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Two-Dimensional Diffraction by Half-Planes
and Wide Slits Near Radiating Apertures
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Abstract— With the complex source-point method used to
produce the basis elements of an array of linearly and direc-
tionally equispaced two-dimensional (2-D) beams, the fields of
any aperture distribution at any range to any degree of accuracy
can be obtained. For efficiency a limited number of significant
beams and beam directions is required. Approximately twice as
many beams as the aperture width in wavelengths, with all beam
directions normal to the aperture, is found to be sufficient here
for simple uniform and cosinusoidal distributions in apertures
of moderate size at ranges outside the evanescent field zone of
the aperture. Now the exact solution for the far field of a line
source, or here a beam source in the presence of a conducting
half-plane, is used as our basis element to give the solution for
antenna pattern diffraction by a local half-plane. Antenna pattern
diffraction by an aperture near a wide slit is presented as simply
a superposition of the solutions for two coplanar half-planes with
separated parallel edges. Antenna pattern distortion by various
other local obstacles can be obtained similarly.

Index Terms—Apertures, electromagnetic diffractions, Gauss-
ian beams.

I. INTRODUCTION

RADIOWAVE blockage by buildings is a problem com-
mon to mobile radio and cellular telephone systems in

high-density urban areas. If the transmitting antenna has an
omnidirectional pattern or the source is distant, the scattered
field can be calculated by the techniques of high frequency
diffraction theory such as the geometrical theory of diffraction.
If the antenna beam is directive and the source is local,
the omnidirectional source solution can be converted to a
beam-source solution by the complex source point (CSP)
method. Antenna patterns with sidelobes can be synthesized
from arrays of beams, each with appropriate amplitude, phase,
and direction. Their individual scattering from apertures and
buildings may be calculated and the result summed for the
total field. This paper begins by synthesizing antenna patterns
from arrays of complex sources in two dimensions. Their
far- and near-field patterns are then calculated. The scattering
obstacles examined here are simple plane surfaces with edges,
half-planes, and slits, but any structure for which a far-field
omnidirectional source solution is available can be treated
similarly.

A superposition of Gaussian beams is efficient for synthe-
sizing the radiation fields of extended sources [1], [2]. This
arrangement is based on that first proposed by D. Gabor for
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the spectral decomposition of signals [3]. A two-dimensional
(2-D) array of Gaussian beams, equispaced linearly and di-
rectionally, with each beam direction having a particular
beamwidth and phase and both real and imaginary beam direc-
tions included, can represent the propagating and evanescent
fields of any aperture distribution to any desired accuracy. For
efficiency it is usually necessary to limit the number of beams
and beam directions to those which contribute significantly to
the total field in a particular application. This is the basis of
the approach used here, except that the beams used are formed
by the CSP method and so are only paraxially Gaussian.

It is well known that assigning a complex value to a source
coordinate converts an omnidirectional point or line source
into a beam that is paraxially Gaussian [4]–[6]. This source is
a solution of the wave equation, whereas a Gaussian function is
only an approximate solution. While the numerical difference
between Gaussian beams and CSP beams is insignificant
with many beams used and is essentially negligible in most
situations, there is a very significant analytical advantage
in using CSP beams in that they yield the possibility of
using rigorous solutions for point or line source diffraction
by canonical structures. This advantage is exploited here.
The exact solution for the far of a line source parallel and
near to a perfectly conducting half-plane is used as the basis
function solution in our array. The solution is expressed
uniformly in terms of Fresnel integrals. The line source
solutions are then converted to paraxially Gaussian beam
solutions by the complex source coordinate substitution. The
Fresnel integral arguments become complex but these integrals
are complimentary error functions with complex arguments,
which can be computed with a standard subroutine. This
approach was used for diffraction of a single beam by a local
half-plane [7]. Now it is applied to an array of such beams
constituting an antenna aperture distribution.

Of course, a simple half-plane solution is a canonical
solution for other structures. Two coplanar half-planes with
separated parallel edges form a slit. The total diffracted field
will be the field scattered from the two half-planes in isolation
plus their interaction scattered fields. These can be calculated
by the geometrical theory of diffraction. Diffraction of a single
beam by a slit was obtained this way [7] and here the same
approach is used for aperture antenna beam diffraction by the
slit.

This paper begins by examining the number of beams which
contribute significantly to the far and near radiation fields of
apertures. Earlier studies using both aligned and tilted beams
[1], [2] and further calculations are a guide to the conclusion
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here that the arrangement with the minimum number of
significant beams seems to be that in which all beams are
aligned with their axes normal to the aperture and spaced
a half wavelength apart. This holds provided the evanescent
fields of the aperture are negligible; that is for ranges outside
the aperture plane but still well within the Fresnel zone of the
aperture. We also examine here the effect of using CSP instead
of Gaussian beams and the effect of the aperture distribution on
the required of number beams. Not surprisingly a symmetrical
tapered distribution, such as a cosine-squared distribution,
which resembles a Gaussian distribution, requires fewer beams
to represent the pattern than a uniform distribution. It is,
however, the arrangement of beams within the Gabor lattice
which ensures that any accuracy desired is obtained for a
particular aperture distribution and range from the scatterer.
Here only half-planes and simple combinations thereof are
the scatterers, but scattering by structures such as wedges and
cylinders have been similarly treated.

II. SYNTHESIS OF ANTENNA PATTERNS

A. Gabor’s Expansion

Two-dimensional antenna fields can be constructed from a
superposition of Gaussian beams. This is a so-called “Gabor
series” [2] representation of the aperture field. Thus

(1)

Here is the aperture electric field distribution in
is a finite energy window function which is a Gaussian

function in the Gabor series representation, andis the spac-
ing between Gaussian beams alongaxis. Although proposed
by Gabor in 1946, use of this nonorthogonal representation has
been limited by difficulties in computing the series coefficients

. These difficulties have been partly removed [3], [9]
and the coefficient may be obtained by convolving the
desired aperture distribution with a biorthogonal function as
described in [2]. The field in can be written as

(2)

where are the elementary beam fields of the source
functions. These are Gaussian functions in a Gabor series
representation, but CSP beams here.

B. Complex Beam Sources

Assigning complex values to the coordinates of radiating
point or line sources produce beams, which are paraxially
Gaussian [4]–[6]. The far field of a 2-D electric line source is

(3)

where is the free-space wavenumber and

(4)

(a) (b)

Fig. 1. (a) Geometry of an array of complex source beams in diffraction by
a conducting half-plane. (b) Geometry of an array of complex source beams
for diffraction a slit.

is the distance from the complex source coordinates
to the field point at . In [8, eqs. (3), (4)] relate
to the real source coordinates for beam directivity and
direction parameters and [8, eq. (5)] gives the half-power
beamwidth. Thus

(5)

which represents an omnidirectional cylindrical wave modu-
lated by a beam pattern with its maximum in the
direction .

A single CSP generates a real beam without radiation pattern
sidelobes. More realistic antenna radiation patterns having
sidelobes require radiation from more than one source. It has
already been shown that antenna patterns with sidelobes can
be synthesized from arrays of Gaussian beams [1], [2] and
that this representation applies to both near and far radiation
patterns of the apertures. Here such arrays of complex sources
located at complex locations are controlled by
beam parameters , which defines
beam directivity with the wavelength and

, is the direction of the elementary beam axis off
the line of the array. The radiating fields arise from beams with
real direction angles real), and the beams with complex
beam directions complex) contribute to the reactive fields
of the aperture. Thus, the total field in can be written as

(6)

Here, is given by (3) with replacing and

(7)
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C. Numerical Results

It has been shown [2] that a reasonable and possibly the
best choice for accurate far-field radiation patterns is to select
the separation between two source points ( is
the largest integer for real ). To simplify our analysis we
chose all spacings and let so that all beam
directions are real and orthogonal to the line of the array. Then

, and each CSP half-power beamwidth is
77.6 [8, eq.(5)].

Far-field radiation patterns of in-phase cosine-squared and
uniform distributions in apertures of widths and

are shown in Fig. 2(a), (b) and (c), (d), respectively.
The solid curves in Fig. 2 are the total far-field calculated
from complex sources located along the aperture plane with
different weighting factors. The dotted curves result from using
Gaussian beams. These results are compared with the reference
patterns (dashed curves) calculated from the truncated Fourier
transform of cosine-squared and uniform field distributions in
an aperture of width with zero field assumed in the aperture
plane outside the aperture.

It is apparent that more line sources need to be included
in the beam series computation for a uniform distribution
than for a cosine-squared distribution with the same aperture
size. In accordance with earlier results [1], [2], the aperture
width and the amplitude profile of the aperture field determine
the number of line sources needed. For smaller apertures
and for aperture distributions tapered toward the edge of the
profile, fewer line sources are needed for the same accuracy.
Diffraction by local obstacles is of course simpler to calculate
if fewer sources represent the radiating aperture.

Fig. 2 shows negligible differences between beam array
solutions and reference patterns over the main beam and, for
the larger apertures, the first sidelobes of the pattern. As the
aperture size increases more beams are used and both Gaussian
and CSP beams accurately produce the reference pattern over
increasing numbers of sidelobes. At angles far off the beam
axis, however, larger discrepancies occur in both Gaussian
beam and CSP solutions. The CSP beam yield values above the
reference solution and Gaussian beam solutions as
because they are only paraxially Gaussian and do not approach
zero far off the beam axis. Consequently, for small apertures
with wide angle sidelobes [as in Fig. 2(a)] the first sidelobe
level is inaccurately predicted by this CSP beam solution.
Previous numerical results for similarly small apertures but
with wider beam spacing and more beams [2, figs. 12, 13]
show Gaussian beam solutions also fail to accurately predict
the reference pattern at large anglesoff the beam axis.
Elementary beams which vanish as can accurately
produce the reference pattern at large angles[2, figs. 12,
13], but convenient solutions for diffraction of these beams or
even by purely Gaussian beams, by local canonical structures,
are not available.

The accuracy of these representations of the reference
pattern well off the beam axis is not essential because the
field amplitudes are low and because the truncated Fourier
transform representation of an aperture radiation pattern is
itself an approximation, which is most accurate on the beam

(a) (b)

(c) (d)

Fig. 2. The far-field patterns for cosine-squared and uniform aperture dis-
tributions. (a) Cosine-squared distributionM = 2, N = 0, Lo = 2:5�,
L = �=2. (b) Cosine-squared distributionM = 6, N = 0, Lo = 5�,
L = �=2. (c) Uniform distributionM = 2, N = 0, Lo = 2:5�, L = �=2.
(d) Uniform distributionM = 8, N = 0, Lo = 5�, L = �=2.
complex line source solution —�—�—�—. Gaussian beam solution – – – –
reference solution.

axis and progressively less accurate off it—an outcome of
Kirchhoff diffraction theory.

In Fig. 2 the radiation patterns are at a distance from
the aperture sufficiently large that all rays paths from the
aperture plane to the field point are essentially parallel. When
this assumption is removed and the radiation field in the
Fresnel zone of the aperture is examined, it is found that the
computation sequence associated with the beam series can be
carried out not only in the far field, but also arbitrarily close
to the aperture in the Fresnel region [1], [2]. Fig. 3 shows
an example for a uniform distribution in an aperture of width

. With the same number of complex line sources as
the radiation far field calculation, it provides a good agreement
with the approximate truncated Fresnel transform result over
the main beam and first sidelobes. The Fresnel transform result
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Fig. 3. The near field for a uniform aperture distribution.M = 8; N = 0,
Lo = 5�;L = �=2, r = L2

o
=2�. complex source array solution,

– – – – Fresnel transform solution.

is based on including only first order near field effects through
a quadratic phase term, e.g., [10, p. 32] and, like the truncated
Fourier transform result, is progressively less accurate off the
beam axis.

III. D IFFRACTION BY A HALF-PLANE

A. Analytical Expressions

The exact total far field for a local source uniform in the
direction parallel to the edge and incident on a conducting half-
plane can be obtained by an integration of the corresponding
plane wave solution over all incident angles. Alternatively, it
can be deduced more simply by reciprocity from the exact
solution for plane wave diffraction by a half-plane, e.g., [10,
p. 83]. This has been used with the CSP method in solving
single-beam diffraction by a half-plane [7]. Now, we extend
this with the Gabor series to solve half-plane diffraction by an
aperture distribution, as indicated in Fig. 1(a).

The total far-field diffraction pattern (2) is represented by a
superposition of the diffraction patterns of discrete elementary
beams linearly shifted with respect to one another by distances

along the aperture plane and linearly phase shifted between
neighboring beams. For the basis element here,
we use the solution for the total field at in cylindrical
coordinates due to an electric line source parallel to and
at from the edge with beam parameters
defined as above. Thus, we have (8), shown at the bottom of
the page, where and are the observation

position and complex source position in polar coordinates, and
is the complex Fresnel integral

(9)

For computation of the elementary beam fields (8) it is
necessary to have a Fresnel integral subroutine that can handle
complex arguments. A computer subroutine for the com-
plementary error function ( ) with complex arguments is
available.

B. Numerical Results

The solid curves in Fig. 4 represent the total field calculated
from (2) with (8), for a distance above the half-plane
ranging from 2 to 32 between the conducting edge and the
center of the aperture plane with a cosine-squared aperture
distribution. The angle of incidence of the center of the
source with respect to the edge is . The aperture size
in wavelengths is . All the line source beams are
spaced apart and are normally directed at the half-
plane . The relative weighting factors of
each line source are calculated according to [2]. A narrower
diffracted beam is obtained by moving the aperture plane
further from the half-plane for then the beam illuminating the
half-plane is narrower. For the pattern has more
oscillations in the illuminated region due to
interference between the direct wave from the line sources
and a diffracted wave from the edge. In the shadow region

, the total far-field pattern decreases monotoni-
cally as increases and vanishes on the conductor. The field
in the shadow region decreases more rapidly for larger
because there is more blockage by the half-plane. Also shown
for comparison are the results for incidence of a single line
source beam with the same half-power beam width as the
cosine-squared aperture far-field radiation pattern in isolation.
Clearly, a single beam is a good approximation in this case, as
might be expected for a cosine-squared aperture distribution.

The total far field for an uniform aperture distribution has
also been calculated from (2), with proper substitution
and is shown in Fig. 5. Again, , the distance between the
conducting edge and the aperture center ranges from 2 to
32. The major difference between Figs. 4 and 5 is the higher
lobe levels in the illuminated region for the uniform aperture
distribution due to interference between the larger direct wave
and the diffracted wave from the edge. Also included are the
results for single beam incidence. The half-power beamwidth
of the single beam is the same as that of the uniform aperture
far-field radiation pattern. Clearly, a single beam is not a good
approximation in this case (as expected) since a single complex

(8)
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(a) (b)

(c) (d)

Fig. 4. A comparison of normalized far-field diffraction patterns of a co-
sine-squared aperture distribution and a single CSP of the same beamwidth
(kb = 11:5) at a distance ro from the edge of a perfectly conducting
half-plane.M = 2; N = 0, Lo = 2:5�, L = �=2; �o = �=2.
cosine-squared – – – – –kb = 11:5.

line source beam cannot accurately represent the far field of
an uniform aperture distribution.

In order to verify the accuracy and validity of the computer
programs, the exact series solution for the total field due
to a set of complex line sources diffracted by a conducting
half-plane was programmed, i.e.,

(10)

is the Bessel function of the first kind of orderand
here for a half-plane. The are the same amplitude
coefficients for the distribution calculated as in (2) It was found
that twenty terms in (10) provides results essentially identical
with those calculated from (2) for a cosine-squared distribution
at in Fig. 4. This is an alternative formulation
and capable of equal accuracy but it is much less efficient
than using (8) for the basis functions, particularly for larger
apertures and at larger ranges from the half-plane.

IV. DIFFRACTION BY A WIDE SLIT

A. Analysis

A slit between two coplanar half-planes with parallel edges
has been a traditional test of diffraction theories. By using the

(a) (b)

(c) (d)

Fig. 5. A comparison of normalized far-field diffraction patterns of a
uniform aperture distribution and a single CSP of the same beamwidth
(kb = 22:84) at a distance ro from the edge of a perfectly conducting
half-plane.M = 2;N = 0, Lo = 2:5�;L = �=2, �o = �=2. cosine
squared – – – – –kb = 11:5.

results for beam diffraction by a half-plane, we can solve the
problem of beam diffraction by a wide slit in a conducting
plane.

Fig. 1(b) shows an aperture field parallel to and at a height
above the center of a slit in , . The

total noninteraction far field of the slit is the sum of the total
far field of the half-plane on the right side and that on the left
side less an incident field. The total far field of the half-plane
on the right side is given by replacing with and

with in the elementary beam
field (8). Similarly, the total far field of the half-
plane on the left side is given by replacing with
and with in the elementary
beam field . In the far field , the singly
diffracted far fields of the slit can be calculated by (2) with
(11), shown at the bottom of the next page.

B. Numerical Results

The diffraction patterns of Fig. 6(a) and (b) are calculated
for an inphase cosine-squared aperture distribution in apertures
of width and , respectively. The apertures are
parallel to and at heights and above a slit with
the same width as the aperture. The solid and dotted curves
are for only noninteraction diffraction fields calculated from
complex line sources located along the aperture plane. For
Fig. 6(a) they have the same weighting factors as in Fig. 2(b).
For comparison, the far-field patterns for a cosine-squared
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(a) (b)

Fig. 6. Normalized far-field diffraction patterns of a slit of widthLo excited
by a cosine-squared distribution atyo behind the center of the slit. (a)
M = 6; N = 0, Lo = 5�;L = �=2. (b) M = 9; 1N = 0,
Lo = 9�;L = �=2. aperture atyo = Lo=2 above the slit
—�—�—�—. Aperture atyo = 10Lo above the slit –– – – .Aperture alone.

distribution with the slit absent are also included as dashed
curves.

Figs. 6 show that with the radiating aperture close to the
slit, the far-field diffraction patterns have the same number of
sidelobes but moderately higher sidelobe levels than the total
far field patterns with the slit absent. With the aperture further
away at the resulting patterns are more profoundly
altered with narrower main beams and more and much higher
sidelobe levels. The slit is now essentially uniformly illumi-
nated so the resulting diffraction patterns essentially those for
plane wave incidence on the slit.

The last example is a comparison of the normalized far-field
diffraction patterns of a slit of width excited by a cosine-
squared distribution with a single line source with the same

(a) (b)

Fig. 7. Normalized far-field diffraction patterns of a slit of widthLo excited
by a cosine-squared distribution and a single complex line source with beam
directivity kb at yo = Lo=2 behind the center of the slit. (a)M = 6;N = 0,
Lo = 5�;L = �=2. (b) M = 9; 1N = 0, Lo = 9�;L = �=2.

half-power beam width in the far-field radiation pattern. In
Fig. 7. the solid curves are the result for an array of complex
line sources simulating a cosine-squared aperture distribution
and the dashed curve represents a single line source with the
same half-power beam width. For both cases ,
the single line source solution shows lower sidelobes level
near the axis and higher sidelobe levels far away from the
axis than the beam series computation. Here the local obstacle
(the slit) is very close to the aperture plane . This
shows that while the cosine-squared distribution and paraxial
complex line source (Gaussian beam) may have similar beam
shapes, a single complex line source can not accurately predict
the diffraction pattern of an extended source at this range.

The calculations described above are accurate only for slits
sufficiently wide that interaction between them is negligible.

(11)
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For more accurate results, inclusion of interaction between the
edges is necessary. The field singly diffracted from each edge
of the conducting half-plane in the direction of the opposite
edge of the other conducting half-plane is replaced by the field
of a line source of equal amplitude located at the edge from
which the singly diffracted field emanated. This procedure
can be used to improve the accuracy by the including first-
order interaction field. However, the edge diffraction fields
are not omnidirectional as assumed for a line source, so
the results are not made more accurate by repeating the
above procedure. Since higher order interaction is weak in
the examples studied above, as shown in [7], it is sufficient to
include only noninteraction fields here.

Only radiating beams from the aperture are included in
calculating Figs. 6 and 7. If the aperture-slit separation is
small in wavelengths, diffraction by the evanescent fields of
the aperture, represented by beams at complex angles, may
require inclusion. If the slit width is large compared to the
aperture width and aperture-slit separation, additional tilted or
aligned beams at smaller separations than a half wavelength
may be required to improve accuracy at large angles off the
aperture pattern axis.

V. CONCLUSIONS

The CSP technique is known already as a very efficient
means of extending point or line source diffraction solutions
to beam solutions. Gaussian beams in a Gabor series have also
been established as a complete representation of the fields of a
radiating aperture [1], [2] and it was indicated [1] that the two
techniques could be effectively combined. Here this is done
for diffraction by half-planes and slits in the presence of 2-D
radiating apertures. Only symmetrical aperture distributions
were chosen here as the simplest and most common examples,
but the method may be extended to arbitrary-shaped aperture
distributions on nonplanar as well as planar surfaces.

An efficient solution has a minimum number of beams. This
depends on the situation under consideration and warrants
a demonstration of the accuracy of the beam arrangement
used to represent the aperture field in isolation. Previous
numerical investigations [1], [2] provided a useful guide but
generally have more beams than were found to be needed
here. Moreover, Gaussian beams rather than complex source
beams were used, so it is necessary demonstrate the differences
introduced by using the latter. These may be significant with
small apertures represented by few sources and occur mainly
at wide angles off the pattern main beam axis. The advantage
of using CSP beams is not only that they represent an exact
solution to the wave equation, but also that they allow the
use of rigorous and convenient elementary beam diffraction
solutions. For the half-plane this solution is exact and rather
simple.

The beam amplitudes in (1) may be determined directly
from the aperture distribution profile if the beams are very
closely spaced [1]. Closer beam spacings imply broader beams
and with beam spacings of say, a tenth of a wavelength or
less, omnidirectional line sources should suffice. A simpler
asymptotic solution than this would then be a superposition

of many real line source solutions with amplitudes according
to the distribution profile and regular use of UTD. It would
not be efficient however, because of the larger number of
line source solutions to be evaluated and included. With line
source solutions spaced half a wavelength (as in the nu-
merical examples here) the accuracy deteriorates, particularly
off the main lobe of the aperture radiation pattern and off
the main lobe of the diffraction pattern in the examples of
Figs. 4 and 5. The accuracy of the results in Figs. 6 and
7 may be less affected if the slit edges lie well within the
main lobe of the aperture pattern. In general, however, the
beam series representation permits the use of fewer more
widely separated source solutions and this is its advantage
over a simple asymptotic solution consisting of many more
closely spaced line source solutions. Beam spacings of a
half wavelength seem to minimize the number of beams
required, at least for smaller apertures, as larger spacings
require both aligned and tilted beams [2]. Of course, the beam
amplitudes, once determined, apply for any scatterer at almost
any range.

It is useful to confirm here that a single beam is a good
approximation for half-plane diffraction if the aperture width
is not large and the distribution symmetrically tapered. Two-
dimensional noninteraction fields for aperture diffraction by
a wide slit were calculated also. Then even for apertures not
large and with tapered distributions, when the local object is
close to the aperture plane, a single beam source does not
represent the diffraction pattern accurately.

Usually, shadow and reflection boundaries must be located
in applying the geometrical theory of diffraction. Although the
location of shadow and reflection boundaries is no difficulty
for the CSP method, the shadow and reflection boundary
locations are not needed here because a uniform total field
solution is used.

An array of complex sources is a powerful technique for
calculating the effects of local obstacles on antenna patterns.
It is not just that this method is convenient in these simple
examples. It also opens up a range of problems which can
now be treated rigorously. This procedure has already been
applied to other canonical structures and these results will be
reported.

REFERENCES

[1] J. J. Maciel and L. B. Felsen, “Systematic study of fields due to extended
apertures by Gaussian beam discretization,”IEEE Trans. Antennas
Propagat., vol. 37, pp. 884–892, July 1989.

[2] P. D. Einziger, S. Raz, and M. Shapira, “Gabor representation and
aperture theory,”J. Opt. Soc. Amer., vol. 3, pt. A, no. 4, pp. 508–522,
1986.

[3] M. J. Bastiaans, “A sampling theorem for the complex spectrogram and
Gabor’s expansion of a signal in Gaussian elementary signals,”Opt.
Eng., vol. 20, p. 594, 1981.

[4] L. B. Felsen, “Geometrical theory of diffraction, evanescent waves,
complex rays and Gaussian beams,”Geophys. J. R. Astrol.. Soc., pp.
77–88, 1984.

[5] G. A. Deschamps, “Gaussian beam as a bundle of complex rays,”
Electron. Lett., vol. 7, pp. 684–685, 1971.

[6] L. B. Felsen, “Evanescent waves,”J. Opt. Soc. Am. A, vol. 66, no. 8,
pp. 751–760, 1962.

[7] G. A. Suedan and E. V. Jull, “Two-dimensional beam diffraction by a
half-plane and wide slit,”IEEE Trans. Antennas Propagat., vol. AP-35,
pp. 1077–1083, Sept. 1987.



1676 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 47, NO. 11, NOVEMBER 1999

[8] G. A. Suedan and E. V. Jull, “Beam diffraction by half-planes and
wedges: Uniform and asymptotic solutions,”J. Electromagn. Waves
Applicat., vol. 3, no. 1, pp. 17–26, 1989.

[9] A. J. E. M. Jansen, “Gabor representation of generalized function,”J.
Math. Anal. Appl., vol. 83, pp. 377–394, 1981.

[10] E. V Jull, “Aperture antennas and diffraction theory,”Institute of
Electrical Engineers Electromagnetic Wave Series. Stevenage, U.K.:
Peter Peregrinus, 1981, vol. 10.

Hong D. Cheungwas born in Taiwan. He received the B.Sc. degree in physics
from York University, Ontario, Canada, in 1994, and the Ph.D degree in
electrical and computer engineering from the University of British Columbia,
Canada, in 1999.

He currently works in the Electrical and Computer Engineering Department
of the University of British Columbia as a Research Assistant. His research
interests include the complex source point method and high-frequency wave
propagation and diffraction theory.

Edward V. Jull (LF’98) was born in Calgary, Canada. He received the B.Sc
degree in engineering physics from Queen’s University, Kingston, Canada, in
1956, and the Ph.D. (electrical engineering) and the D.Sc. (Eng.) degrees in
from University College, London, U.K., in 1960 and 1979, respectively.

He was with the Division of Radio and Electrical Engineering of the
National Research Council, Ottawa, Canada, from 1961 to 1972. He is
now a Professor in the Department of Electrical and Computer Engineering,
University of British Columbia, Vancouver, Canada. His research interests
include aperture antennas and diffraction theory.

Dr. Jull is a Past President of the International Union of Radio Science
(URSI) (1990–1993).


