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Abstract—A new type of collinear antenna called electromag-
netically coupled coaxial dipole array antenna is proposed. The
antenna has an advantage of structural simplicity due to a novel
use of an electromagnetically coupled feed structure for the
radiating element. An analysis of the radiating element is pre-
sented and compared with experimental results. Fabrication and
measurement of a prototype array antenna are also presented.

Index Terms—Dipole arrays.

I. INTRODUCTION

I N this paper, a new type of collinear antenna is proposed
that has an omnidirectional pattern in the horizontal plane.

Fig. 1 shows the geometry of the antenna called electromag-
netically coupled coaxial dipole array antenna. It has the
electromagnetically coupled coaxial dipole (ECCD) as the
radiating element, which is composed of a half-wavelength
metallic circular pipe fed electromagnetically by an annular
ring slot on the outer conductor of the feeding coaxial cable.
The metallic circular pipes act as radiating dipoles and their
collinear arrangement in the vertical direction with in-phase
excitation gives an array performance.

There exist some kinds of collinear antennas. The coax-
ial collinear (COCO) antenna [1]–[4] employs a collinear
arrangement of coaxial cables where the feeding structures
are inverted in a half-wavelength step so as to produce in-
phase excitations. Instead of using the coaxial cable, a printed
COCO antenna with microstrip feed line is also reported [5].
An additional type is the coaxial dipole antenna (CDA) [6].
The radiating dipoles of CDA is fed by an annular ring slot,
which extends radially from the outer conductor of the feeding
coaxial cable. A modification of CDA is the bidirectional
collinear antenna [7], which uses an arc parasitic plate attached
near the radiating dipole of CDA.

ECCD array antenna, as proposed in this paper, is another
modification of CDA, which has an advantage of structural
simplicity due to a novel use of an electromagnetically coupled
feed for CDA.

In Section II, a Wiener–Hopf analysis [8]–[11] is carried
out for the TEM-mode reflection coefficient of a coaxial cable
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Fig. 1. The electromagnetically coupled coaxial dipole array antenna.

that has a semi-infinite outer conductor [12]–[14]. The analysis
deals with an exact solution as well as a simple approximate
formula that is valid if the radius of the coaxial cable is
much smaller than the operating wavelength. In Section III,
the methods due to Chen and Keller [15], and Lee and Mittra
[16] are applied to derive the input admittance of the radiating
element. In Section IV, an analysis of radiation pattern of
ECCD is carried out with an integral equation formalism by
using Green’s functions of a perfectly conducting circular
cylinder. In Section V, an equivalent circuit for ECCD ar-
ray is described, and, finally, in Section VI, fabrication and
measurement of a prototype array antenna are described.

II. TEM-M ODE REFLECTION COEFFICIENT

FOR A SEMI-INFINITE COAXIAL CABLE

In this section, a Wiener–Hopf analysis is carried out for
the TEM-mode reflection coefficient of a semi-infinite coaxial
cable, as shown in Fig. 2, when the TEM mode is incident
from inside the cable. The structure is one of the canonical
Wiener–Hopf geometries. Classic results for the TEM-mode
incidence are given in [12] and the case of higher order modes
incidence is treated in [14], where some approximate formulas
are developed when the radius of the coaxial cable is much
larger than the operating wavelength. In this paper, we derive
an exact analytical expression as well as a simple approximate
formula that is valid when the radius of the coaxial cable is
much smaller than the operating wavelength. From now on,

dependence is assumed for the fields.
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Fig. 2. Semi-infinite coaxial cable.

Fig. 3. Branch cut for the radial spectrum function
 in the� plane.

The problem has a rotational symmetry in thedirection,
and functional dependence of every physical quantity appears
in the analysis is of the form . We define a Fourier
transform pair of with respect to as follows:

(1)

(2)

We assume that the propagation constant of the medium is
. will be put equal to

zero after the analysis. The relation betweenand the radial
spectrum function are defined as follows (see Fig. 3):

(3)

(4)

For the geometry in Fig. 2, nonzero field components are
expressed by using the vector potential as
follows [9]:

(5)

(6)

(7)

satisfies the following wave equation:

(8)

Let the incident TEM-mode current have the following
form in the region :

(9)

The boundary conditions for the field components are given
as follows:

(10)

(11)

(12)

(13)

where and mean , , and , respectively,
and this convention is applied throughout the paper. The edge
condition for the end of the outer conductor is given as follows:

(14)

(15)

Let the Fourier transform of with respect to be
, then (8) is equivalently expressed as follows:

(16)

where is defined in (4). From now on, we put subscripts
or on the function, which is regular in the upper half-plane

or regular in the lower half-plane in
Fig. 3, respectively. In general, a Fourier transform of a
function is naturally decomposed into the sum of
and [8]–[11]:

(17)

(18)

(19)

By using (5), (10), and the fact that the field decays as
, solutions for (16) are expressed as follows:

(20)

(21)

where, and are unknown functions. In the above
formula, we have introduced normalization functions for later
convenience. We define the Fourier transform of and

with respect to as and . By using
(5), (7), (20), and (21), we have the following relations:

(22)

(23)

(24)
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(25)

The boundary conditions (11)–(13) give the following:

(26)

(27)

(28)

(29)

The formulas (22), (24), and (26)–(28) give expressions of
and as follows:

(30)

Next, we introduce an unknown function as follows:

(31)

Subtracting (25) from (23) and using (29)–(31), we have the
following Wiener–Hopf equation with respect to and :

(32)

(33)

can be factorized in a product form
. The procedure is given in the Appendix.

We rewrite (32) as follows:

(34)

The left-hand side and the right-hand side of the above formula
are regular in and , respectively, in the
plane. Furthermore, they are both regular in . Then
the theorem of identity states that the both sides of (34) are
identical to an integral function [8]–[11]. By using the
edge condition and the results of the Appendix, the following
relations are obtained in as :

(35)

(36)

(37)

By using the above properties, we see that the left-hand side of
(34) decays as and the right-hand side decays as in

when . Then the Liouville’s theorem states

Fig. 4. The integration contourC and poles of the integrand ofU(�; z) in
the � plane.

[8]–[11]. Thus, the solution of the Wiener–Hopf
equation (32) is given as follows:

(38)

where, . By using (25), (30), and (38), is
expressed in the region as follows:

(39)

(40)

If the radius of the coaxial cable is much smaller compared
with the operating wavelength where only the TEM mode can
propagate, the poles of the integrand of are located in

plane, as shown in Fig. 4. In Fig. 4, the poles in the upper
and lower half-planes correspond to the modes in the negative
and positive axis, respectively. The pole at represents
the reflected TEM mode from the discontinuous end of the
coaxial cable. The pole at cancels the incident TEM
mode in the positive region.

By using the relations

(41)

(42)

the magnetic field for the reflected TEM mode from
the end of the coaxial cable is calculated by the residue of the
pole at . Then the reflected current is obtained
as follows:

(43)
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The ratio of and gives the reflection coefficient
of the semi-infinite coaxial cable as follows:

(44)

(45)

(46)

(47)

(48)

(49)

where is Euler’s constant and is defined as
follows:

(50)

or

Although (44) gives the exact solution, it has a disadvantage
of practical applications because it contains infinite integrals
as well as an infinite product. In general,and for ECCD
are very small compared with the operating wavelength. In
the following, we derive a simple approximate formula for
which is valid when .

The infinite integral given by (47) is evaluated numerically
and an effort was made to find out an approximate numerical
formula. It has been observed that in this case a polynomial of
logarithmic variables improves the convergence with respect
to the order of the series. The resultant expression of (47) in
the domain is as follows:

(51)

(52)

The above formula approximates the exact values within 3%
errors. The part of infinite product is approximated as follows:

Fig. 5. Comparison between the exact formula (44) and the approximate
formula (58).

(53)

where, the following formulas have been applied:

(54)

(55)

The error due to the approximation of given in (54) in the
domain is within 10%. The remaining
parts of (45) are approximated as follows:

(56)

(57)

The final expression of is given as follows:

(58)

(59)

To see the validity of (58), a comparison is plotted in Fig. 5
between approximated values calculated by (58) and the exact
values in the case of and .
The correspondence between them is appropriate for practical
applications.

III. I NPUT ADMITTANCE

In this section, the TEM-mode reflection coefficient for the
semi-infinite coaxial cable is applied to an analysis of the
input admittance of ECCD in Fig. 1. From now on we write
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in (58). We will derive an approximate form of
the current distribution on by the methods due to
Chen and Keller [15] and Lee and Mittra [16]. In this case,
we treat the region between the circular pipe and the feeding
coaxial cable in Fig. 1 as a cavity, where TEM mode is the
only propagation mode and the effect of end discontinuities is
contained in . We define as a current on , which
is excited by the annular ring slot when the discontinuities of
the coaxial line are absent. We also define as currents
due to multiple reflections between the ends of the cavity
when the TEM-mode current in is incident.
are identified as a Neumann series, which can be summed up
in a closed form (for the details, see the derivation of [16, eq.
(5.2)]). is approximately calculated by superposition of

and as follows:

(60)

(61)

(62)

(63)

where the term and in (61) correspond to
the currents due to TEM mode and nonpropagating modes,
respectively. If the annular ring slot in Fig. 1 is excited by a
voltage , the input admittance of ECCD is given as
follows:

(64)

(65)

(66)

(67)

First, we will calculate . We assume that the width of
the annular ring slot is much smaller compared with, and
it can be modeled by the following uniform magnetic current

:

(68)

The only nonzero component of the magnetic field inside the
coaxial cable is . We define the Green’s function
with respect to as follows:

(69)

(70)

can be constructed as follows:

(71)

(72)

(73)

(74)

By using (68), (69), and (71), is calculated as follows:

(75)

(76)

(77)

where (76) is obtained by assuming . The first term
and the last summation part in (76) are identified with
and in (61), respectively. By comparing the coefficients
of in the first terms in (61) and (76), we have the
following relation:

(78)

is obtained by (66) and (76) as follows:

(79)

where the approximation is made like in
(76). is readily obtained by (62), (67), and (78) as follows:

(80)

where the approximations and
are made. By using (63), (65), (79), and (80), we

finally obtain as follows:

(81)
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In the case of , (81) becomes

(82)

When , the first term in (82) reduces to , which
represents the admittance in the case of two coaxial lines
connected and fed at the center. If we put and

in (82), then , i.e., when each end of the
coaxial cable is open-circuited and the location of the annular
ring slot is a quarter wavelength away from the ends, the
annular ring slot is short-circuited, which meets the physical
inspection.

To verify the applicability of the derived formula, mea-
surements were carried out. parameters and were
measured for the two ports 1 and 2 in Fig. 1 of the feeding
coaxial cable with characteristic impedance. An equivalent
circuit for the geometry consists of a transmission line with
characteristic impedance loaded with input impedance
of ECCD and in series. and are calculated as
follows:

(83)

(84)

(85)

Fig. 6 shows comparisons between the measured and calcu-
lated values. The parameters are ,

, , , and ,
where corresponds to the free-space wavelength at the
frequency .

IV. RADIATION PATTERNS

In this section, the radiation pattern of ECCD is analyzed.
We model the circular pipe and the annular ring slot in ECCD
as rotationally symmetric electric and magnetic currents, re-
spectively, which are located above a perfectly conducting
infinite circular cylinder of radius , as shown in Fig. 7. Fields
of the currents are expressed through Green’s functions of the
circular cylinder. The current distribution of the circular pipe is
determined by an integral equation with respect to the electric
field boundary condition on the surface of the pipe, then the
radiation pattern is obtained.

The nonzero fields and
of the -directed electric current at the radius are
given by (5)–(7) with the vector potential replaced by

, which is calculated by the Green’s function of the
infinite circular cylinder [17] as follows:

(86)

Fig. 6. Comparison between calculated and measured values forS11 and
S21 of ECCD in Fig. 1, wherel1 = l2 = 0:21�f0, a = 0:0092�f0,
b = 0:023�f0, w = 0:0041�f0, andZf = 50 
.

Fig. 7. Geometry of ECCD and rotationally symmetric electric and magnetic
currents on a perfectly conducting infinite circular cylinder.

(87)

where and represent, respectively, the larger and the
smaller values of and , and is given in (4).

The nonzero fields of the -directed magnetic current
on the surface of the circular cylinder are given

as follows [17]:

(88)

(89)
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(90)

(91)

If we treat as a known source, which gives an incident
wave of the scattering problem, the following integral equation
for is obtained by the electric field boundary condition on
the surface of the circular pipe

(92)

We will use Galerkin’s method to solve the above integral
equation. We expand with a class of expansion functions

as follows:

(93)

(94)

where are unknown coefficients to be
determined. The integral equation (92) is equivalent to the
following form in Galerkin’s sense:

(95)

After some calculations, by assuming
for simplicity, (95) reduces to the following simultaneous
linear equations with respect to

(96)

(97)

(98)

(99)

(100)

(101)

(102)

(103)

An approximate solution is obtained by replacing the summa-
tion in (96) by finite terms and a matrix inversion. Now we

calculate the radiation pattern of the current distribution. We
will neglect contribution of for the radiation pattern by
assuming that the dimension of the annular ring slot is much
smaller compared with the circular pipe. The magnetic field

of is calculated by (7) and (86) as follows:

(104)

(105)

(106)

In the far-field region, an asymptotic approximation can be
employed for the integral in (106) with the aid of the following
formula [17]:

(107)

(108)

(109)

(110)

The final expression of the far-field is given as follows:

(111)

(112)

(113)

(114)

Fig. 8 shows the calculated and measured radiation patterns of
ECCD in Fig. 7, where the parameters are the same as those
in Fig. 6 in the previous section with and .

V. ARRAY PERFORMANCE

ECCD array antenna with radiating elements can be
analyzed by an equivalent circuit for collinear antennas [18],
[19] shown in Fig. 9. The feeding point of the array is located
at the distance measured from the first radiating element
and the end of the feeding coaxial cable, which is located at the
distance from the last radiating element, is terminated with



MIYASHITA et al.: ELECTROMAGNETICALLY COUPLED COAXIAL DIPOLE ARRAY ANTENNA 1723

Fig. 8. Calculated and measured radiation pattern of ECCD, where the
parameters are the same as those in Fig. 6.

Fig. 9. Equivalent circuit for ECCD array antenna.

a load of impedance . represent
the spacings between th and th radiating elements.

and represent the propagation constant and the charac-
teristic impedance of the feeding coaxial cable, respectively.

represent the self impedances ofth
radiating element which are calculated as follows:

(115)

where stands for the self admittance of th radiating
element calculated by (81).

The input impedance of the array antenna is calculated
by using the matrices , , of the
equivalent circuit as follows:

(116)

(117)

(118)

(119)

(120)

(121)

where , and , represent the voltage and current at
the feeding port and those at the termination, respectively,
represents the matrix of the serial impedance , and the
effect of length of the feeding coaxial cable is contained

Fig. 10. Geometry and equivalent circuit of a prototype four-element ECCD
array antenna, where the parameters of radiating elements are the same as
those in Fig. 6,"r = 2 inside the feeding coaxial cable except in the
quarter wavelength impedance transformer, where"r = 1, the inner and
outer radii of the transformer, are0:0026�f0 and 0:010�f0, respectively,
and d0 = 0:44�g.

Fig. 11. Return loss (power) of ECCD array antenna in Fig. 10. The antenna
is designed to be matched atf0.

in . It is noted that (118) is sufficient to determine (116)
because in (116) depends only on the ratio of
and . The voltage and current seen from the feed
side at the th radiating element are given as follows:

(122)

where give the array
excitation distributions.

VI. FABRICATION AND MEASUREMENTS

A four-element array antenna as shown in Fig. 10 was
fabricated. The antenna was designed to have a uniform
aperture field distribution. The parameters of the radiating
elements are all identical to those of Figs. 6 and 8 in the
previous sections. The inner and outer radii of the feeding
coaxial cable are and , respectively. The
cable is filled with dielectric material of dielectric constant

. The spacings , , and between the radiating
elements are all identical to , which corresponds to

where . The feeding coaxial cable is
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Fig. 12. Radiation characteristics of the four-element ECCD array antenna
in Fig. 10, where the angles� and� are defined in Fig. 7.

open ended and the distance between the feeding point
of the last radiating element and the open end of the cable is

. Near the feeding point of the array, an impedance
matching section is formed. The section consists of a quarter
wavelength impedance transformer with a coaxial cable. The
impedance matching is carried out as follows: by varying
the distance between the feeding point of the array and
that of the first radiating element (see Fig. 10) the imaginary
part of can be canceled, where is calculated by
(116). Now we have . The characteristic
impedance of a quarter wavelength impedance transformer
is determined by to realize the matching,
where is the characteristic impedance of the feeding
coaxial cable. The designed parameters of the transformer
are as follows: the inner and outer radii of the coaxial cable
are and , respectively, the length of the
coaxial cable is , where inside and

. Fig. 11 shows a comparison between calculated and
measured values of the return loss of the fabricated array,
where the input impedance was designed to be matched at.
The correspondence between the two values is considered to
be fair, however, not negligible disagreements are observed,
which is considered to be due to the following reasons. The
mutual couplings are neglected between the radiating elements
outside the feeding cable. The region near the open end of
the feeding coaxial cable is simply modeled by the transmis-
sion line model in Fig. 10, some treatments, e.g., inclusion
of radiation effects, may be needed. Finally, more precise
modeling of the transition between the radiating element and
the feeding coaxial cable is considered to be important to
improve the correspondence in Fig. 11 as well as those in
Fig. 6. Fig. 12 shows the radiation characteristics of the array.
The efficiency—measured gain versus calculated directive

gain—of the antenna was 91%. A good omnidirectional pattern
in angles as well as a uniform aperture field illumination
in angles were observed.

VII. SUMMARY

An electromagnetically coupled coaxial dipole array antenna
has been proposed. An analysis as well as experimental
verifications of the antenna have been carried out.

APPENDIX

In this Appendix, a factorization procedure for is
described. First of all, we decompose into two functions

and as follows:

As the integral function is even with respect to ,
the following factorization into the infinite product form is
possible [8]–[11]:

where is a zero point of in the upper-half plane
and it is located at as . has
been determined such that has an algebraic growth

as ; in this case . It

can be also shown that . For , the
Bates–Mittra factorization formula for [9] is applied:



MIYASHITA et al.: ELECTROMAGNETICALLY COUPLED COAXIAL DIPOLE ARRAY ANTENNA 1725

From the above formulas, is factorized as follows:

where and can be shown in
as .

Now we have and

, which prove (37).
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