
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 47, NO. 11, NOVEMBER 1999 1641

Rigorous Combined Mode-Matching
Integral Equation Analysis of Horn Antennas

with Arbitrary Cross Section
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Abstract—A combined rigorous method is presented for the
analysis of horn antennas with arbitrary cross section and general
outer surface. The horn taper is described by the mode-matching
(MM) method where the cross-section eigenvalue problem is
solved by a two-dimensional (2-D) finite element (FE) technique.
For the exterior horn surface including the radiating aperture,
the application of the Kirchhoff–Huygens principle yields two
expressions for the admittance matrix which are based on the
electric (EFIE) and the magnetic (MFIE) field integral equation,
respectively. The equations are solved numerically by the method
of moments (MoM). For the preferred EFIE formulation, the
eigenvectors of the last waveguide taper section and RWG func-
tions for triangular patches are utilized as basis-functions for
the magnetic or electric surface current densities, respectively.
The presented method is verified by available reference values or
measurements for a waveguide radiator with a peripheral choke,
a conical and a rectangular horn. Its flexibility is demonstrated
at the example of a conical ridged waveguide horn.

Index Terms— Horn antennas, integral equation methods,
method of moments, mode-matching methods.

I. INTRODUCTION

W AVEGUIDE horn antennas have been explored for
a long time for a wide variety of applications both

as direct radiators and as feeds for reflectors [1]–[15]. The
simulation models for numerical horn investigations can be
categorized mainly in three types: 1) the aperture is assumed
to be terminated in a large waveguide and the radiation pattern
is computed by field integration, e.g., [1], [2], and [5]; 2) an
infinite screen is assumed to be placed in the aperture plane,
e.g., [4], [6], and [7]; and 3) more rigorous analyses reported
in [8]–[15], which take the outer horn surface into account.
The present paper belongs to category 3).

Complete three-dimensional (3-D) models for the overall
outerand inner horn structure (based on pure integral equation
methods [9], [10], [13] or finite-difference techniques [11]) are
rather flexible, but the high numerical effort usually required
for accurate results is considered to limit often their practical
applicability. The mode-matching (MM) techniques of [14]
and [15] are more efficient; the outer surface, however, is
restricted to a spherical segment [14] or to structures with
symmetry of revolution [15]. Preferable hybrid MM integral
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equation approaches are confined to circular [8] or rectangular
horns [12] so far.

This paper applies a combined MM integral equation
method to the more general case of horns with arbitrary
shape concerning both the interior cross sections and the
outer geometry. In contrast to the two–dimensional (2-D)
formulations at bodies of revolution in [8], for the 3-D
structures to be investigated in this paper, the standard
combined source integral equation (CSIE) approach would
lead to unphysical line charges and, hence, alternative electric
field integral equation (EFIE) and magnetic field integral
equation (MFIE) formulations are required. In comparison
with the rooftop basis function approach for the rectangular
case in [12], more universal Rao–Wilton–Glisson (RWG)
functions [22] for the advantageous triangular patch modeling
are utilized. Moreover, the whole interior taper structure is
modeled by the combined mode-matching finite-element (MM
FE) method of [16] and [17], which yields immediately the
overall modal scattering matrix.

As a small aperture example, a radiating waveguide with a
peripheral choke is investigated and compared with reference
calculations. For further verification purposes, a conical and a
rectangular horn are calculated and compared with available
measurements. The flexibility of the presented method is
demonstrated at the example of a conical ridged waveguide
horn (Fig. 1).

II. THEORY

The analysis is subdivided in three calculation steps. In the
first step (cf. Fig. 2), the method of moments (MoM) is applied
to calculate the modal scattering matrices of the waveguide
aperture (with the cross section of the last section of the horn
taper) and of the outer geometry of the horn antenna. The
eigenvectors of the last horn taper section are computed by
the FE approach [16] or are known analytically.

In the second step, the scattering matrix of the interior horn
taper is computed with the MM method of [17].

The third step comprises the calculation of the total scat-
tering matrix composed of the known modal-scattering matrix
of the interior horn taper and the modal-scattering matrix of
the aperture. The amplitudes of the forward and backward
propagating modes in the last section of the taper yield the
magnetic and electric surface current densities in terms of the
corresponding basis functions.
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Fig. 1. Ridged waveguide horn antenna.

Fig. 2. Model for the first step of the analysis. (a) Subproblem for the
waveguide—regionI. (b) Subproblem for regionII .

A. Method of Moments

According to [18], the entire structure is subdivided into two
regions, the inner (I) and the outer region (II ), cf. Fig. 2. Both
regions are separated by a perfectly conducting surface.
In order to maintain the original problem, magnetic surface
current densities are introduced which restore the tangential
electric field on the surface .

Enforcing the continuity of the tangential magnetic field on
the aperture yields the following equation for the magnetic
surface current density:

I II on (1)

where I and II are the tangential
incident magnetic field in regionI, the linear operator for the
tangential scattered magnetic field in regionI and the linear
operator for the tangential scattered magnetic field in region
II , respectively.

1) Region I: For the solution of (1), the MoM is employed.
The magnetic surface current density is approximated by
linear independent basis functions on

on (2)

where the are the expansion coefficients for the magnetic
surface current density. denotes the free-space impedance.
Introducing a set of linear independent test functions

on results in a system of linear equations (see
Appendix A).

2) Region II: The calculation of the admittance matrix for
the outer geometry is based on the Kirchhoff–Huygens princi-
ple, cf. [25]. The electromagnetic field in regionII is calculated
using the electric surface current densities onand and
the magnetic surface current densities on

on
on

(3a)

on or (3b)

The electromagnetic field in regionII is written as

(4a)

(4b)

with the Green’s function for the potential in free-space

(4c)

The magnetic and electric surface current densities are
expanded in (2) and

on or (5)

respectively. The tangential electric and magnetic fields and
the electric and magnetic surface current densities in (4a) and
(4b) are replaced by (2) and (5). As (4a) and (4b) can be
used independently, two different expansion expressions for
the two equations are introduced which are distinguished in
their notation by single [belonging to (4a)] and double primes
[belonging to (4b)], respectively. The tangential fields are
related with the surface current densities by (3a) and (3b).
After introducing a set of , linear independent test
functions , both on and , respectively, as well as
inner products of , and (4a), (4b), respectively,
two systems of linear equations are derived [25] (see Appendix
B).

From these equations and (12a) and (12b), the following
two different expressions for the admittance matrix for region
II result:

II (6a)
II (6b)

Equations (6a) and (6b) are basically the electric and magnetic
field equations EFIE and MFIE.1

1Although the EFIE is preferred for the numerical calculations in our
paper, both formulations are presented for a more thorough elucidation of
the advantageous choice of basis functions, see Section III-A
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3) Calculation of the Aperture Scattering Matrix:Using the
orthonormality of the eigenvectors [cf. (10)], the following
expression for the elements of the modal scattering matrix of
the aperture is derived by assuming that the amplitudes of all
incident modes are equal to one

(7)

where is the expansion coefficient for the basis function
for excitation with mode only.

B. Modal Scattering Matrix of the Interior Horn Taper

In the second calculation step, the modal-scattering matrix
of the interior horn taper is computed with a MM method
[17], where the cross-section eigenvalue problem for not
analytically solvable structures is calculated by a 2-D FE
technique [16]. All basic relations are well documented in [16]
and [17], the reader is referred, therefore, to the corresponding
literature.

C. Analysis of the Complete Structure

In the third calculation step, we combine the modal-
scattering matrix of the taper with that of the aperture [(7),
after applying the possible normalization]. The results are the
overall modal scattering matrix of the complete structure (as
seen from the feeding waveguide port) and the forward and
backward propagating wave amplitudes in the last section of
the horn taper. The amplitudes of the forward waves are used
to set up new incident current vectors . Using the already
computed matrices, voltage and current vectors are obtained
for the magnetic and electric surface current densities. The far
field is then calculated via (4a) and (4b).

III. I MPLEMENTATION

A. Adequate Choice of the Basis and Test Functions

Our investigations and those in [20] and [21] have shown
that the choice of basis functions for the electric and magnetic
surface current densities is critical: in this formulation, the
utilization of the RWG basis functions [22] for both the
electricand the magnetic surface current density would result
in a numerically singular matrix I II .

Because of the evaluation of the and matrix in
mixed potential form [(6a) and (6b)], not only the divergence
of the basis functions but also the divergence of the test
functions are involved. For the EFIE, we need the divergence
of , for the MFIE that of . The adequate choice
of basis functions, therefore, depends on whether the EFIE or
MFIE [i.e., (6a) or (6b)] is applied for the admittance matrix
formulation of regionII .

For the EFIE, an advantageous choice is to take the set of
the of region I as basis functions for the magnetic
surface current densities. Because of their orthonormality,
the admittance matrix I and the incident current vectors

are given in analytical form. Since the divergence of
these basis functions is not involved, numerically available

(a)

(b)

(c)

Fig. 3. (a) Radiating waveguide with a peripheral choke [25]. Dimensions:
a = 11:5 mm, b1 = 12:5 mm, b2 = 14 mm, b3 = 17 mm, d = 7:5 mm,
l = 29 mm. (b) Discretization of the radiator with triangular elements. (c)
Far-field pattern forf = 10:5 GHz. Comparisons of the results of the present
method (EFIE) with own calculations (CSIE) by applying the method of [25]
for bodies of revolution.

eigenvectors can be used directly. A further advantage is
that the matrices and include commonly only a
rather small number of columns (depending on the number
of modes considered for the calculation of the last horn taper
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(a)

(b)

Fig. 4. (a) Conical waveguide horn antenna. Dimensions:a1 = 9 mm,
a2 = 35 mm, c = 8:2 mm, d = 10 mm, l = 302:5 mm. (b) Discretization
of the conical horn antenna with triangular elements.

section). For the electric surface current densities, the RWG
basis functions [22] for triangular patches are well appropriate.

When applying the MFIE, a selection of RWG basis func-
tions in the form for the electric surface current densities
is suitable. Also here, their divergence is not involved. Because
of the operation required for the RWG basis functions,
however, their usual positive attributes vanish: this set does
not meet any more the boundary conditions for the electric
surface current density on open surfaces automatically and it
produces line charges.

Therefore, the EFIE is preferred for the calculations in
this paper. As for the test functions according to the chosen
Galerkin method, the functions are the basis
functions for the magnetic surface current density ; the

functions are those for the electric surface current
density .

B. Evaluation of the MoM Integrals

The -matrix elements are transformed into the well-known
mixed potential form in order to have a singularity only.
These singularities have been integrated analytically with the
help of the formulas developed in [23]. The remaining numer-

(a)

(b)

(c)

Fig. 5. (a) Far field of the conical horn in Fig. 4(a) for a frequencyf = 12:5

GHz. Comparison of the present method with own calculations applying a
combined source integral equation (CSIE) approach for bodies of revolution
(BOR). (b) Comparison of the present method with measurements. (c) Com-
parison of the present method using analytical and numerical eigenvectors.

ical integrations are evaluated in normalized area coordinates
according to [22] using a three- and a seven-point rule [24].

The correct evaluation of the-matrix elements requires the
separation of the source point integral into a Cauchy principal
value term and a residue term in the usual way.

Applicable symmetries are fully utilized in order to reduce
the memory and central processing unit (CPU) time require-
ments. For this purpose, the corresponding basis functions
are supplemented by additional images of themselves, which
replace the symmetry walls accordingly.
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(a)

(b)

Fig. 6. (a) Rectangular waveguide horn antenna [7]. Dimensions:
a1 = 7:8994 mm, b1 = 3:9497 mm, a2 = 12:7 mm, b2 = 11:43 mm,
l = 101:6002 mm, c = 1:016 mm. (b) Comparison of the present approach
with measured reference values of [7] for a frequencyf = 13:997 GHz.

IV. RESULTS

First, as a small aperture example, a radiating waveguide
with a peripheral choke [Fig. 3(a) and (b)] is investigated and
compared with own reference calculations by applying the
method of [25] for bodies of revolution [Fig. 3(c)]. Although
a locally rather coarse discretization has been used for the
present method (the side lengths of the triangular patches [cf.
Fig. 3(b)] are already in the order of the smallest geometrical
dimensions),2 only slight deviations can be observed at the
cross-polarization pattern in the lower level range.

For reference purposes with available measurements, a
circular horn structure [15] is investigated. Fig. 4(a) shows
the geometry of the horn, Fig. 4(b) illustrates the surface
mesh of one quarter of the structure used for the moment
method solution as well as the area that separates the
regions I and II . The radiation field is plotted in Figs. 5.
Good agreement with own reference calculations using a
combined source integral equation (CSIE) method according
to [8] [Fig. 5(a)] and with measurements [15] [Fig. 5(b)]
may be stated. Fig. 5(c) shows the the results obtained by
using the analytical solution of the circular horn taper eigen-
value problem compared with the corresponding 2-D FE
solution.

The second reference structure where measurements are
available is a rectangular horn according to [7] (Figs. 6).

To demonstrate the flexibility of the presented method, a
ridged horn structure (Figs. 1, 7, 8) is investigated. The ridged
horn taper section [Fig. 7(a)] has been optimized with regard
to a high bandwidth of the input return loss [16]. In order

2Note that the choke is rather deep compared to the front dimensions of
the waveguide [cf. Fig. 3(b)] and the current densities at the front side are of
high influence on the cross-polarization level.

(a)

(b)

Fig. 7. (a) Conical ridged waveguide horn antenna. Dimensions:
a1 = 30:0875 mm, a2 = 75:38 mm, c = 3 mm, d = 10 mm.
l = 180 mm. The width of the ridges isw = 10 mm. The parameterstn
for each section of the taper are given in the appendix. (b) Conical ridged
waveguide horn antenna with rounded corners. Dimensions of the outer
geometry:L = 160 mm, r = 10 mm. Other dimensions as in Fig. 7(a).

to enable reference calculations with the boundary contour
spherical wave expansion (SWE) MM technique [15], first the
outer contour of the horn is shaped according to Fig. 7(b).
The result is plotted in Fig. 8(a).

For checking the convergence properties of the formulation
in this paper, the ridged horn structure [Fig. 7(a)] has been
simulated with different numbers of triangles and modes at

GHz. For the first simulation run the mesh size was
3 mm, resulting in a total number of 4970 triangles. Thirty-
two modes on the aperture have been used. The mesh size has
been increased to 9 mm for the second simulation run. This
corresponds to merely 595 triangles on and . Twenty-
four modes on the aperture have been considered. It turned
out that the differences in the far field for the two different
simulations are less than 0.1 dB. It is worth to note that the
mesh size of the coarse mesh in the second simulation run is
larger than the smallest dimension of the structure.

For Fig. 8(b)–(d), the outer contour is shaped more realisti-
cally according to Fig. 7(a). Fig. 8(b)–(d) shows the radiation
pattern for different frequencies. The comparison of Figs. 8(a)
and (c) ( GHz) reveals the noticeable difference in
the radiation pattern for the different outer contours according
to Figs. 7(b), and (a), respectively.

In Fig. 8(e), the overall return loss in the feed wave-
guide of the complete horn is plotted against frequency
which demonstrates the rather large bandwidth of such
structures.



1646 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 47, NO. 11, NOVEMBER 1999

(a) (b)

(c) (d)

(e)

Fig. 8. (a) Far field of the antenna in Fig. 7(b). Comparison of the present approach with a spherical wave expansion for a frequencyf = 5:02 GHz.
(b) Far field of the antenna of Fig. 7(a) for a frequencyf = 2 GHz. (c) Far field of the antenna of Fig. 7(a) for a frequencyf = 5:02 GHz. (d)
Far field of the antenna of Fig. 7(a) for a frequencyf = 7 GHz. (e) Scattering parameterS11 of the fundamental mode in the feed waveguide as a
function of the frequency for the structure in Fig. 7(a).

V. CONCLUSION

A flexible hybrid method is presented for the rigorous
analysis of horn antennas of arbitrary interior cross section and
general outer surface. The horn taper transition is modeled by
the modal scattering matrix based on the MM method. For the
outer surfaces of the horn including the radiating aperture, the
Kirchhoff–Huygens principle is applied. The resulting integral
equations are solved numerically by the MoM. The accuracy
of the method is verified by comparisons with reference
calculations or measurements. The analysis of a conical-ridged
waveguide horn demonstrates the flexibility of the method.

APPENDIX A
EQUATIONS FOR REGION I

I II (8a)

with

(8b)
I I (8c)
II II (8d)

and the inner products defined as

(8e)
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In this approach, I is the admittance matrix of a wave-
guide of infinite length with as cross-section surface. The
elements of the waveguide admittance matrix are defined as
[19]

I

I

(9a)

with

(9b)

(9c)

and the TE and TM eigenvectors of the waveguideand their
modal admittances . The normalization for the eigenvectors
is

(10)

APPENDIX B
EQUATIONS FOR REGION II

(11a)

(11b)

with

(11c)

(11d)

(11e)

(11f)

(11g)

(11h)

where the arguments are omitted far the sake of brevity.
Vectors and denote a column of their corresponding
matrices for a excitation with a single modeonly. Both
systems of linear equations can be solved for the current
vector

(12a)

(12b)

Utilizing now the linearity of the operator II and (3b), the
following expression can be derived:

II

(13)

Introducing the matrix

(14)

one can write
II (15)

Equations (6a) and (6b) are derived from this equation (cf.
[25]).

APPENDIX C

TABLE I
GEOMETRY OF THE RIDGED WAVEGUIDE TAPER IN FIGS. 7 AND 8

ACKNOWLEDGMENT

The authors would like to thank C. Reiter for providing the
measurements of the conical reference horn. They would also
like to thank J. Reiter for many helpful discussions.

REFERENCES

[1] A. D. Olver, P. J. B. Clarricoats, A. A. Kishk, and L. Shafai,Microwave
Horns and Feeds. New York: IEEE, Press, 1994.

[2] B. M. A. Thomas, G. L. James, and K. J. Greene, “Design of wide-
band corrugated conical horns for cassegrain antennas,”IEEE Trans.
Antennas Propagat., vol. AP-34, pp. 750–757, June 1986.

[3] A. D. Olver and J. Xiang, “Design of profiled corrugated horns,”IEEE
Trans. Antennas Propagat., vol. 36, pp. 936–940, July 1988.

[4] J. A. Encinar and J. M. Rebollar, “A hybrid technique for analyzing
corrugated and noncorrugated horns,”IEEE Trans. Antennas Propagat.,
vol. AP-34, pp. 961–968, Aug. 1986.

[5] F. Arndt, U. Papziner, and R. Bohl, “Field theory CAD of profiled
corrugated rectangular or circular horns by an efficient full-wave modal-
S-matrix method,” inIEEE AP-S Int. Symp. 1993 Dig., Ann Arbor, MI,
June/July 1993, vol. 2, pp. 1026–1029.

[6] T. Wriedt, K. H. Wolff, F. Arndt, and U. Tucholke, “Rigorous hybrid
field theoretic design of stepped rectangular waveguide mode converters
including the horn transitions into half-space,”IEEE Trans. Antennas
Propagat., vol. 37, pp. 780–790, June 1989.



1648 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 47, NO. 11, NOVEMBER 1999

[7] A. K. Bhattacharyya and G. Z. Rollins, “Accurate radiation and
impedance characteristics of horn antennas—A moment method model,”
IEEE Trans. Antennas Propagat., vol. 44, pp. 523–531, Apr. 1996.
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