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A Three-Dimensional Parabolic Equation Applied to
VHF/UHF Propagation over Irregular Terrain
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Abstract—The two-dimensional (2-D) parabolic equation (PE)
is widely used for making radiowave propagation predictions
in the troposphere. The effects of transverse terrain gradients,
propagation around the sides of obstacles, and scattering from
large obstacles to the side of the great circle path are not modeled,
leading to prediction errors in many situations. In this paper,
these errors are addressed by extending the 2-D PE to three
dimensions. This changes the matrix form of the PE making
it difficult to solve. A novel iterative solver technique, which is
highly efficient and guaranteed to converge, is being presented. In
order to confine the domain of computation, a three-dimensional
(3-D) rectangular box is placed around the region of interest. A
new second-order nonreflecting boundary condition is imposed
on the surface of this box and its angular validity is established.
The boundary condition is shown to keep unwanted fictitious
reflections to an acceptable level in the domain of interest.
The terrain boundary conditions for this 3-D PE method are
developed and an original technique for incorporating them into
the matrix form of the iterative solver is described. This is done
using the concept of virtual field points below the ground. The
prediction accuracy of the 3-D PE in comparison to the 2-D PE
is tested both against indoor scaled frequency measurements and
very high frequency (VHF) field trials.

Index Terms—Mobile radio, parabolic equation, radiowave
propagation, terrain.

I. INTRODUCTION

T HE parabolic equation (PE) models propagation of energy
predominantly in one direction only. The field distribution

on a plane transverse to the direction of propagation is
“marched” forward in a step-by-step manner, provided the field
is known on an initial plane. The field values at each step are
calculated from the field values at the previous step. This is
done subject to a radiation boundary condition at the top of
the field plane and a terrain boundary condition at the bottom
of this plane. Using this method, the shape and the electrical
constants of the terrain can be accurately incorporated into
the model. The majority of long-range propagation prediction
methods in use are two-dimensional (2-D) and consider prop-
agation along the great circle path between the transmitter
and receiver [1]–[5]. However, when steep transverse terrain
gradients exist along the great circle path or when the extent of
horizontal Fresnel zone obstruction is comparable to the extent
of vertical Fresnel zone obstruction, significant errors can
occur. One of the strengths of the parabolic equation method
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is that it can readily model the effects of atmospheric refrac-
tive index gradients and absorption [6]. However, the work
presented here was undertaken in order to develop a coverage
prediction tool for short to medium ranges (up to 20 km) in
the very high frequency (VHF) and ultrahigh frequency (UHF)
bands for vehicle or man-portable equipment (i.e., ground-
or near-ground-based antennas). For our purposes, experience
shows that terrain effects are dominant over atmospheric
effects and, therefore, the latter can be safely ignored. Thus,
the inclusion of atmospheric refractivity is beyond the scope of
this paper. Here, a three-dimensional (3-D) scalar PE code for
free-space propagation over terrain has been developed, which
makes use of a novel iterative solver technique to “march” a
field plane though a 3-D region. A convergence criterion is
established and convergence is formally proven for free-space
propagation.

In order to restrict the 3-D PE computational domain, a rect-
angular box is placed around the area of interest. Nonreflecting
boundary conditions (NRBC) are imposed on the surfaces of
this box. A new nonreflecting boundary condition is derived
and its accuracy examined. The boundary condition is then
tested by propagating a Gaussian beam in free-space within a
rectangular box and comparing the simulation predictions to
the exact solution. A novel 3-D terrain boundary condition is
incorporated into the 3-D PE scheme using the principle of
virtual field points below the terrain, also presented here for
the first time. An important limitation of this work that needs to
be emphasised is that by restricting ourselves to a scalar field
model, we are severely limited in modeling the depolarization
effects of a general 3-D terrain. This introduces irreducible
errors in our prediction capabilities which have been found
not to be too severe.

Predictions made by the 3-D PE using the terrain boundary
condition were then compared to propagation measurements
made in both indoor and outdoor environments. The indoor
measurements were made in the University of Birmingham
indoor propagation range at 30 GHz and make use of the
concept of scaled frequency modeling. These results clearly
show the significant improvement in prediction accuracy that
can be achieved using a 3-D model in a 3-D environment.
Outdoor measurements were taken in the VHF and UHF bands
at ranges up to 20 km. Examples of these along with 2-D PE
and 3-D PE predictions are presented.

II. THE 3-D PARABOLIC EQUATION

Assuming propagation to be predominantly along theaxis,
the 3-D PE can be derived from the Helmholtz equation in
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Fig. 1. Three-dimensional Crank–Nicholson scheme. Indexesl, m, andn
correspond to discretizedx, y, andz coordinates, respectively.

Cartesian coordinates by factoring out a fast varying phase
term in the direction. The refractive index term is assumed
to be unity for the reasons explained in the introduction, giving

(1)

This is the 3-D PE. The range of angles over which the 3-D PE
is valid can be assessed by substituting a reduced plane wave
solution into (1) and evaluating the error expression produced.
The reduced plane wave solution is given by

(2)

where

(3)

and is a constant amplitude term. The angleis the angle
of propagation measured from theaxis and is the azimuth
angle about the axis. On substitution the terms can be
eliminated to yield

(4)

This is identical to the error expression of the 2-D PE. The
3-D PE is, therefore, accurate up to angles of15 [7] for all
angles . The relative error at is 0.000 58. The range
of angles over which the 3-D PE is valid is dependent on the
level of accuracy required by the user.

In order to solve the 3-D PE numerically, (1) can be
expressed using finite differences. This is done using a 3-D
version of the Crank–Nicholson scheme [8], [9]. In this scheme
the 3-D PE is written using finite differences which are
centered on a point midway between two successive planes of
field points. A schematic diagram of the 3-D Crank–Nicholson
scheme is shown in Fig. 1.

The first-order derivative with respect toat the midpoint
can be written as

(5)

where is the discretization error term. The second-
order derivative with respect to can be written as

(6)

and the second-order derivative with respect tocan be written
as

(7)

The leading terms in the discretization errors are given by

(5a)

(6a)

(7a)

The derivatives (5)–(7) can be substituted into the 3-D PE (1),
and this equation can then be rearranged such that the field
points on the plane are expressed in terms of the field
points on the plane

(8)

Expressing the 3-D PE using finite differences allows (8) to
be cast into matrix form. The use of matrices permits the
simultaneous calculation of field values over the entire field
plane. The errors introduced by writing the 3-D PE using
finite differences can be found by summing the error terms
of (5a)–(7a). The size of the error can be controlled by the
selection of the discretization intervals, , , and . We
have performed extensive numerical simulations for ranges up
to and for step sizes of in the direction and up
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to in the – plane, which reveal that the prediction error
is well below 1 dB. However, we have established that the
main contribution to the error is introduced by the boundary
conditions discussed in the next section. Since the field plane
is 2-D, the matrix equation can be expressed in the general
form given by

(9)

where and are matrices describing field points on the
and field planes, respectively. The repeated solution of

this equation allows the field distribution to be found over the
entire region of interest, provided an initial field is known.,

, , and are square tridiagonal operator matrices given in

(10a)

(10b)

where

(11)

This facilitates the use of existing efficient tridiagonal linear
equation solver routines. The right-hand side of the matrix
equation (9) can be evaluated to give

(12)

However, this type of matrix equation is difficult to solve
due to the presence of pre- and post-matrix multiplication.
This means that (12) cannot be rearranged algebraically such
that can be expressed in terms of and .

Previous 3-D PE methods have traditionally dealt with this
problem by adopting an alternating direction implicit (ADI)
marching method [6], [9]. This method effectively implements
an equivalent 2-D marching step in the– plane, followed
by an equivalent 2-D marching step in the– plane. This
technique has been used extensively for underwater acoustic
propagation where refractive effects are significant. However,
for ground-based antennas on mountainous or hilly terrain,
significant energy coupling on the sloping terrain boundary
between the two transverse directions can occur within a
single marching step. The ADI method would then result
in the introduction of significant errors, thus the marching
of the vertical and horizontal field planes must be done
simultaneously.

An iterative equation is found by rearranging (12) to give

(13)

The use of tridiagonal matrices means that this equation can
be solved efficiently. An iterative solver approach will only
be useful provided that (13) converges rapidly. By using an
initial estimate of the field at plane and repeating the
iteration times, we arrive at

(14)

For the iterative solver to converge, the field planes after
iterations must tend to a limiting spatial field distribution. This
will occur provided that the two following conditions are met:

Null Matrix (15)

Null Matrix (16)

These conditions will be met provided that and
both tend toward the null matrix as becomes large or if one
of the terms tends toward the null matrix faster than the other
term grows. This requires that the norm of matrices and

is as small as possible. To make the norm of as small
as possible, the norm of must be as large as possible. This
must be done within the constraints of the 3-D PE in the
Crank–Nicholson scheme. It is possible to transfer the leading
diagonal terms from matrix to matrix without affecting
the formulation of the 3-D PE. This has the effect of reducing
the norm of matrix while increasing the norm of matrix .
The matrix terms for the 3-D PE now become

(17)

Taking these values and examining the effect of the iterative
solver on an arbitrary field point within the field plane,
convergence is guaranteed. This is done using the substitution
of a reduced plane wave solution. Taking the finite-difference
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equation (8), we can evaluate the right-hand side to give

(18)

where is an arbitrary point in the matrix of (12).
Rearranging this equation in the form of the iterative solver
that converges as discussed above we get

(19)

Now using the substitution of the reduced plane wave solution
of (2) we obtain

(20)

where the indexes, , and are implicitly assumed and
are hereafter omitted for clarity. This leads to

(21)

To find if this expression is convergent, we use the theory of
fixed-point methods [10]. For (21) to converge, the inequality

(22)

must hold. Differentiating (21) we obtain

(23)

A small number of straightforward algebraic steps yields

(24)

The worst case occurs when and
since the denominator is positive-definite,

giving

(25)

It can be seen that the magnitude of the derivative is always
less than unity irrespective of the discretization grid chosen.
This means that convergence is guaranteed for an arbitrary
plane wave. Performing the same analysis for a spectrum of
plane waves will produce the same result. Selecting values
of , , and that make the numerical value of (24)
significantly smaller than one guarantees faster convergence.

If the first convergence criterion given by (15) is satisfied,
then the final solution given by (14) is independent of the
initial estimate of the field at plane. This means that the
iterative solver technique will converge to the correct solution
regardless of the initial estimate given. This is very useful
since a bad initial estimate cannot lead to an incorrect result,
although a bad initial estimate will require more iterations in
order to converge. In this work the final solution at plane
has been used as the initial estimate of the field at plane.

After each iteration step, a test for acceptable convergence is

(26)

where is the maximum allowable norm of the error vector
and can be chosen arbitrarily.

While (13) is satisfactory for propagation in free-space,
it cannot be used when the boundary conditions around the
field plane vary, as is the case for radiowave propagation
over irregular terrain. This is due to the operator on each
column of field points being dependent on the height, gradient,
and surface impedance of the terrain below that column. To
propagate a field solution forward in this situation we must
generalize (13). To do this we replace matrixwith a number
of matrices , each operating on theth column in the matrix
of field points and, hence, providing the correct boundary
conditions for each column (a column corresponds to a vertical
column of field points). We similarly recast matrix in this
form to obtain

(27)

which is written symbolically as

(28)

This generalized matrix equation can then be solved us-
ing the same iterative solver method described above. For
the generalized iterative solver matrix inversions must be
performed at each iteration instead of a single inversion.
We postpone any consideration of convergence and stability
until the implementation of the boundary conditions has been
discussed.

This generalized iterative solver has been implemented
and used to solve a Crank–Nicholson implementation of a
narrow angle 3-D PE. The ability of the iterative solver to
converge rapidly is demonstrated by propagating a Gaussian
beam of unity amplitude, with a beamwidth of 4.5 to
a distance of 20 000 wavelengths. The cross section of the
domain of interest measured . The second-order
nonreflecting boundary condition presented in Section III of
this paper was employed to bound the region of interest.
The resolution and propagation stepsize defined by Nyquist
sampling are (due to the limitation of
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Fig. 2. Number of iterations required for convergence(e � 0:00058).

Fig. 3. Rectangular box around region of interest.

) and . The number of iterations required
at each step as determined using a maximum allowable norm
for the error vector of 0.000 58 is plotted in Fig. 2.

Fig. 2 shows that the number of iterations required at each
step is small. As range increases the number of iterations per
step decreases. This is because the rate of change of the field
decreases as the radius of curvature of the beam increases and
the phase front tends toward that of a plane wave. This will
not occur over irregular terrain, because as the field solution
marches forward, new scattered fields will be generated each
time the solution passes over a terrain feature. It is possible
to reduce the number of iterations per step by reducing the
step size, however, the total number of steps is then higher,
therefore, no overall gain is achieved. Over irregular terrain
the step size is restricted by the gradient of the terrain in the
direction of propagation.

III. N ONREFLECTING BOUNDARY CONDITIONS

Computational calculations in three dimensions can require
significant computer resources. Restricting the size of the
computational domain to include only the region of interest is
an important method for controlling the computational costs.
Here the region of interest is enclosed using a nonphysical
rectangular box (see Fig. 3). A new nonreflecting boundary
condition is imposed on the surface of this box. This boundary
condition is now derived and evaluated.

The nonreflecting boundary condition is derived for the
upper numerical boundary on the top of the box, but can be
easily applied to the sides of the box simply by interchanging
the and coordinates.

The 3-D PE in the absence of an atmosphere is given by

(29)

where propagation is predominantly along theaxis and is
the vertical axis. Taking a Laplace transform of the 3-D PE
with respect to , we obtain

(30)

where the initial field at the boundary
is assumed to be zero. The Laplace transformed 3-D PE of
(30) can be expressed using two equations for theand
components

(31)

(32)

where and . We can also express
and using

(33)

Equation (31) can be factored into an upward and downward
traveling wave component. Discarding the downward traveling
component, we arrive at

(34)

This boundary condition, however, is only valid for a single
plane wave, incident on the boundary with azimuth angle.
The boundary condition of (34) can be generalized such that
any discrete number of plane waves can be perfectly absorbed.

(35)

This expression is the same as theth-order generalized
impedance boundary condition given by Senior and Volakis
[11, eq. (8.22)] applied to the Laplace transformed field.
The rigorous derivation of generalized impedance boundary
conditions was first performed by Rytov [12] and is reproduced
in Senior and Volakis [11]. The Crank–Nicholson scheme
[8], used with the 3-D PE, is accurate to second order and,
therefore, we restrict the generalized boundary condition to
second order for consistency

(36)

where are Brewster angles [11]. Material boundaries can
possess one or more Brewster angles, depending on whether
they exhibit anisotropy or consist of thin layers, etc. For
our purposes, we are dealing with a fictitious nonreflecting
surface and, thus, we have the freedom of imposing any
convenient arbitrary Brewster angles. In reality, we would
require an infinite number of such Brewster angles to guarantee
the exactness of the nonreflecting boundary condition over all
incidence angles and, thus, a perfect simulation of free-space.
However, a compromise between exactness and computational
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Fig. 4. Three-dimensional PE NRBC(� = 14�).

effort is to select just two , which is consistent with the
second-order accuracy of the PE method itself. The Brewster
angles in (36) give a degree of control over the boundary
condition. If the angle of incidence is known, values ofcan
be chosen to make the boundary condition exact (within the
approximation of the 3-D PE). If the angle of incidence is not
known or the incident energy consists of many components
with different angles of incidence, near-optimum values of

can in principle be selected. These optimum values are
chosen such that the boundary condition performs to the
level of accuracy implicit in the parabolic equation over the
widest possible range of azimuth angles. Equation (36) can be
expanded and inverse Laplace transformed to give

(37)

This equation can be descretized and incorporated into the
Crank–Nicholson scheme.

Validation of the 3-D PE NRBC is done by substituting a
uniform plane wave solution into (36) for various azimuth,
and elevation, angles of incidence. The variableis taken to
be a differential operator with respect to. The error is then
given by (38) in terms of the anglesand

(38)

Equation (38) is plotted in Fig. 4 and the range of angles over
which the boundary condition is valid is assessed. The error
introduced by the boundary condition is plotted for an angle
of propagation from the axis set at . This is close to
the maximum angle allowable by the narrow angle 3-D PE.

It can be seen in Fig. 4 that the NRBC is valid (error is
less than the paraxial approximation of the 3-D PE itself) up
to 50 . This is achieved with and . It
should be noted that had a smaller value ofbeen chosen, the
angular domain over which the NRBC is satisfactory would
then be larger. The angular limits given above can be thought
of as worst-case limits.

A numerical experiment was performed to test the boundary
condition in free-space. A Gaussian aperture field with

Fig. 5. Gaussian beam propagation in free-space.

beamwidth of 4.5 was propagated to a distance of
inside a rectangular box whose cross section was

. In Fig. 5 the root mean square (rms) error across
the field plane, compared to the exact analytical solution,
is plotted against propagation distance. It can be seen that
the nonreflecting boundary condition results in an rms error
across the field plane of less than 1 dB up to a distance
of . However, it must be noted that the 1-dB rms
error bound shown includes both the errors arising from the
implementation of the nonreflecting boundary condition as
well as the cumulative errors due to the discretization of the
3-D PE method itself.

The inclusion of the nonreflecting boundary condition into
the Crank–Nicholson scheme is straightforward. Because of
the flexibility in placing the new boundary condition terms
appearing on the diagonal either in matrixor in (28), the
convergence of the iterative algorithm described in Section II
can be readily maintained. Thus, the enforcement of the
convergence conditions (15) and (16) can be guaranteed. The
question of stability of the algorithm after the inclusion of the
boundary condition has been found numerically not to pose
a problem, as illustrated in the discussion of the previous
paragraph and Fig. 5.

IV. TERRAIN BOUNDARY CONDITION

At the lower field points, the boundary condition for the
air-ground interface must be met. This condition is given by
the Leontovich boundary condition, which links the value of
the field at the interface to the derivative of the field normal
to the surface of the interface

(39)

where is the normalized surface impedance.
A mathematical derivation of the Leontovich boundary

condition is given by Maclean and Wu [13]. The method
commonly used to implement the terrain boundary condition
for the 2-D PE is that of Levy [14]. This boundary condition
is derived by factoring the fast varying phase term out of the
Leontovich boundary condition. Substituting the 2-D PE into
this gives

(40)

that can be expressed using finite differences. This boundary
condition can then be applied to irregular boundaries as
described by Levy, “For upward sloping terrain, one vertical
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Fig. 6. Virtual field point below the terrain.

grid point is eliminated at each range step. For downward
sloping terrain, one vertical grid point is added at each range
step. Since the vertical grid is fixed, the horizontal step size
is adapted to the terrain slope, so that the number of vertical
grid points is either conserved or increased by1 at each
step.” This may result in long integration times for complex
boundaries.

This approach has been shown to work well in 2-D, how-
ever, the terrain surface must coincide with the field points.
This condition severely restricts the choice of step size. When
the 2-D PE is extended to 3-D, the terrain height is likely
to vary across the plane of field points transverse to the
direction of propagation, therefore, it will not be possible
to meet the above conditions at all points across the field
plane. Quantization of the terrain height, such that the terrain
surface and the grid points across the field plane coincide is
a possible solution. This is seen as crude and is likely to
give rise to errors. An alternative approach is to devise a
boundary condition that can be used when the terrain surface
falls between field grid points. This new boundary condition
uses the concept of virtual field points below the terrain surface
and is presented below. First, the concept is explained using a
2-D example, then the boundary condition is extended to 3-D.

A. 2-D Virtual Field Points Below the Ground

In this section, a novel method for implementing boundary
conditions on terrain that falls between grid points in 2-D is
presented.

In Fig. 6, the ground lies between the grid pointsand .
The field on the ground is given by . The vertical distance
between the ground and point is given by as a proportion
of . The field points , , and can be expressed as
a Taylor series expansion about the field point on the ground

. Here they are given in matrix form

(41)

The square matrix can be inverted to find the field and its
derivatives on the ground in terms of , , and

(42)

Fig. 7. Field components in transverse plane.

(43)

(44)

These expressions can be substituted into (40) to give an
equation that can be incorporated into the Crank–Nicholson
scheme and imposes the Leontovich boundary condition on a
ground that falls between two grid points.

This method gives a greater degree of control over the
selection of the propagation step size. The use of virtual field
points below the terrain is believed to be original work. This
technique for implementing the lower boundary condition is
used in all the 2-D PE predictions presented in this paper
mainly because of its flexibility and convenience. We have
ascertained that the method of virtual points does not, however,
result in any discernible performance advantage or prediction
accuracy improvements over Levy’s method [14].

Values of are given for field components that are normal
to the terrain in the transverse plane (vertical polarization
in 2-D) and for field components that are tangential to the
terrain in the transverse plane (horizontal polarization in 2-
D). In three dimensions, there will be terrain gradients that
are transverse to the direction of propagation. In this case,
assuming the incident energy is vertically polarized there will
be a normal field component and a tangential field component
in the transverse plane. This is illustrated in Fig. 7, where
propagation is into the page.

At the terrain surface, the normal and tangential field
components must be found subject to the Leontovich bound-
ary condition using the normal and tangential values of,
respectively. Since the values ofare different the ratio of the
normal and tangential field components will change, causing
depolarization. This is a vector field scattering mechanism
and, therefore, cannot be rigorously incorporated into a scalar
field propagation model. In order to proceed we must either
approximate the boundary condition or extend the parabolic
equation method into a vector form.

The assumption made here is that when the terrain gradient
in the transverse plane is less than 45, the normalized
impedance for the normal field component alone can be used.
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Also, when the terrain gradient in the transverse plane is
greater than 45, the normalized impedance for the tangential
component alone can be used. This assumes that the amount
of depolarization is small. This assumption is likely to lead
to an overprediction of signal strength because the energy
being coupled into horizontal polarization is not modeled
and, therefore, remains as vertical polarization, giving a larger
signal strength prediction. The assumption made is thought to
be fairly crude and the development of an effective surface
impedance term, which is a function of the transverse terrain
gradient forms part of planned further work.

Using the definition of a directional derivative

(45)

The surface normal unit vector can be written as

(46)

using the surface normal unit vector we can find the surface
normal derivative operator to be

(47)

Also, we can write that

(48)

substituting (47) and (48) into (45) we find that

(49)

substituting the 3-D PE of (1) we obtain

(50)

This is the Leontovich boundary condition for the 3-D PE.
In order to incorporate the Leontovich boundary conditions of
(50) into a matrix system they must be expressed using finite
differences. The method described above allows the terrain
height to lie between field grid points and, hence, can be used
across the width of the field plane. In the next section this
method will be extended for use in 3-D.

B. 3-D Virtual Field Points Below the Ground

In order to implement the Leontovich boundary condition
of (50), the field and its derivatives with respect toand
at the surface of the terrain must be found. Since the field
point on the ground lies vertically between two grid points,
the field and its derivative, with respect to, can be found
directly using (42) to (44) given above. These equations can
be inserted directly into the Leontovich boundary condition
equations for the 3-D PE.

The derivatives with respect to cannot be found directly
because the terrain surface lies in between the rows of field
points, as shown in Fig. 8. Therefore, the derivatives are found
along the rows using finite differences and combined using
(42).

Fig. 8. Field points in transverse field plane (direction of propagation into
the paper).

For the first-order derivative in we use

(51)

where in (51)–(59) the field points are clearly illustrated in
Fig. 8 and

(52)

(53)

(54)

Equations (52)–(54) are found from (43), the terms are
replaced by terms, and is set to zero. For the second-
order derivative in we use

(55)

where

(56)

(57)

(58)

The derivatives in can be substituted into the Leontovich
boundary condition equation along with the derivatives in,
given in the previous section, to give a finite difference form
of the 3-D Leontovich boundary condition. This is in the form

(59)

and can then be directly inserted into the Crank–Nicholson
scheme.

If the transverse terrain gradient is such that the terrain
crosses the central row of field points next to the vertical plane
of interest, as shown in Fig. 9, left or right finite differences
must be used. In Fig. 9 the terrain is sloping from left to right
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Fig. 9. Calculation ofy derivatives using right-hand differences.

causing both the field points and to be below the terrain
surface. This is not allowed because the number of field points
would then be greater than the number of equations leading
to an ambiguous solution so field points, , and are
incorporated into a right difference scheme.

Using the method described, the Leontovich boundary con-
dition can be written in terms of nine field points for any
transverse gradient. The edges of the field plane are dealt with
by using left finite differences at the left-hand side and right
finite differences at the right-hand side boundary.

C. Incorporation into Matrix Scheme

It can be seen from Fig. 8 that to implement the Leontovich
boundary condition on the terrain surface that lies between
field points, requires a square grid of field points. This cannot
easily be incorporated into the matrix (28) because each
matrix can only operate on a single column of field points
at a time. Likewise, each matrix can only operate on
a single row of field points at a time. In order to proceed, a
special method was devised to incorporate the 3-D Leontovich
boundary condition into the matrix system. This method is
described with reference to Fig. 8. First, the matrix values
representing the field points just below the terrain surface in
matrix in (28) are set to zero. This satisfies the right-hand
side of (50). Second, the coefficients related to the field points

, , and are placed at the appropriate row in the
matrix. The coefficients for the field points and are
placed in the appropriate column in matrix . At this stage
the term in is calculated giving us . The
term is then calculated separately
and added directly to the points just below the terrain surface
in the matrix . The same procedure can be used
when left and right finite differences are used.

The comments made at the end of Section III about the
convergence of the iterative solver once the 3-D nonreflecting
boundary condition has been incorporated also hold for the
3-D terrain boundary condition. The issue of stability (i.e.,
prediction accuracy) is much more difficult to establish be-
cause no canonical solution exists for a nontrivial 3-D terrain
boundaries. The simulation results, when compared to the
experimental results performed in a controlled laboratory en-
vironment (described in Section V), indicate that the iterative
algorithm is stable.

Fig. 10. Terrain obstacle map and receiver paths. Antennas were open-ended
WR28 waveguides.Tx height = 0 cm; Rx height = 3:25 cm;
Frequency= 30 GHz.

Fig. 11. Indoor propagation measurements and predictions alongz axis path
(2-D PE mean error 10.64 dB, s.d. 5.61 dBl 3-D PE mean error�1.95 dB,
s.d. 1.68 dB).

V. RESULTS

In this section, predictions made by the 3-D PE are com-
pared to propagation measurements. Two sets of measurements
were taken; the first in an indoor propagation range at 30 GHz
using the principle of scaled frequency modeling. The indoor
propagation range provides a controlled idealized environment
in which propagation models can be quickly and rigorously
validated. In Fig. 10, a pyramidal hill structure of 4.25 cm
height is shown along with the transmitter and the receiver
paths. The hill structure was made of aluminum and was
therefore treated as perfectly conducting. The ground was also
a flat aluminum ground plane. Vertical polarization, with one
antenna ground-based and the second antenna at a small height
above ground level, is used throughout. This represents a
worst-case propagation environment in terms of the magnitude
of the reflected and diffracted field components. In Fig. 11,
measurements taken along theaxis are compared to 2-D PE
and 3-D PE predictions. In Fig. 12, measurements along the
transverse path are compared to predictions.

It can be seen from Fig. 11 that the 2-D PE underpredicts
the signal strength by up to 30 dB. This is because the 2-D
PE method treats the pyramid as if it is an infinitely wide
wedge, neglecting the diffraction of energy around the sides.
The predictions made by the 3-D PE follow the trend of the
experimental data very well. The standard deviation for the
3-D PE model 1.68 dB, whereas the standard deviation for the
2-D models is 5.61 dB. There are no large errors present in
the predictions made by the 3-D model, as seen in Fig. 11.
However, the 3-D PE results show an overprediction of signal
strength by approximately 3 dB. This overprediction is due
to the fact that depolarization effects caused by the terrain
obstacle are not modeled as explained earlier. Depolarization
is caused by terrain slopes in the transverse direction causing
energy to couple from one vector component of the field
(vertical polarization) to another vector component of the
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Fig. 12. Indoor propagation measurements and predictions, alongy-axis path
(2-D PE mean error 1.05 dB, s.d. 4.74 dB; 3-D PE mean error�1:23 dB,
s.d 1.05 dB).

field (horizontal polarization). This coupling of vector field
components cannot be incorporated into a scalar model such
as the current version of the parabolic equation method.

In Fig. 12 the 3-D PE model shows good agreement with
the experimental data. Again, there is a small amount of
overprediction due to the coupling between vertical and hori-
zontal polarization that is not modeled. In the shadow region
there is a large discrepancy between the 2-D models and the
experimental data, highlighting the need for 3-D modeling. At
distances approaching30 cm from the line of symmetry, the
2-D model gives accurate predictions because the receiver is
not in the shadow of the obstacle and, therefore, the direct
energy path component dominates.

The second set of measurements were collected in the
Bromyard Downs area of Herefordshire, U.K., in the VHF
band. Herefordshire was selected for the hilly nature of the
countryside. The 10 W of power was transmitted via a disc-
cone antenna which was mounted on a 11-m mast. The
receiver was vehicle mounted so that measurements could
be taken on the move. Measurements were taken at 13-mm
intervals, allowing fast fading to be averaged out. The receive
antenna was a monopole mounted on the vehicle roof. In
Figs. 13 and 14, measurements taken along two routes at
149.875 MHz are compared to 2-D PE and 3-D PE predictions
(the horizontal axis is distance along the receiver routenot
distance from transmitter). Terrain height information was
obtained from a digital terrain database with a resolution
of 50 m. The measurements were taken in cold mildly wet
conditions in November 1995 with low atmospheric pressure
conditions prevailing throughout. Therefore, the normalized
surface impedance values for wet ground [15] were used in
all the PE simulations.

Due to computer memory limitations the step size and
resolution of the 3-D PE were set at the limit given by Nyquist
sampling. The use of the Nyquist sampling values leads to a
level of accuracy for the 3-D PE, which is below the optimum
achievable due to the additional errors introduced by the finite-
difference representation of the PE. Errors due to computer
memory limitations are therefore introduced into all the 3-D
PE outdoor propagation predictions.

The route corresponding to the results shown in Fig. 13
starts north of the transmitter site and runs south toward the
transmitter. It can be seen that the trend in the measurements
is predicted by both methods. Underprediction by the 2-D PE
method is observed along most of the route. The 3-D PE
predictions can be seen to closely follow the predictions of
the 2-D PE method along most of the route, however, in the

Fig. 13. Propagation predictions and measurements at 149.875 MHz (2-D
PE mean error 13.58 dB, s.d. 5.02 dB; 3-D PE mean error 6.76 dB, s.d. 8.34
dB).

Fig. 14. Propagation predictions and measurements at 149.875 MHz (2-D
PE mean error�3.29 dB, s.d. 6.02 dB; 3-D PE mean error�5.41 dB, s.d.
7.33 dB).

region upto 2.5 km and between 7 and 9 km, the 3-D PE
method is seen to more accurately predict the level of signal.
This is reflected in the mean errors for the route, which are
13.58 dB and 6.76 dB for the 2-D PE and 3-D PE methods,
respectively. These results give an indication that improved
propagation predictions can be achieved by extending the 2-D
parabolic equations to 3-D.

For the case shown in Fig. 14, measurements taken along
a 20-km section of road between Leominster and Bromyard
(Herefordshire, U.K.) are plotted against the predictions of
the 2-D PE and 3-D PE. The mean errors for the 2-D PE
and 3-D PE are 3.29 dB and 5.41 dB, respectively, with
error standard deviations of 6.02 dB and 7.33 dB. These
results are considered to be good. The 2-D PE model has
an overprediction of the signal strength of3.29 dB. This
is mainly due to overprediction in the region of 16–19 km,
where a line of sight path exists. In Fig. 14, the 3-D PE is seen
to closely follow the 2-D PE and the measurements. Spikes
can be seen on the 3-D PE plot, these are due to resolution
restrictions in the 3-D PE method imposed by the computer
memory limitations. This second path corresponds to a much
more gently rolling terrain, thus, no significant improvement
in going to the 3-D PE method can be observed.

VI. CONCLUSION

In this paper, the 2-D PE has been extended to 3-D. An
efficient iterative solver for the 3-D PE method has been
presented. A convergence criterion has been established and
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convergence for free-space propagation has been formally
proven. The size of the computational domain was constrained
to include only the region of interest by placing a nonphysical
rectangular box around the region of interest. New nonreflect-
ing boundary conditions are derived, and are imposed on the
surfaces of this box. The 3-D terrain surface is incorporated
into the 3-D PE method using the concept of virtual field points
below the terrain, which is introduced in this paper.

The 3-D PE with these boundaries was used to make
predictions for a perfectly conducting 3-D obstacle, which
were compared to indoor propagation measurements taken
in the University of Birmingham indoor propagation range
and predictions made by the 2-D PE. The 2-D PE method
was seen to produce significant errors when applied to 3-D
environments, however, predictions made by the 3-D PE
were seen to be in good agreement with measurements. An
overprediction by the 3-D PE of approximately 3 dB was
observed. This was caused by depolarization occurring on
the transverse terrain gradients that cannot be modeled in the
scalar parabolic equation method.

The 3-D PE model was compared to outdoor propagation
measurements and predictions made by the 2-D PE were
made at 149.875 MHz. The 3-D PE predictions were seen to
be in good agreement with both measurements and the 2-D
PE predictions. This agreement was achieved despite the
restrictions to resolution imposed by our computer memory
limitations. In more severe mountainous environments and at
a wider range of VHF/UHF frequencies, we have been unable
to demonstrate any advantages in going to a 3-D PE method.
However, in all these cases we have been severely restricted
by the available memory on our computer and these locations
were such that far more severe depolarization is expected to
occur. The development of a fully 3-D propagation prediction
model is thought to be a significant step forward in propagation
modeling. This method has been demonstrated to possess good
potential for further development.

A 3-D wide-angle PE model has also been developed [16],
however, its implementation in realistic scenarios is currently
not feasible with current computer technology.
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