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Rigorous Combined Mode-Matching
Integral Equation Analysis of Horn Antennas
with Arbitrary Cross Section

Rainer BungerMember, IEEE Ralf Beyer, and Fritz ArndtFellow, IEEE

Abstract—A combined rigorous method is presented for the equation approaches are confined to circular [8] or rectangular
analysis of horn antennas with arbitrary cross section and general horns [12] so far.
outer surface. The horn taper is described by the mode-matching This paper applies a combined MM integral equation
(MM) method where the cross-section eigenvalue problem is . .
solved by a two-dimensional (2-D) finite element (FE) technique. method to the. more genera! Ca.S(e of horns W'th arbitrary
For the exterior horn surface including the radiating aperture, Shape concerning both the interior cross sections and the
the application of the Kirchhoff-Huygens principle yields two outer geometry. In contrast to the two-dimensional (2-D)
expressions for the admittance matrix which are based on the formulations at bodies of revolution in [8], for the 3-D
electric (EFIE) and the magnetic (MFIE) field integral equation, structures to be investigated in this paper, the standard

respectively. The equations are solved numerically by the method ) . .
of moments (MoM). For the preferred EFIE formulation, the combined source integral equation (CSIE) approach would

eigenvectors of the last waveguide taper section and RWG func- lead to unphysical line charges and, hence, alternative electric
tions for triangular patches are utilized as basis-functions for field integral equation (EFIE) and magnetic field integral
the magnetic or electri_c sun_‘gce current densities, respectively. equation (MFIE) formulations are required. In comparison
The presented method is verified by available reference values or i1 the rooftop basis function approach for the rectangular
measurements for a waveguide radiator with a peripheral choke, . - . .

a conical and a rectangular horn. Its flexibility is demonstrated case- in [12], more universal Rao—WHton—Ghsson (RWG)
at the example of a conical ridged waveguide horn. functions [22] for the advantageous triangular patch modeling
are utilized. Moreover, the whole interior taper structure is
modeled by the combined mode-matching finite-element (MM
FE) method of [16] and [17], which yields immediately the
overall modal scattering matrix.

l. INTRODUCTION As a small aperture example, a radiating waveguide with a

AVEGUIDE horn antennas have been explored fdperipheral choke is investigated and compared with reference
a long time for a wide variety of applications bothcalculations. For further verification purposes, a conical and a
as direct radiators and as feeds for reflectors [1]-[15]. THectangular horn are calculated and compared with available
simulation models for numerical horn investigations can bgeasurements. The flexibility of the presented method is
categorized mainly in three types: 1) the aperture is assunfé&monstrated at the example of a conical ridged waveguide
to be terminated in a large waveguide and the radiation patt&@n (Fig. 1).
is computed by field integration, e.g., [1], [2], and [5]; 2) an
infinite screen is assumed to be placed in the aperture plane,
e.g., [4], [6], and [7]; and 3) more rigorous analyses reported
in [8]-[15], which take the outer horn surface into account. The analysis is subdivided in three calculation steps. In the
The present paper belongs to category 3). first step (cf. Fig. 2), the method of moments (MoM) is applied
Complete three-dimensional (3-D) models for the overd® calculate the modal scattering matrices of the waveguide
outerandinner horn structure (based on pure integral equati@perture (with the cross section of the last section of the horn
methods [9], [10], [13] or finite-difference techniques [11]) aréaper) and of the outer geometry of the horn antenna. The
rather flexible, but the high numerical effort usually requiregligenvectors of the last horn taper section are computed by
for accurate results is considered to limit often their practicie FE approach [16] or are known analytically.
applicability. The mode-matching (MM) techniques of [14] In the second step, the scattering matrix of the interior horn
and [15] are more efficient; the outer surface, however, ti@per is computed with the MM method of [17].
restricted to a spherical segment [14] or to structures with The third step comprises the calculation of the total scat-
symmetry of revolution [15]. Preferable hybrid MM integralering matrix composed of the known modal-scattering matrix
of the interior horn taper and the modal-scattering matrix of
the aperture. The amplitudes of the forward and backward
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where theV, are the expansion coefficients for the magnetic
surface current densityy, denotes the free-space impedance.
Introducing a set of” = @ linear independent test functions
W, on S, results in a system of linear equations (see
Appendix A).

2) Region II: The calculation of the admittance matrix for
the outer geometry is based on the Kirchhoff-Huygens princi-
ple, cf. [25]. The electromagnetic field in regidris calculated
using the electric surface current densities$nand .S, and
the magnetic surface current densities.$n

_ [-nxE(r) ronS,
M(r) = {0 r on .S, (3a)
J(r) =nx H(r), ronsS,orS,. (3b)

The electromagnetic field in regidh is written as

E(r) = —rot /s M(r")Go(r,r’") dS’

1
+ - rotrot/J(r’)Go(r, r')ds’ (4a)
Jweo s

H(r) = rot /S I Golr,r') dS’

1
+ - rotrot/M(r’)Go(r,r’) ds’  (4b)
Jwio s

b)

----------------------------------------- - with the Green’s function for the potential in free-space
—jko|r—r’|
S . , 1 e I%0
@ z G ror)—m-————mm—. 4c
0(7 ) An |I‘—I‘/| ( )
[r o The magnetic and electric surface current densities are
_________________________________________ k expanded in (2) and
T
s
Fig. 2. Model for the first step of the analysis. (a) Subproblem for the J(r) = ZISJS(I‘), r on S, or .S, (5)
waveguide—region. (b) Subproblem for regioml. =1

respectively. The tangential electric and magnetic fields and
A. Method of Moments the electric and magnetic surface current densities in (4a) and
According to [18], the entire structure is subdivided into tw@4b) are replaced by (2) and (5). As (4a) and (4b) can be
regions, the innerl) and the outer regionl(), cf. Fig. 2. Both used independently, two different expansion expressions for
regions are separated by a perfectly conducting surface the two equations are introduced which are distinguished in
In order to maintain the original problem, magnetic surfaa®eir notation by single [belonging to (4a)] and double primes
current densities are introduced which restore the tangenfia¢longing to (4b)], respectively. The tangential fields are
electric field on the surfacé,,. related with the surface current densities by (3a) and (3b).
Enforcing the continuity of the tangential magnetic field oifter introducing a set ofR’, R” linear independent test
the aperture yields the following equation for the magnettanctionsU’,, U” both onS, andsS,, respectively, as well as

surface current density: inner products ofU’,, —n x U and (4a), (4b), respectively,
H* —H__(M)+H' (M) onS, 1) g\)/o systems of linear equations are derived [25] (see Appendix

where H2?, H{,, (M), and H, (M) are the tangential From these equations and (12a) and (12b), the following

incident magnetic field in regioh the linear operator for the two different expressions for the admittance matrix for region
tangential scattered magnetic field in regioand the linear || result:

operator for the tangential scattered magnetic field in region -
II[,) respectively. ’ ’ ’ [Tzlal(lz] = [Fé]s] [Tv‘]s] ' [D% - 51]\5 ] (6a)

1) Region I: For the solution of (1), the MoM is employed. [ = [FL DL, - S;fs]_l (] (6b)
The magnetic surface current density is approximatedyby

linear independent basis functiohd, on S, Equations (6a) and (6b) are basically the electric and magnetic

o field equations EFIE and MFIE.
1 . . . .
M(r) _ WOZVqu(r)v ronsS, ( ) Although the EFIE is preferred for the numerical calculations in our
g=1

paper, both formulations are presented for a more thorough elucidation of
the advantageous choice of basis functions, see Section IlI-A
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3) Calculation of the Aperture Scattering Matrikising the !
orthonormality of the eigenvectors [cf. (10)], the following -
expression for the elements of the modal scattering matrix gf
the aperture is derived by assuming that the amplitudes of all
incident modes are equal to one
2a, 2b1, 2b2, 2b3
Q
i = o Z AiqVaj — bij (7)
whereV,; is the expansion coefficient for the basis function

M, for excitation with modej only.

B. Modal Scattering Matrix of the Interior Horn Taper

In the second calculation step, the modal-scattering matrix
of the interior horn taper is computed with a MM method
[17], where the cross-section eigenvalue problem for not
analytically solvable structures is calculated by a 2-D FE
technique [16]. All basic relations are well documented in [16] &
and [17], the reader is referred, therefore, to the corresponding §
literature.

C. Analysis of the Complete Structure

In the third calculation step, we combine the modal-
scattering matrix of the taper with that of the aperture [(7),
after applying the possible normalization]. The results are the
overall modal scattering matrix of the complete structure (as
seen from the feeding waveguide port) and the forward and
backward propagating wave amplitudes in the last section of
the horn taper. The amplitudes of the forward waves are used
to set up new incident current vectd#s*c]. Using the already
computed matrices, voltage and current vectors are obtainea
for the magnetic and electric surface current densities. The far
field is then calculated via (4a) and (4b).

T T T T T T T T

Eref, H-Plane, EFIE ——
E.er, E-Plane, EFIE -o--

I1l. | MPLEMENTATION Forpun, 45°-Plane. EFIE -+--
0 CSIE - B
) . . CSIE —--
A. Adequate Choice of the Basis and Test Functions 0 CSIE --~ |

Our investigations and those in [20] and [21] have show@
that the choice of basis functions for the electric and magnetke
surface current densities is critical: in this formulation, the 30k
utilization of the RWG basis functiong [22] for both the
electricand the magnetic surface current density would result -40 - ;
in a numerically singular matrixz™" + 7"]. r

] L } ] i 1 1 1 1 1
Because of the evaluation of tHE™ and 77 matrix in 0 4 60 80 100 120 0 160 150

mixed potential form [(6a) and (6b)], not only the divergence
of the basis functions but also the divergence of the test (©)
functions are involved. For the EFIE, we need the divergeneg. 3. (a) Radiating waveguide with a peripheral choke [25]. Dimensions:

of U/, for the MFIE that of—n x U/, The adequate choicee = 11.5 mm, b; = 12.5 mm, by = 14 mm, bs = 17 mm,d = 7.5 mm,
! = 29 mm. (b) Discretization of the radiator with triangular elements. (c)

of basis functions, therefore, depends on whether the EFIEI'pT : e ¢

) . ) . _Far-field pattern forf = 10.5 GHz. Comparisons of the results of the present
MFIE [i.e., (6a) or (6b)] is applied for the admittance matridnethod (EFIE) with own calculations (CSIE) by applying the method of [25]
formulation of regionll. for bodies of revolution.

For the EFIE, an advantageous choice is to take the set of

the —u,. x e; of region| as basis functions for the magnetic ) )
surface current densities. Because of their orthonormalif/genvectors can }\349 used ‘?\';ef:t'y- A further advantage is
the admittance matriXZ"] and the incident current vectorsthat the matricegs™] and [D™'] include commonly only a
[I'™] are given in analytical form. Since the divergence dfther small number of columns (depending on the number
these basis functions is not involved, numerically availabtf modes considered for the calculation of the last horn taper
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Fig. 4. (a) Conical waveguide horn antenna. Dimensians:= 9 mm, 0 Fonn A Taper -
az = 35 mm,c = 8.2 mm,d = 10 mm,! = 302.5 mm. (b) Discretization 0 FPjM-Tagér I
of the conical horn antenna with triangular elements. — ) }
g 20 H
P t
. . " o i
section). For the electric surface current densities, the RWG /
basis functions [22] for triangular patches are well appropriate. -0 g
. . . 4
When applying the MFIE, a selection of RWG basis func- 50 |
tions in the formm x f for the electric surface current densities L ! | 1 | ] ! |
-60
is suitable. Also here, their divergence is not involved. Because 0 20 40 6 80 [01100 120 140 160 180

of the nx operation required for the RWG basis functions,
however, their usual positive attributes vanish: this set does ©

not meet any more the boundary conditions for the electrfitg- 5. (a) Far field of the conical horn in Fig. 4(a) for a frequetficy: 12.5
z. Comparison of the present method with own calculations applying a

surface current denSIty on open surfaces aUtomatlca”y an bined source integral equation (CSIE) approach for bodies of revolution
produces line charges. (BOR). (b) Comparison of the present method with measurements. (c) Com-

Therefore, the EFIE is preferred for the calculations iparison of the present method using analytical and numerical eigenvectors.
this paper. As for the test functions according to the chosen
Galerkin method, the? = @ functions W, are the basis
functions for the magnetic surface current denditl,; the
R = S functionsU,. are those for the electric surface curre
density J.

ical integrations are evaluated in normalized area coordinates
pccording to [22] using a three- and a seven-point rule [24].
The correct evaluation of th&-matrix elements requires the
separation of the source point integral into a Cauchy principal
] value term and a residue term in the usual way.
B. Evaluation of the MoM Integrals Applicable symmetries are fully utilized in order to reduce
TheT-matrix elements are transformed into the well-knowthe memory and central processing unit (CPU) time require-
mixed potential form in order to havelg R singularity only. ments. For this purpose, the corresponding basis functions
These singularities have been integrated analytically with thee supplemented by additional images of themselves, which
help of the formulas developed in [23]. The remaining numereplace the symmetry walls accordingly.
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Fig. 6. (a) Rectangular waveguide horn antenna [7]. Dimensions:
ar = 7.8994 mm, by = 3.9497 mm, a2z = 12.7 mm, bo = 11.43 mm, -
1 =101.6002 mm, ¢ = 1.016 mm. (b) Comparison of the present approach L
with measured reference values of [7] for a frequelficy 13.997 GHz. (b)

Fig. 7. (a) Conical ridged waveguide horn antenna. Dimensions:
a; = 30.0875 mm, a = 7538 mm, ¢ = 3 mm,d = 10 mm.
IV. RESULTS ! = 180 mm. The width of the ridges i&x = 10 mm. The parameters,

First, as a small aperture example, a radiating waveguit§e each section of the taper are given in the appendix. (b) Conical ridged
waveguide horn antenna with rounded corners. Dimensions of the outer

with a peripheral choke [Fig. 3(a) and (b)] is investigated a ometry:L = 160 mm, r = 10 mm. Other dimensions as in Fig. 7(a).
compared with own reference calculations by applying the

method of [25] for bodies of revolution [Fig. 3(c)]. Although ] )

a locally rather coarse discretization has been used for fiRe€nable reference calculations with the boundary contour

present method (the side lengths of the triangular patches fgherical wave expansion (SWE) MM technique [15], first the

Fig. 3(b)] are already in the order of the smallest geometricgi#ter contour of the horn is shaped according to Fig. 7(b).

dimensions}, only slight deviations can be observed at thdhe result is plotted in Fig. 8(a).

cross-polarization pattern in the lower level range. For checking the convergence properties of the formulation
For reference purposes with available measurementsiNathis paper, the ridged horn structure [Fig. 7(a)] has been

circular horn structure [15] is investigated. Fig. 4(a) showaimulated with different numbers of triangles and modes at

the geometry of the horn, Fig. 4(b) illustrates the surface = 5.02 GHz. For the first simulation run the mesh size was

mesh of one quarter of the structure used for the momehinm, resulting in a total number of 4970 triangles. Thirty-
method solution as well as the aréq that separates the two modes on the aperture have been used. The mesh size has

regions| and Il. The radiation field is plotted in Figs. 5 been increased to 9 mm for the second simulation run. This
Good agreement with own reference calculations usingcarresponds to merely 595 triangles Sp and S,. Twenty-
combined source integral equation (CSIE) method accordif@yr modes on the aperture have been considered. It turned
to [8] [Fig. 5(a)] and with measurements [15] [Fig. 5(b)put that the differences in the far field for the two different
may be stated. Fig. 5(c) shows the the results obtained $ijnulations are less than 0.1 dB. It is worth to note that the
using the analytical solution of the circular horn taper eigefresh size of the coarse mesh in the second simulation run is
value problem compared with the corresponding 2-D Frger than the smallest dimension of the structure.
solution. For Fig. 8(b)—(d), the outer contour is shaped more realisti-
The second reference structure where measurements cay according to Fig. 7(a). Fig. 8(b)—(d) shows the radiation
available is a rectangular horn according to [7] (Figs. 6). pattern for different frequencies. The comparison of Figs. 8(a)
To demonstrate the flexibility of the presented method, and (c) f = 5.02 GHz) reveals the noticeable difference in
ridged horn structure (Figs. 1, 7, 8) is investigated. The ridg#le radiation pattern for the different outer contours according
horn taper section [Fig. 7(a)] has been optimized with regata Figs. 7(b), and (a), respectively.
to a high bandwidth of the input return loss [16]. In order In Fig. 8(e), the overall return loss in the feed wave-
) ) ) __guide of the complete horn is plotted against frequency
Note that the choke is rather deep compared to the front dimensions

of . .
the waveguide [cf. Fig. 3(b)] and the current densities at the front side arve"Ch demonstrates the rather Iarge bandwidth of such
high influence on the cross-polarization level. structures.
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Fig. 8. (a) Far field of the antenna in Fig. 7(b). Comparison of the present approach with a spherical wave expansion for a ffeguén@®y GHz.
(b) Far field of the antenna of Fig. 7(a) for a frequenty= 2 GHz. (c) Far field of the antenna of Fig. 7(a) for a frequenty= 5.02 GHz. (d)
Far field of the antenna of Fig. 7(a) for a frequenty= 7 GHz. (e) Scattering parametét ; of the fundamental mode in the feed waveguide as a

function of the frequency for the structure in Fig. 7(a).

V. CONCLUSION APPENDIX A
A flexible hybrid method is presented for the rigorous EQUATIONS FOR REGION |
analysis of horn antennas of arbitrary interior cross section and (18] = [10, + T ] [Vis] (8a)

general outer surface. The horn taper transition is modeled by
the modal scattering matrix based on the MM method. For it

outer surfaces of the horn including the radiating aperture, the [I;E'C] = [(WpHGY) (8b)
Kirchhoff-Huygens principle is applied. The resulting integral [Tz'qq] = [770<Wp; Hltan(M’I)>] (8c)
equations are solved numerically by the MoM. The accuracy [13,] = [no(Wp; HY,,(M,))] (8d)
of the method is verified by comparisons with referencgng the inner products defined as

calculations or measurements. The analysis of a conical-ridged

waveguide horn demonstrates the flexibility of the method. (4;B) = /SA -BdS. (8e)
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In this approach[T"] is the admittance matrix of a wave- APPENDIX C
guide of infinite length withS, as cross-section surface. The

elements of the waveguide admittance matrix are defined as
[19] TABLE |

GEOMETRY OF THE RIDGED WAVEGUIDE TAPER IN FIGS. 7 AND 8

|
T =— B,iY; A; %a
pe o ; provea (92) Section t Section t
- number | [mm] || number | [mm]
with 0 26.83
_ 5 1 27.30 31 31.44
Aig = /qu (B xei)ds (9b) o |or7e | 32 | 3122
X 3 28.20 33 | 31.00
By = /S W, (2 x e;)dS (9¢) 4 |2862] 34 3079
and the TE and TM eigenvectors of the waveguigdand their 2 gg'gg gg gggg
modal admittanceg;. The normalization for the eigenvectors 7 29:75 37 29:88
IS 8 30.08 38 29.51
1 i=j 9 30.40 39 29.10
/ e -e;dS =dy; = {0 i (10) 10 30.68 40 28.67
Sa J: 11 | 3094 41 |2824
APPENDIX B 12 31.18 42 27.81
EQUATIONS FOR REGION |l ﬁ gi"ég ﬁ ;Z'gg '
15 31.78 45 26.22
[Dr 1Vl = [S3g 1Vl + [T 1] (11a) 16|31y 462563
[D;,s] [I;/] = I:S;,s] [Ig] + [TAﬂ [Vqﬂ] (11b) 18 32:15 48 24.15
with 19 32.23 49 23.35
M _ r y y 20 32.28 50 22.50
Srq = <U,,7 rot /Sa M,]Go dS> (11c) o1 22,39 51 21.60
1 22 3233 52 |2060
7! = ,_<U;,;rot rot / A en dS’> (11d) 23 32.33 53 19.50
Jko SutSy 24 | 32.32 54 | 18.30
25 32.24 55 16.80
S;,’S = <—n X U;,’;rot/ J' Gy dS’> (11e) 2% 32.16 56 15.00
. Sat S 27 | 3208 57 |13.00
TM = — ( —n x U/;rotrot [ M/GodS’ (11f) 28 | 32.00 58 10.50
T gk s, ! 29 | 31.84 59 7.50
D% _ <U;, n x M;) (11g) 30 31.66 60 0.00
D) =(—nxU’;—nxJ") (11h)

where the arguments are omitted far the sake of brevity.
Vectors[V,] and[/;] denote a column of their corresponding
matrices for a excitation with a single modeonly. Both The authors would like to thank C. Reiter for providing the
systems of linear equations can be solved for the currgneasurements of the conical reference horn. They would also
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