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Two-Dimensional Diffraction by Half-Planes
and Wide Slits Near Radiating Apertures

Hong D. Cheung and Edward V. Jullife Fellow, IEEE

Abstract—With the complex source-point method used to the spectral decomposition of signals [3]. A two-dimensional
produce the basis elements of an array of linearly and direc- (2-D) array of Gaussian beams, equispaced linearly and di-
tionally equispaced two-dimensional (2-D) beams, the fields of rectionally, with each beam direction having a particular

any aperture distribution at any range to any degree of accuracy . . . .
can be obtained. For efficiency a limited number of significant beamwidth and phase and both real and imaginary beam direc-

beams and beam directions is required. Approximately twice as tions included, can represent the propagating and evanescent
many beams as the aperture width in wavelengths, with all beam fields of any aperture distribution to any desired accuracy. For
directions normal to the aperture, is found to be sufficient here efficiency it is usually necessary to limit the number of beams
for simple uniform and cosinusoidal distributions in apertures nd beam directions to those which contribute significantly to
of moderate size at ranges outside the evanescent field zone o . . . .. . .
the aperture. Now the exact solution for the far field of a line the total field in a particular application. This is the basis of
source, or here a beam source in the presence of a conductingthe approach used here, except that the beams used are formed
half-plane, is used as our basis element to give the solution for by the CSP method and so are only paraxially Gaussian.
antenna pattern diffraction by a local half-plane. Antenna pattern It is well known that assigning a complex value to a source

diffraction by an aperture near a wide slit is presented as simply : L : .
a superposition of the solutions for two coplanar half-planes with coordinate converts an omnidirectional point or line source

separated parallel edges. Antenna pattern distortion by various Nt & l_:)eam that is paraxially Gaussian [4]-[6]. This source iS_
other local obstacles can be obtained similarly. a solution of the wave equation, whereas a Gaussian function is

Index Terms—Apertures, electromagnetic diffractions, Gauss- only an approximate solution. While the numeriqal qiﬁ,ere_n,ce
ian beams. between Gaussian beams and CSP beams is insignificant
with many beams used and is essentially negligible in most
situations, there is a very significant analytical advantage
. INTRODUCTION in using CSP beams in that they yield the possibility of
ADIOWAVE blockage by buildings is a problem com-using rigorous solutions for point or line source diffraction
mon to mobile radio and cellular telephone systems by canonical structures. This advantage is exploited here.
high-density urban areas. If the transmitting antenna has Eme exact solution for the far of a line source parallel and
omnidirectional pattern or the source is distant, the scatteneglar to a perfectly conducting half-plane is used as the basis
field can be calculated by the techniques of high frequenfiynction solution in our array. The solution is expressed
diffraction theory such as the geometrical theory of diffractiomniformly in terms of Fresnel integrals. The line source
If the antenna beam is directive and the source is locablutions are then converted to paraxially Gaussian beam
the omnidirectional source solution can be converted tosalutions by the complex source coordinate substitution. The
beam-source solution by the complex source point (CSPjesnel integral arguments become complex but these integrals
method. Antenna patterns with sidelobes can be synthesize@d complimentary error functions with complex arguments,
from arrays of beams, each with appropriate amplitude, phagghich can be computed with a standard subroutine. This
and direction. Their individual scattering from apertures argpproach was used for diffraction of a single beam by a local
buildings may be calculated and the result summed for thalf-plane [7]. Now it is applied to an array of such beams
total field. This paper begins by synthesizing antenna pattegishstituting an antenna aperture distribution.
from arrays of complex sources in two dimensions. Their Of course, a simple half-plane solution is a canonical
far- and near-field patterns are then calculated. The scattergiagution for other structures. Two coplanar half-planes with
obstacles examined here are simple plane surfaces with edgeparated parallel edges form a slit. The total diffracted field
half-planes, and slits, but any structure for which a far-fieldill be the field scattered from the two half-planes in isolation
omnidirectional source solution is available can be treatgglis their interaction scattered fields. These can be calculated
similarly. by the geometrical theory of diffraction. Diffraction of a single
A superposition of Gaussian beams is efficient for synthgeam by a slit was obtained this way [7] and here the same
sizing the radiation fields of extended sources [1], [2]. Thigpproach is used for aperture antenna beam diffraction by the
arrangement is based on that first proposed by D. Gabor &,
This paper begins by examining the number of beams which
Manuscript received April 6, 1998; revised July 8, 1999. __contribute significantly to the far and near radiation fields of
The authors are with the Department of Electrical and Computer Engineer- . . . . .
ing, University of British Columbia, Vancouver, BC, V6T 124 Canada. ~ apertures. Earlier studies using both aligned and tilted beams
Publisher Item Identifier S 0018-926X(99)09945-7. [1], [2] and further calculations are a guide to the conclusion
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here that the arrangement with the minimum number of

significant beams seems to be that in which all beams are I'—L;'l F—L'I
aligned with their axes normal to the aperture and spaced * * % ;_," :' . ;_’I':
a half wavelength apart. This holds provided the evanescent L | L
fields of the aperture are negligible; that is for ranges outside r Yo 1 :
the aperture plane but still well within the Fresnel zone of the 6, [

aperture. We also examine here the effect of using CSP instead ‘\\ !

of Gaussian beams and the effect of the aperture distribution on 9(

the required of number beams. Not surprisingly a symmetrical

tapered distribution, such as a cosine-squared distribution, r
which resembles a Gaussian distribution, requires fewer beams
to represent the pattern than a uniform distribution. It is,

however, the arrangement of beams within the Gabor lattice
which ensures that any accuracy desired is obtained for a
particular aperture distribution and range from the scatterer. @ (b)

Here only half-planes and simple combinations thereof are . .
. Ig. 1. (a) Geometry of an array of complex source beams in diffraction by
the scatterers, but scattering by structures such as wedges ducting half-plane. (b) Geometry of an array of complex source beams

cylinders have been similarly treated. for diffraction a slit.
Il. SYNTHESIS OF ANTENNA PATTERNS is the distance from the complex source coordindtiess.)
to the field point atf{r,8). In [8, egs. (3), (4)] relatér,,6,)
A. Gabor's Expansion to the real source coordinatés,, 6,) for beam directivity and

Two-dimensional antenna fields can be constructed frorf§€ction parameter@, /3) and [8, eq. (5)] gives the half-power

superposition of Gaussian beams. This is a so-called “Gatt§amwidth. Thus

series” [2] representation of the aperture field. Thus . e dk(r—rocos(6—6,))
EZ/ — ekb cos(@aﬁ); >, (5)
o o ' Vikr
E.(2,0)= Z Z A nw(z — mL)e 7/ b (1) ) S o
e which represents an omnidirectional cylindrical wave modu-
lated by a beam pattert? <°s(¢—5) with its maximum in the
Here E..(x,0) is the aperture electric field distribution in= gjrection 9 = 3.
0, w(x) is a finite energy window function which is a Gaussian A single CSP generates a real beam without radiation pattern
function in the Gabor series representation, &nié the spac- sidelobes. More realistic antenna radiation patterns having
ing between Gaussian beams alangxis. Although proposed sjdelobes require radiation from more than one source. It has
by Gabor in 1946, use of this nonorthogonal representation Rageady been shown that antenna patterns with sidelobes can
been limited by difficulties in computing the series coefficienise synthesized from arrays of Gaussian beams [1], [2] and
Am.n. These difficulties have been partly removed [3], [9hat this representation applies to both near and far radiation
and the coefficientd,,, ,, may be obtained by convolving thepatterns of the apertures. Here such arrays of complex sources
desired aperture distribution with a biorthogonal function agcated at complex location§s = mL) are controlled by
described in [2]. The field iy > 0 can be written as beam parameters, = [L cos(/3, — 37/2)]2/\, which defines
oo beam directivity withA the wavelength ands, = 37/2 +
E.(z,y) = Z Z Appn B (2,9) (2) sin~'(nA/L), is the direction of the elementary beam axis off
m=—o00 n=—oo the line of the array. The radiating fields arise from beams with

) real direction angle$/3, real), and the beams with complex
whereB,,, ,(z, y) are the elementary beam fields of the SOUrGSeam directiong/3,, complex) contribute to the reactive fields

functions. These are Gaussian functions in a Gabor ser@she aperture. Thus, the total field in> 0 can be written as
representation, but CSP beams here. ' )

o

M N
B. Complex Beam Sources E.= > > AwnEl, . (6)

. . . .. =—M n=—N
Assigning complex values to the coordinates of radiating " "

point or line sources produce beams, which are paraxiau;ére,Eg[
Gaussian [4]-[6]. The far field of a 2-D electric line source is e

. —JkRs Rs m,n] — 2+ 72 — 27T 5 [n,n] COS 0 — 95 m.n,
E. ~ eﬂ/—kR . kR,>1 3) e \/ ) o <05 )
* Ts[m,n] = \/Tg[nﬂ o 2j7’o[m} bn COS(ﬁn - eo[rn}) - erL
Osim,n] = cos™! <T0[m1 €08 Bofm) = bn €O ) .

] is given by (3) withR,,, ,,; replacingZ, and

wherek = 27 /X is the free-space wavenumber and

(7)

T's[m,n]

R, = /12 4+ 72 — 2rr cos(f — 6,) 4)
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C. Numerical Results

>

It has been shown [2] that a reasonable and possibly the ’ I
best choice for accurate far-field radiation patterns is to select;, 1
the separation between two source poibts: (N + )X (V is
the largest integen for real 3,,). To simplify our analysis we _-2¢ T
chose all spacingé = A/2 and letN = 0 so that all beam
directions are real and orthogonal to the line of the array. Theh™ |
b= L?/X, kb=n/2 and each CSP half-power beamwidth iss_, |
77.6 [8, eq.(5)]. § | \

Far-field radiation patterns of in-phase cosine-squared andso * %
uniform distributions in apertures of widths, = 2.5\ and r
5\ are shown in Fig. 2(a), (b) and (c), (d), respectively. T
The solid curves in Fig. 2 are the total far-field calculated . . — | N
from complex sources located along the aperture plane with 30 60 9 10 60 9
different weighting factors. The dotted curves result from using ¢ (degrees) # (degrees)
Gaussian beams. These results are compared with the reference
patterns (dashed curves) calculated from the truncated Fourier (@) (b)
transform of cosine-squared and uniform field distributions in
an aperture of widttL,,, with zero field assumed in the aperture
plane outside the aperture. L

It is apparent that more line sources need to be included.se J
in the beam series computation for a uniform distribution
than for a cosine-squared distribution with the same apertu@zo 1 /
size. In accordance with earlier results [1], [2], the aperturé \‘,'
width and the amplitude profile of the aperture field determin& | ;’
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the number of line sources needed. For smaller apertur@ﬂ T
and for aperture distributions tapered toward the edge of th&
profile, fewer line sources are needed for the same accuracy.,, [

Diffraction by local obstacles is of course simpler to calculate i I H 4

if fewer sources represent the radiating aperture. | } i | \
Fig. 2 shows negligible differences between beam array ™’ , 'jo — 6’0 o -5 , — 3’0 B ; - 0

solutions and reference patterns over the main beam and, for # (degrees) # (degrees)

the larger apertures, the first sidelobes of the pattern. As the q

aperture size increases more beams are used and both Gaussian © @

and CSP beams accuratel roduce the reference pattern dige2- The far-field patterns for cosine-squared and uniform aperture dis-

. . . yp P t%tions. (a) Cosine-squared distributidd = 2, N = 0, L, = 2.5\,

increasing numbers of sidelobes. At angles far off the beam_" /2. () cosine-squared distribution = 6, N = 0, L, = 5A,

axis, however, larger discrepancies occur in both Gaussiams A/2. (c) Uniform distributionM = 2, N =0, L, = 2.5A, L = A/2.

beam and CSP solutions. The CSP beam yield values above(fé’niform distribution M = 8, N' = 0, Lo = 53, L = /2.
. . . - complex line source solution e—e—e—. Gaussian beam solution — — — —

reference solution and Gaussian beam solutiong as 90°  |eference solution.

because they are only paraxially Gaussian and do not approach

zero far off the beam axis. Consequently, for small apertures

with wide angle sidelobes [as in Fig. 2(a)] the first sidelobgyis and progressively less accurate off it—an outcome of

level is inaccurately predicted by this CSP beam solutiopi -hhoff diffraction theory.

Previous numerical results for similarly small apertures butIn Fig. 2 the radiation patterns are at a distance from

with wider bgam spacing "’?”d more bgams [2, figs. 12, e aperture sufficiently large that all rays paths from the
show Gaussian beam solutions also fail to accurately predict ) : :
. aperture plane to the field point are essentially parallel. When
the reference pattern at large anglésoff the beam axis. _ . o o . .
. . o this assumption is removed and the radiation field in the
Elementary beams which vanish as— 90° can accurately = |  th fre | ined. it is found that th
produce the reference pattern at large angle, figs. 12, resne zpne ot the aperture _'S examme » LIS foun ) atthe
13], but convenient solutions for diffraction of these beams §PMPUtation sequence associated with the beam series can be
even by purely Gaussian beams, by local canonical structur%%r,”ed out not only in the far field, but also arbitrarily close
are not available. to the aperture in the Fresnel region [1], [2]. Fig. 3 shows
The accuracy of these representations of the referer% example fOI’ a uniform diStribution in an aperture Of W|dth
pattern well off the beam axis is not essential because the = 5A. With the same number of complex line sources as
field amplitudes are low and because the truncated Fourige radiation far field calculation, it provides a good agreement
transform representation of an aperture radiation patternwih the approximate truncated Fresnel transform result over
itself an approximation, which is most accurate on the beatme main beam and first sidelobes. The Fresnel transform result
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0 position and complex source position in polar coordinates, and
F(w) is the complex Fresnel integral
- o>
0 F(w) :efjﬂ/ﬁk/ e Wdu= ﬁefjﬂ/zkerfc(wejﬂm). 9)
) wed™/4 2
g 20 + \ . . ..
5 For computation of the elementary beam fields (8) it is
§ F \\ B necessary to have a Fresnel integral subroutine that can handle
.§_30 1 \\ /\\ complex arguments. A computgr subroutine for the com-
K WV \ plementary error functioneffc) with complex arguments is
v \\ available.
40 + \
I \ B. Numerical Results
_50 — \.\ The solid curves in Fig. 4 represent the total field calculated
0 30 60 90 from (2) with (8), for a distance above the half-plahe,
# (degrees) ranging from 2 to 32 between the conducting edge and the

center of the aperture plane with a cosine-squared aperture
Fig. 3. The near field for a uniform aperture distributiod. = 8, N = 0,  distribution. The angle of incidencg, of the center of the
Lo =5A.L = AJ2, v = Lg/2A. complex source array solution, gqrce with respect to the edge 4§2. The aperture size
— — — — Fresnel transform solution. . h .
in wavelengths isL., = 2.5A. All the line source beams are
spacedL = A\/2 apart and are normally directed at the half-
lane (3, = 3w/2). The relative weighting factorsl,, ,, of

is based on including only first order near field effects througﬂ}ﬁ:h line source are calculated according to [2]. A narrower
.

aqugdratic phase term, 9. [10, p._32] and, like the trunca% acted beam is obtained by moving the aperture plane
Fourier transform result, is progressively less accurate off t ther from the half-plane for then the beam illuminating the

beam axis. half-plane is narrower. Fokr, = 32 the pattern has more
oscillations in the illuminated regiof=/2 < ¢ < 0) due to
interference between the direct wave from the line sources
and a diffracted wave from the edge. In the shadow region
(0 < ¢ <m/2), the total far-field pattern decreases monotoni-
The exact total far field for a local source uniform in theally as¢ increases and vanishes on the conductor. The field
direction parallel to the edge and incident on a conducting haift the shadow region decreases more rapidly for ladger
plane can be obtained by an integration of the correspondibgcause there is more blockage by the half-plane. Also shown
plane wave solution over all incident angles. Alternatively, for comparison are the results for incidence of a single line
can be deduced more simply by reciprocity from the exasburce beam with the same half-power beam width as the
solution for plane wave diffraction by a half-plane, e.g., [LG;o0sine-squared aperture far-field radiation pattern in isolation.
p. 83]. This has been used with the CSP method in solvi@early, a single beam is a good approximation in this case, as
single-beam diffraction by a half-plane [7]. Now, we extendhight be expected for a cosine-squared aperture distribution.
this with the Gabor series to solve half-plane diffraction by an The total far field for an uniform aperture distribution has
aperture distribution, as indicated in Fig. 1(a). also been calculated from (2), with prop4y, ,, substitution
The total far-field diffraction pattern (2) is represented by and is shown in Fig. 5. Agairkr,, the distance between the
superposition of the diffraction patterns of discrete elementargnducting edge and the aperture center ranges from 2 to
beams linearly shifted with respect to one another by distan@% The major difference between Figs. 4 and 5 is the higher
L along the aperture plane and linearly phase shifted betwdehe levels in the illuminated region for the uniform aperture
neighboring beams. For the basis eleméht ,.(x,y) here, distribution due to interference between the larger direct wave
we use the solution for the total field at@ in cylindrical and the diffracted wave from the edge. Also included are the
coordinates due to an electric line source parallel to amesults for single beam incidence. The half-power beamwidth
at 7,[m), Uiy from the edge with beam parametdss, 3,  of the single beam is the same as that of the uniform aperture
defined as above. Thus, we have (8), shown at the bottomfai-field radiation pattern. Clearly, a single beam is not a good
the page, wher¢r, 6) and(r [, ), fsm,n)) @re the observation approximation in this case (as expected) since a single complex

I1l. DIFFRACTION BY A HALF-PLANE

A. Analytical Expressions

( ) o—i(kr—m/4) IR sl ] COS(Q—es[m,n])F[_ /2]€7>S[m ] COS (%)}
Brn,n 7)79 - = 7

_ ’ 8
wkr — R[] COS(9+05[M,71])F |:_ /2]€7>S[mm1 coSs (ugmn])} ( )
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Fig. 4. A comparison of normalized far-field diffraction patterns of a COE{IB} 5. A comparison of normalized far-field diffraction patterns of a
O

sine-squared aperture distribution and a single CSP of the same beamwjd1 or_m ;;p;lrturet dlsé_rltt)utlon an(fj a St'rr:gle dCSP fOf thefsatrlne begm\;\_/ldth
(kb = 11.5) at a distance ro from the edge of a perfectly conducting’ - p_lar;;M)—az i, _lsoange 102 rSOAmL _e/\e/zgeﬁ o_ar;ngr ectly ccoons"l]ngng
half-plane. Ml = 2,N = 0, L, = 2.5\, L = \/2,6, = =/2. ) M=2,N=0,L, =25AL= o = /2.

cosine-squared — — — —kb = 11.5. squared — — — - kb = 1L.5.

rgpults for beam diffraction by a half-plane, we can solve the

line source beam cannot accurately represent the far field ; : i Y i
problem of beam diffraction by a wide slit in a conducting

an uniform aperture distribution.
In order to verify the accuracy and validity of the compute?!@ne- _ _
programs, the exact series solution for the total field duefi9- 1(b) shows an aperture field parallel to and at a height

to a set of complex line sources diffracted by a conductirily = Lo/2 above the center of aslitin=0, |z| < L,/2. The
half-plane was programmed, i.e., total noninteraction far field of the slit is the sum of the total

far field of the half-plane on the right side and that on the left
M N e—dkr 2 side less an incident field. The total far field of the half-plane
E,= > > Am,nﬁ > 2y (kryms)  on the right side is given by replacing, 6, with ¢ and
m=—M n=—N p=1 Ts1fmn]s Os1im,n] WItH 7o n], Osm,n) IN the elementary beam
in <p95[m’n]> sin <p_9> (10) field B, »(r,0) (8). Similarly, the total far field of the half-
q q plane on the left side is given by replacimg, 8> with r, 6
) ) ] ) and 7’52[,,17”],952[,”7”1 with 7’5[,,17”1,95[,”7”1 in the elementary
Ji(z) is the Bessel function of the first kind of ordérand peam field B, . (r,8). In the far field(» > L,), the singly
hereq = 2 for a half-plane. Thed,,, ,, are the same amplitude giffracted far fields of the slit can be calculated by (2) with
coefficients for the distribution calculated as in (2) It was foungl)' shown at the bottom of the next page.
that twenty terms in (10) provides results essentially identical
with those calculated from (2) for a cosine-squared distribution
at kr, = 2 in Fig. 4. This is an alternative formulation
and capable of equal accuracy but it is much less efficielrjﬁt
than using (8) for the basis functions, particularly for larger The diffraction patterns of Fig. 6(a) and (b) are calculated
apertures and at larger ranges from the half-plane. for an inphase cosine-squared aperture distribution in apertures
of width L, = 5A and 9\, respectively. The apertures are
parallel to and at heightg, = L, /2 and10L, above a slit with
the same width as the aperture. The solid and dotted curves
) are for only noninteraction diffraction fields calculated from
A. Analysis complex line sources located along the aperture plane. For
A slit between two coplanar half-planes with parallel edgdsg. 6(a) they have the same weighting factors as in Fig. 2(b).
has been a traditional test of diffraction theories. By using ther comparison, the far-field patterns for a cosine-squared

Numerical Results

IV. DIFFRACTION BY A WIDE SLIT
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Fig. 6. Normalized far-field diffraction patterns of a slit of widkh, excited Fig. 7. Normalized far-field diffraction patterns of a slit of width, excited

by a cosine-squared distribution gt behind the center of the slit. (a) by a cosine-squared distribution and a single complex line source with beam
M = 6,N = 0, L, = 3\,L = A2. b) M = 9,1IN = 0, directivity kb aty, = L, /2 behind the center of the slit. (@8 = 6, N =0,

L, = 9\L = A/2. aperture aty, = L,/2 above the slit Lo =05AL=A/2.(0) M =9,1N =0, Lo =9A, L = A/2.

—e—e—e—. Aperture aty, = 10L, above the slit — — — . Aperture alone.

half-power beam width in the far-field radiation pattern. In
distribution with the slit absent are also included as daShﬁib 7. the solid curves are the result for an array of Comp|ex

curves. line sources simulating a cosine-squared aperture distribution
Figs. 6 show that with the radiating aperture close to thgéhd the dashed curve represents a single line source with the
slit, the far-field diffraction patterns have the same number gime half-power beam width. For both cagés = 5\,9)),
sidelobes but moderately higher sidelobe levels than the tofig single line source solution shows lower sidelobes level
far field patterns with the slit absent. With the aperture furth@éear the axis and higher sidelobe levels far away from the
away aty, = 10L, the resulting patterns are more profoundlyxis than the beam series computation. Here the local obstacle
altered with narrower main beams and more and much higlgte slit) is very close to the aperture plafg = L,/2). This
sidelobe levels. The slit is now essentially uniformly illumishows that while the cosine-squared distribution and paraxial
nated so the resulting diffraction patterns essentially those twmplex line source (Gaussian beam) may have similar beam
plane wave incidence on the slit. shapes, a single complex line source can not accurately predict
The last example is a comparison of the normalized far-fielde diffraction pattern of an extended source at this range.
diffraction patterns of a slit of widtl., excited by a cosine- The calculations described above are accurate only for slits
squared distribution with a single line source with the sansafficiently wide that interaction between them is negligible.

, - 3 T )
Sk ; o ? + d) - esl[rn,n]
T RTs1pm ) SI(S—001 e 1) |7 2k7’sl[m,n} CoS 5
_Cjk(Lo/Q) sin ¢
m
% in(¢+6 ) 5 toHbaapnn
IRT 51 [m,n] SN sllm,n — -
=/ e oD | =/ 2R s1[m,n) COS 5
Brn,n = L J
wkr 4 o0
—jkr sin(¢—6 ) 2 s2[m,n]
e IRTs2[m,n] s2fm.n]) [T — 2k7’52[m,n} cos 5
+e]k(Lo/2) sin ¢ -
ik ; g 5 + d) + 952[nl,n]
— eIk, SISO, ) | — 2/67‘52[,”7”1 cos 5

(11)
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For more accurate results, inclusion of interaction between toemany real line source solutions with amplitudes according
edges is necessary. The field singly diffracted from each edgethe distribution profile and regular use of UTD. It would
of the conducting half-plane in the direction of the oppositeot be efficient however, because of the larger number of
edge of the other conducting half-plane is replaced by the fidide source solutions to be evaluated and included. With line
of a line source of equal amplitude located at the edge frosource solutions spaced half a wavelength (as in the nu-
which the singly diffracted field emanated. This procedumaerical examples here) the accuracy deteriorates, particularly
can be used to improve the accuracy by the including firsiff the main lobe of the aperture radiation pattern and off
order interaction field. However, the edge diffraction fieldthe main lobe of the diffraction pattern in the examples of
are not omnidirectional as assumed for a line source, B@s. 4 and 5. The accuracy of the results in Figs. 6 and
the results are not made more accurate by repeating thenay be less affected if the slit edges lie well within the
above procedure. Since higher order interaction is weak nimain lobe of the aperture pattern. In general, however, the
the examples studied above, as shown in [7], it is sufficient b@am series representation permits the use of fewer more
include only noninteraction fields here. widely separated source solutions and this is its advantage
Only radiating beams from the aperture are included mver a simple asymptotic solution consisting of many more
calculating Figs. 6 and 7. If the aperture-slit separation dosely spaced line source solutions. Beam spacings of a
small in wavelengths, diffraction by the evanescent fields b&lf wavelength seem to minimize the number of beams
the aperture, represented by beams at complex angles, mequired, at least for smaller apertures, as larger spacings
require inclusion. If the slit width is large compared to theequire both aligned and tilted beams [2]. Of course, the beam
aperture width and aperture-slit separation, additional tilted amplitudes, once determined, apply for any scatterer at almost
aligned beams at smaller separations than a half wavelengtty range.
may be required to improve accuracy at large angles off thelt is useful to confirm here that a single beam is a good
aperture pattern axis. approximation for half-plane diffraction if the aperture width
is not large and the distribution symmetrically tapered. Two-
dimensional noninteraction fields for aperture diffraction by
V. CONCLUSIONS a wide slit were calculated also. Then even for apertures not
The CSP technique is known already as a very efficiel@rge and with tapered distributions, when the local object is
means of extending point or line source diffraction solutior@ose to the aperture plane, a single beam source does not
to beam solutions. Gaussian beams in a Gabor series have Eggsesent the diffraction pattern accurately.
been established as a complete representation of the fields of @sually, shadow and reflection boundaries must be located
radiating aperture [1], [2] and it was indicated [1] that the tw8 applying the geometrical theory of diffraction. Although the
techniques could be effectively combined. Here this is dofecation of shadow and reflection boundaries is no difficulty
for diffraction by half-planes and slits in the presence of 2-fpr the CSP method, the shadow and reflection boundary
radiating apertures. Only symmetrical aperture distributiof@cations are not needed here because a uniform total field
were chosen here as the simplest and most common examgi@sjtion is used.
but the method may be extended to arbitrary-shaped aperturén array of complex sources is a powerful technique for
distributions on nonplanar as well as planar surfaces. calculating the effects of local obstacles on antenna patterns.
An efficient solution has a minimum number of beams. Thi§ is not just that this method is convenient in these simple
depends on the situation under consideration and warrafix@mples. It also opens up a range of problems which can
a demonstration of the accuracy of the beam arrangem&gw be treated rigorously. This procedure has already been
used to represent the aperture field in isolation. Previo@Bplied to other canonical structures and these results will be
numerical investigations [1], [2] provided a useful guide bugeported.
generally have more beams than were found to be needed
here. Moreover, Gaussian beams rather than complex source
beams were used, so it is necessary demonstrate the differences
introduced by using the latter. These may be significant witft] J.J. Maciel and L. B. Felsen, “Systematic study of fields due to extended
small apertures represented by few sources and occur mainly ?,fgggggi \?g'l 2;“3;'_32823312’C{;Zf;e{';gg_o'EEE Trans. Antennas
at wide angles off the pattern main beam axis. The advantagg P. D. Einziger, S. Raz, and M. Shapira, “Gabor representation and

of using CSP beams is not only that they represent an exact 2penure theory,J. Opt. Soc. Amervol. 3, pt. A, no. 4, pp. 508-522,

solution .tO the wave equati(_)n, but also that they al_low t_hffS] M. J. Bastiaans, “A sampling theorem for the complex spectrogram and
use of rigorous and convenient elementary beam diffraction Gabor's expansion of a signal in Gaussian elementary sign@ist”

i _ i ; i Eng, vol. 20, p. 594, 1981.
splu'uons. For the half-plane this solution is exact and rathe[gu L. B. Felsen, “Geometrical theory of diffraction, evanescent waves,
simple. complex rays and Gaussian beam&gophys. J. R. Astrol.. Soqp.

The beam amplitudes in (1) may be determined directly 77-88, 1984.

g : Y. G. A. Deschamps, “Gaussian beam as a bundle of complex rays,”
from the aperture distribution profile if the beams are very™ 2 = Lett. vol. 7, pp. 684-685. 1971,

closely spaced [1]. Closer beam spacings imply broader bearfes L. B. Felsen, “Evanescent waves]: Opt. Soc. Am. Avol. 66, no. 8,
and with beam spacings of say, a tenth of a wavelength qr Pp. 751-760, 1962. . _ , o

| idirecti | line sources should suffice. A simple G. A. Suedan and E. V. Jull, “Two-dimensional beam diffraction by a
€ess, Omn' irec 'Fma ! ) u u uimce. ! p half-plane and wide slit,JEEE Trans. Antennas Propagat:ol. AP-35,
asymptotic solution than this would then be a superposition pp. 1077-1083, Sept. 1987.
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