors due to computen be seen on the 3-D PE plot, these are due to resolution
memory limitations are therefore introduced into all the 3-Destrictions in the 3-D PE method imposed by the computer
PE outdoor propagation predictions. memory limitations. This second path corresponds to a much

The route corresponding to the results shown in Fig. I8ore gently rolling terrain, thus, no significant improvement
starts north of the transmitter site and runs south toward timegoing to the 3-D PE method can be observed.
transmitter. It can be seen that the trend in the measurements
is predicted by both methods. Underprediction by the 2-D PE VI. CONCLUSION
method is observed along most of the route. The 3-D PElIn this paper, the 2-D PE has been extended to 3-D. An
predictions can be seen to closely follow the predictions efficient iterative solver for the 3-D PE method has been
the 2-D PE method along most of the route, however, in tipgesented. A convergence criterion has been established and

120 1

140 + +

Distance along receiver route (km)



1596 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 47, NO. 10, OCTOBER 1999

convergence for free-space propagation has been formalls] J. S. Finnie, “Prediction of ground-wave propagation over irregular

proven. The size of the computational domain was constrained fhomogeneous terrain,” Ph.D. dissertation, Imperial College, London,

to include only the region of int_er95t b_y placing a nonphysicajs; A E. Barrios, “A terrain parabolic equation model for propagation in
rectangular box around the region of interest. New nonreflect- the troposphere,JEEE Trans. Antennas Propagatol. 42, pp. 90-98,

i it ; i Jan. 1994.
ing boundary conditions are derived, and are |mposed on t M. D. Collins and S. A. Chin-Bing, “A three-dimensional parabolic

surfaces of this box. The 3-D terrain surface is incorporated” equation model that includes the effects of rough boundariegtoust.
into the 3-D PE method using the concept of virtual field points_ Soc. Amer. (JASA)ol. 87, no. 3, 1990.

. . L . . D. Lee and S. T. McDaniel, “Ocean acoustic propagation by finite
below the terrain, which is introduced in this paper. difference methods,Comput. Math. Applicat.vol. 14, no. 5, 1987.

The 3-D PE with these boundaries was used to makg] J. D. Hoffman,Numerical Methods for Engineers and Scientistblew

predictions for a perfectly conducting 3-D obstacle, which = York: McGraw-Hill, 1992. . _
. . éQA A. R. Mitchell and D. F. Griffiths, The Finite Difference Method in
Were com_pare_d to II’](;IOO.I’ propaganon measurements tak Partial Differential Equations New York: Wiley, 1980.
in the University of Birmingham indoor propagation rang¢l0] C. E. Fiberg, Numerical Mathematics Menlo Park, CA: Ben-
i~ _ _ jamin/Cummings, 1985.

and predictions made l,)y the 2-D PE. The 2-D P_E meth? ] T. B. A. Senior and J. L. VolakisApproximate Boundary Conditions in
was seen to produce significant errors when applied to 3-D" Ejectromagnetics Piscataway, NJ: IEEE Press, 1995.
environments, however, predictions made by the 3-D HE2l S. M. Rytov, “Calcul du skin-effect par la methode des perturbations,”

: : J. Phys, vol. 2, pp. 233-242, 1940 (USSR).
were seen to be in good agreement with measurements. T. S. M. Maclean and Z. WuRadiowave Propagation Over Ground

overprediction by the 3-D PE of approximately 3 dB was  London, U.K.: Chapman Hall, 1993.
observed. This was caused by depolarization occurring 8l M. F. Levy, “PE modeling of electromagnetic wave propagation in an
. . : inhomogeneous waveguide with irregular boundaries Piioc. 1st Int.

the transverse terrain gradients that cannot be modeled in the -4 math. Numer. Aspects Wave Propagat. (SI8fasbourg, France,
scalar parabolic equation method. 1991, pp. 127-135.

The 3-D PE model was compared to outdoor propagatiﬂg] CCIR Recommendations, Int. Telecommunicat. Union, 1992. )

.. ] C. A. Zelley, “Radiowave propagation over irregular terrain using

measurements and predictions made by the 2-D PE Wer€ the parabolic equation method,” Ph.D. dissertation, Univ. Birmingham,
made at 149.875 MHz. The 3-D PE predictions were seen to Birmingham, U.K., 1996.
be in good agreement with both measurements and the 2-D
PE predictions. This agreement was achieved despite the

restrictions to resolution imposed by our computer memory

I|m|t_at|ons. In more severe mountainous environments and at Chris A. Zelley (S'94-M'97) was born near Bris-
a wider range of VHF/UHF frequencies, we have been unal tol, UK., on March 30, 1968. He received the
to demonstrate any advantages in going to a 3-D PE meth B.Eng. (electrical and electronics engineering) and

. . the Ph.D. degrees from the University of Birm-
However, in all these cases we have been severely restric 'Z% = ingham, Birmingham, U.K., in 1989 and 1997,

by the available memory on our computer and these locatic s respectively. .
were such that far more severe depolarization is expected v:: From 1989 to 1993, he was engaged in the

. L. : o research and development of receiver systems for
occur. The development of a fully 3-D propagation predictio g

. oL e . 1 \ direction finding and signal recognition applications.
model is thought to be a significant step forward in propagatic | In1993 he returned to the University of Birmingham

modeling. This method has been demonstrated to possess good N o study radiowave propagation. From 1997 to 1998
. e worked at the Defence, Evaluation, and Research Agency, Malvern, U.K.,
potentlal for further deveIOpmem- designing GaAs monolithic microwave integrated circuits. He is currently
A 3-D wide-angle PE model has also been developed [16],Research Scientist at Bell Laboratories, Lucent Technologies, Swindon,
however, its implementation in realistic scenarios is current/K- His current research interests are BICMOS radio frequency integrated

. . rcuit (RFIC) design for global system for mobile communications (GSM
not feasible with current computer technology. applica(tions_) g 9 Y (GSW)
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