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Abstract—A new type of collinear antenna called electromag- - Feeding coaxial cable

netically coupled coaxial dipole array antenna is proposed. The 4

antenna has an advantage of structural simplicity due to a novel ik

use of an electromagnetically coupled feed structure for the kizy ——— Circular pipe
radiating element. An analysis of the radiating element is pre-

sented and compared with experimental results. Fabrication and dih

measurement of a prototype array antenna are also presented. RN Annular ring slot

Index Terms—Dipole arrays.

|. INTRODUCTION “ >\ B

N this paper, a new type of collinear antenna is proposed iy g L1 I b
that has an omnidirectional pattern in the horizontal plane.
Fig. 1 shows the geometry of the antenna called electromag- N ‘
netically coupled coaxial dipole array antenna. It has the | port1 ow Pon2

electromagnetically coupled coaxial dipole (ECCD) as the
radiating element, which is composed of a half-wavelengtiig. 1. The electromagnetically coupled coaxial dipole array antenna.
metallic circular pipe fed electromagnetically by an annular

ring slot on the outer conductor of the feeding coaxial cabl
The metallic circular pipes act as radiating dipoles and th
collinear arrangement in the vertical direction with in-pha

fiat has a semi-infinite outer conductor [12]-[14]. The analysis
@eals with an exact solution as well as a simple approximate
o . Yormula that is valid if the radius of the coaxial cable is

excitation gives an array performance. much smaller than the operating wavelength. In Section Il

There exist some kinds of collinear antennas. The C0%%e methods due to Chen and Keller [15], and Lee and Mittra

lal collinear (COCO). antenna [1]-[4] employs-a COIIir]eaI16] are applied to derive the input admittance of the radiating
arrangement of coaxial cables where the feeding structu

) tod i half lenath st " d B&ment. In Section IV, an analysis of radiation pattern of
are inverted in a halt-wavelength step so as 10 produce Pecp js carried out with an integral equation formalism by

grgcs:((e)exc:tat|ons._:2$t(e_ad OI _lJSlfng(';hlt_a anXI<’:|1| cable, ? %mé&? ng Green’s functions of a perfectly conducting circular
antenna with microstrip feed line is also reported [ ylinder. In Section V, an equivalent circuit for ECCD ar-

An additional type is the coaxial dipole antenna (CDA) [G]ray is described, and, finally, in Section VI, fabrication and

The radiating dipoles of CDA is fed by an annular ring Slo%eas rement of a prototvpe array antenna are described
which extends radially from the outer conductor of the feeding . P P y oed.

coaxial cable. A modification of CDA is the bidirectional
collinear antenna [7], which uses an arc parasitic plate attached [l. TEM-M ODE REFLECTION COEFFICIENT
near the radiating dipole of CDA. FOR A SEMI-INFINITE COAXIAL CABLE

ECCD array antenna, as proposed in this paper, is anothefn this section, a Wiener—Hopf analysis is carried out for
modification of CDA, which has an advantage of structurghe TEM-mode reflection coefficient of a semi-infinite coaxial
simplicity due to a novel use of an electromagnetically couplegple, as shown in Fig. 2, when the TEM mode is incident
feed for (?DA- ' _ ' ~ from inside the cable. The structure is one of the canonical

In Section Il, a Wiener—Hopf analysis [8]-{11] is carriedyjener—Hopf geometries. Classic results for the TEM-mode
out for the TEM-mode reflection coefficient of a coaxial Cablﬁlcidence are given in [12] and the case of h|gher order modes

incidence is treated in [14], where some approximate formulas
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Fig. 2. Semi-infinite coaxial cable.

a-plane

Fig. 3. Branch cut for the radial spectrum functigrin the o plane.

The problem has a rotational symmetry in thealirection,

and functional dependence of every physical quantity appears

in the analysis is of the forny(p,z). We define a Fourier
transform pair off with respect to> as follows:

F(p7 - 27]' 1/2/ f p? d7 (1)

1

)

1 = —itaz
F(p,2) = )1// Flp,a)e"* da

(27 2)

We assume that the propagation constant of the medium is

k= ki +thko = wy/pe, k1 > ko > 0. ko will be put equal to
zero after the analysis. The relation betweeand the radial
spectrum functiony are defined as follows (see Fig. 3):

©)
(4)

a=o+41ir, o,7:real

v = (CY2 _ k2)1/2 = ik = —'L(]C2 _ CY2)1/2,

For the geometry in Fig. 2, nonzero field components are

expressed by using the vector potentidl = 2¢(p,z) as
follows [9]:

Bap.2) = (L 11 )ip.) ©
AP A= e\ 822 AP #
Byp.2) = = (p.2) ©
AP Z) = we 0pdz AP Z
Holp.2) = = 4 (0.2). ™
P(p, z) satisfies the following wave equation:
o Py o
p8p< 3p>+322+k¢_0 ®)

Let the incident TEM-mode currerdt (=) have the following
form in the region(a < p < b):

I'(z) = Ine™ = 27rpH25(p, z), 9)

Iy = const.
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The boundary conditions for the field components are given
as follows:

E.(a,2)=0, (—0<z<x) (10)
E.(b—,2)=E.(b+,2) =0
(—o<z<0) (11)
E.(b—,2) = E.(b+,2) = E.(b, 2)
(0<z< ) (12)
Hy(b+,z) — Hy(b—,2z) = Hi(b,2), (0<z<oo) (13)

whereb+ andb— meanb+-¢, b—e, and(e — +0), respectively,
and this convention is applied throughout the paper. The edge
condition for the end of the outer conductor is given as follows:

(14)
(15)

E.(bz)~2Y2 (2—0)
Hy(b,2) ~ 212, (2 0).
Let the Fourier transform of)(p, ) with respect to> be
W(p, «), then (8) is equivalently expressed as follows:

12,0
pap\”

dp
where~ is defined in (4). From now on, we put subscrigts
or — on the function, which is regular in the upper half-plane
(r > —ko) or regular in the lower half-planér < k3) in
Fig. 3, respectively. In general, a Fourier transfafifw) of a
function f(z) is naturally decomposed into the sumigf («)
and F_(«) [8]-[11]:

) — 72} U(p,a) =0, |7| <ko (16)

Fla) = Fy(a) + a7
Fy(a) 27r1)1/2 / f(2)e"** dz (18)
27r11/2/ f &% 1 (19)

By using (5), (10), and the fact that the field decays as
p — +oo, solutions for (16) are expressed as follows:

\If(p, CY) - \Ij+(p’ CY) + \Ij—(pv CY) = A(a)%
(p>1b) (20)

—_ Brep oGP Ko(va) = Ko(yp)lo(va)

U(p, ) = B( )IO('Yb)KO(fy) Koy ) 2(va)
(a<p<b) (21)

where, A(«) and B(«) are unknown functions. In the above
formula, we have introduced normalization functions for later
convenience. We define the Fourier transfornEifp, ») and
H,(p, z) with respect toz as E(p, «) and H(p, o). By using
(5), (7), (20), and (21), we have the following relations:

2
Ei(b+,0) + E_(b+,0) = —A(a) (22)
_vKi(vh)
Hy(b+,a) + H (b+,0) = WA(CY) (23)
_



1718 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 47, NO. 11, NOVEMBER 1999

H,(b— o)+ H_(b—, a) iz A a-plane
Ii(vb)Ko(ya) + K1(vb)Io(va)
= ¢ an
~vB(«) To(1b) Ko(va) — Ko(vb)Io(va) (25) Evanescent mode poles|
The boundary conditions (11)—(13) give the following: TEM mode pole
E_(b+.0) =0 (26) c - k
E (b=a)=0 (27) — o >
B (b+, ) = Ep(b—, ) = B4 (b, o) (28) k
TEM mode pole
27rb{H+(f+’ a) ;H—l—(b_’ a)} an.. Evanescent mode poles
= W/O I (Z)C dZ .
t1o . . . . .
= m (29) chlg. 4. IThe integration contouf’ and poles of the integrand &f(p, z) in
e o plane.
The formulas (22), (24), and (26)—(28) give expressions of
A(er) and B(«a) as follows: P(a) = 0 [8]-[11]. Thus, the solution of the Wiener—Hopf
iwe equation (32) is given as follows:
0
Ei (o) = —mL+(a)L—(—k) (38)

Next, we introduce an unknown functioh_(«) as follows:

orb{H_(b+,a)— H_(b—,a)} = J_(a). (31) Where,n = \/ui/e. By using (25), (30), and (38 (p, ) is
expressed in the reg|o(m < p < b) as follows:
Subtracting (25) from (23) and using (29)—(31), we have the

following Wiener—Hopf equation with respect 6, and.J_: Hy(p,z) = 1/2 / H(p,a)e " da
i1y 2rweb (b,a) kI i
e et O e C0 @2 = S 5L (- (p,2) (39)
Ulp,z :/u a)eT o doy 40
Ko1h) (p, ) ; (p, cx) (40)

Ha) = oy ODKb® = FoODBa} - 33) L) L(p)Ko(ra) + Ka(rp)s(ra)

L(w) can be factorized in a product fornL(a) = i b(vb) Ko(ya) = Kolvh)lo(ya)
Ly(a)L_(a). The procedure is given in the Appendix. If the radius of the coaxial cable is much smaller compared

u(p, &)

We rewrite (32) as follows: with the operating wavelength where only the TEM mode can
i, propagate, the poles of the integrandlfp, z) are located in
m{(a —K)L_(o) +2EL_(—k)} « plane, as shown in Fig. 4. In Fig. 4, the poles in the upper

and lower half-planes correspond to the modes in the negative

+{a - k)L—(Of)J—(O‘) ) and positiver axis, respectively. The pole at= & represents
_ 2nwet 2kIoiL_(—k) the reflected TEM mode from the discontinuous end of the
- E+(b7 Oé) + 1/2 . (34) . ..
(a0 +E)Ly () (2m)Y2(a + k) coaxial cable. The pole at = —k cancels the incident TEM

ode in the positiver region.

The left-hand side and the right-hand side of the above form . :
y using the relations

are regular int < ks andr > —ko, respectively, in they
plane. Furthermore, they are both regular]ih < k». Then b

the theorem of identity states that the both sides of (34) arelo(70)Ko(va) — Ko(vb)Io(va) — In P (y—0) (41)
identical to an integral functio®(«) [8]-[11]. By using the 1

edge condition and the results of the Appendix, the following *! Li(yp)Ko(va) + Ki(vp)lo(ya) ~ vp (v—0) (42

relations are obtained ifr| < ks as|a| — oo: o
the magnetic fieldd;(p, z) for the reflected TEM mode from

E (b,a) ~ a2 (35) the end of the coaxial cable is calculated by the residue of the
J_(a) ~ H_(b @) ~ =32 (36) pole ata = k. Then the reflected curredt'(z) is obtained
L_(a) ~ Li(a) ~a 1/2. 37) as follows:

By using the above properties, we see that the left-hand side of I"(z) = 2m}§¢(a’ ?)

(34) decays as—'/? and the right-hand side decaysc@s' in = (L (k)R (43)
|7| < k2 when|a| — o. Then the Liouville’s theorem states In(b/a)



MIYASHITA et al: ELECTROMAGNETICALLY COUPLED COAXIAL DIPOLE ARRAY ANTENNA

The ratio of I"(z) and I(z) gives the reflection coefficient

R(z) of the semi-infinite coaxial cable as follows:
_I'(z) 3 1
- I(z)  In(b/a)

R(z) [Lo(R)P2e2% (ad)

Li(k)

HV (ko) |*
HY (ka)

k(b - a) H

k —k(b—a)/(nwi)
(1+2) ] expl€(k,a. )} (45)

(46)
(47)

= [g{,]o(ka)No(kb) — No(ka)Jo(kb)}

k(b —
-exp[iu{l—l—an— T —Ce—1In
™ 2

|

S(kv a, b) = (J(kv b) - (J(kv a)
q(k, ) :/0 flw, kb z)dw

x 2 1
flw kx) =" [1 T rwr [dolwn) + {%(wx)}?}

k
-1n<1 + m) (48)

VE2 —w? =ivw? — k2

(49)

whereC, ~ 0.5772 is Euler's constant and,, is defined as

follows:

Io(Va2 — k20) Ko (y/ o2 — k2a)

—Ko(v/o2 —k?b)Io(v/a2 — k?a) =0 (50)
Imea, >0, Imo, <Ima,11, (n=1,2,3,--")
Qyy ~ b”iﬂa, (n — o0 o0ra,b< A).

Although (44) gives the exact solution, it has a disadvantage
of practical applications because it contains infinite integrals

as well as an infinite product. In generalandb for ECCD
are very small compared with the operating wavelengtin
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1 . 180
Exact 190
Approximate (_%
_ =
T 05 {0 =
o
S
4-90
—>
0 : - : -180

0.05 0.1
b/ A, (a=0.014 )

Fig. 5. Comparison between the exact formula (44) and the approximate
formula (58).

~ C—Cek(b—a)/(iw)/r<1+ k(b’— a))
(s
e | 1R — a)}?
~ exp{ 2 (53)
where, the following formulas have been applied:
o, ~=inw /(b — a) (54)
ad 2 —z/(an) *Cez/a
1L(+) :r((31+/)
—1 an z/a
w2 r2\2
= exp{‘ﬁ(a) }
(z/a — 0). (55)

The error due to the approximation af, given in (54) in the
domain(0.001XA < a,b < 0.1)) is within 10%. The remaining
parts of (45) are approximated as follows:

the following, we derive a simple approximate formula #r The final expression oRR(z) is given as follows:

which is valid when(0.001A < a,b < 0.1)).

The infinite integral given by (47) is evaluated numerically £2(z) ~
and an effort was made to find out an approximate numerical

formula. It has been observed that in this case a polynomial of 37 — Q(E) _ Q(ﬁ) + M

logarithmic variables improves the convergence with respect
to the order of the series. The resultant expression of (47) in

the domain(0.001 < z/A < 0.1) is as follows:
q(k,z) = q(kz) = Q(z/X)
Q(z) ~ —0.16073 4+ 0.0173121n x
+ 0.009362 8(ln ) + 0.000 728 49(ln x)*
+14{—0.023700 — 0.029142 lnx
—0.0047721(Inz)? — 0.00021525(In z)*}. (52)

(51)

g{Jo(ka)No(kb) — No(ka)Jo(kb)} ~ 1112 (56)

H§Y(kb)  ln(kb/2) + C. —in/2 57)
Hél)(ka) T n(ka/2)+ C. —in /2’

_Ellg’zzﬁ Zgi g :Zzg expl{2(M —ikz)}  (58)

A A 12
k(b —a)i 7 k(b — a)
+ f{1+1n2— 5 - C. —th}.
(59)

To see the validity of (58), a comparison is plotted in Fig. 5
between approximated values calculated by (58) and the exact
values in the case af = 0.01A and 0.015A < b < 0.1A.

The correspondence between them is appropriate for practical
applications.

The above formula approximates the exact values within 3%

errors. The part of infinite product is approximated as follows: M.

o) k —k(b—a)/(imn)
(1+5)

I NPUT ADMITTANCE

In this section, the TEM-mode reflection coefficient for the
semi-infinite coaxial cable is applied to an analysis of the
input admittance of ECCD in Fig. 1. From now on we write
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R = R(0) in (58). We will derive an approximate form of 1 <= P.(p)Pu(p") EN— 71
the current distributiod (z) on p = « by the methods due to *t3 Z MNE, > ()
Chen and Keller [15] and Lee and Mittra [16]. In this case,

we treat the region between the circular pipe and the feeding

coaxial cable in Fig. 1 as a cavity, where TEM mode is the (72)
only propagation mode and the effect of end discontinuities is A= VP2 — k2, OH{pPn(p)}/0p|p=1 =0
contained inR. We defineli,¢(z) as a current op = a, which (73)
is excited by the annular ring slot when the discontinuities of 2

the coaxial line are absent. We also deffpg (=) as currents F, = 2 {‘]O(p"a)} —1l. (74)
due to multiple reflections between the ends of the cavity 72p3 | | Jo(pnb)

when the TEM-mode current idi,¢(z) is incident. I, (2) ) )
are identified as a Neumann series, which can be summedB)pusing (68), (69), and (71),.:(z) is calculated as follows:
in a closed form (for the details, see the derivation of [16, eq,

(5.2)]). I(») is approximately calculated by superposition oflm(2) = 2”“H¢(aj z) (75)
Iine(#) and I, (z) as follows: _ EA% sin(kw) U(z)
2 kw )
1(2) & it (2) + L (2) (50) ink S 1—e [ [ Jo(pea) ) ] -
ine(2) = LU (2) + Inp(2) (61) - Ay { JO( nb) } —1
U(ly) + RUIDU(ly + 1) e s no [LJ0lPn ]
ICaV(Z) = IO > 2 RU(z — ll) Yb
1— RHU(lL +12)} ~ 7Av~U(z)
U(lz) + RU(IHU(lL +12)
I RU(z+1 62 . ) Zoxnow [ -1
TSRO0 T )P k) 62 _ﬂmz 1— e {Jo(pna)}2_1
U(z) = ¢l (63) mo = AL | U Jo(pad) ]
where the terml U(z) and Ip,(z) in (61) correspond to 9 (76)
the currents due to TEM mode and nonpropagating modes, Y, = TatbTa) (77)
respectively. If the annular ring slot in Fig. 1 is excited by a nin(b/a)
voltage Awv, the input admittancé’y; of ECCD is given as \ynere (76) is obtained by assumitkgy < 1. The first term
follows: and the last summation part in (76) are identified wWigh(z)
v, = 1w+ I(~w) (64) @ndLup(») in (61), respeciively. By comparing the coefficients
tH 2Av of U(z) in the first terms in (61) and (76), we have the
>~ Vins + Yeav (65) following relation:
Iine(w) + Linr(—w)
Yinr = (66)
f 2Av =250 (78)
' 24w Yt IS Obtained by (66) and (76) as follows:
First, we will calculateYi,;. We assume that the widtw of )
the annular ring slot is much smaller compared withand Yo imk = 1—e"2 | [ Jo(pna) 2 -
it can be modeled by the following uniform magnetic current Ying =~ 2w 22 {Jo(p b) } -1
ng: n=l1 " "

(79)
My(p, 2) = {—{Av/@w)}é(p —a) (F<w)  gg

0, (2] > w). where the approximatioty (+w) = ¢’*I*l ~ 1 is made like in

The only nonzero component of the magnetic field inside t}%6)'YCaV is readily obtained by (62), (67), and (78) as follows:
coaxial cable isH4(p, z). We define the Green’s functiof

. : Yo AU +{U(I)}* +2R{UI +12)}?
with respect toM,, as follows: Yoar = R 1= R{U(L 1 b))

w b 80

Hy(p,z) = iwe/ dz’/ o'dp’ Gp,z | o', 2" )My(p',2") (80)

- ¢ (69) where the approximations(+w — ;) ~ U(Il;) andU(£w +
l3) =~ U(l) are made. By using (63), (65), (79), and (80), we

2 o
g{lg(pG)} + Z C; + kG = —(S(p—/p)é(z - 2. finally obtainY;; as follows:
p Lpdp z p

(70) YO (l—i—ReQikll)(l—i—Re%klz)
=5 1 RZo2ik(+a)

{Jo(p"“) }2 - 1] _1. (81)

& can be constructed as follows:
eik|z—z’| ik i 1-— 6_2)\”“)

 2ikpp’ In(b/a) n — A%

Glp,z | p,7) = Jo(pnb)
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In the case of; = I, = I, (81) becomes

Calculated
oL - Measured

Yullh =L =1

ISi4/* (dB)

N Yy 14 ReFM ik SN 1 — ¢ 2w
T2 1-ReR nz_:l A2
2 —1 L
X [{M} —1] . (82) -30 LU ! e
Jo(pnb) 0.7f, fo 1.31,
Frequency
When R = 0, the first term in (82) reduces tH,/2, which M
represents the admittance in the case of two coaxial lines o}
connected and fed at the center. If we pit= —1 and e B e
I =1/4Xin (82), thenYy; = oo, i.e., when each end of the f: SF e
coaxial cable is open-circuited and the location of the annular '-10 |- Calculated
ring slot is a quarter wavelength away from the ends, the TS Measured
annular ring slot is short-circuited, which meets the physical
inspection. 0"”0 flo ] 131
To verify the applicability of the derived formula, mea- Freq'ue"ncy

surements were carried ouf. parametersS;; and So; were )

measured for the two ports 1 and 2 in Fig. 1 of the feeding’ ° E%Og’gﬁgsg?g'bft‘”vfﬁ;eclf"cila;jd:a”(fszst’“fd:"%‘ffégﬁ;T
coaxial cable with characteristic impedari€¢g. An equivalent » = 0.023A 5, w = 0.0041A 5y, and Z; = 50 Q. '
circuit for the geometry consists of a transmission line with
characteristic impedancg; loaded with input impedancs; ;

of ECCD andZ; in series.S;; and S»; are calculated as
follows:

z
circular cylinder

IA annular ring
z
slot

7 circular pipe
Sy = — 83
u=—r (83)
275
Sag = ——2— 84
= (84)
Zn =1/Y. (85)
Fig. 6 shows comparisons between the measured and calcu-

lated values. The parameters die= I, = 0.21Az, a =
0.0092A 49, b = 0.023Xf9, w = 0.0041\ s, and Z; = 50 €,
where Ao corresponds to the free-space wavelength at the

frequency fo. F
Fig. 7. Geometry of ECCD and rotationally symmetric electric and magnetic
IV. RADIATION PATTERNS currents on a perfectly conducting infinite circular cylinder.
In this section, the radiation pattern of ECCD is analyzed.
We model the circular pipe and the annular ring slot in ECCD ib [ H(l)( )
. . . . G(e) b)) = [’_ d ia|z—z| Ho \FP>

as rotationally symmetric electric and magnetic currents, re- (pz]b,2") = 1 ae D,
spectively, which are located above a perfectly conducting - Hy (ra)

infinite circular cylinder of radiug, as shown |n, Fig. 7._ Fields ) {Jo(lip<)Hél)(lw)
of the currents are expressed through Green'’s functions of the

circular cylinder. The current distribution of the circular pipe is 1

determined by an integral equation with respect to the electric — Hj (”p<)‘]0("m)} (87)
field boundary condition on the surface of the pipe, then tr\]/v%ere and ¢ iively. the | dth
radiation pattern is obtained. P> p< Tepresent, respectively, tne larger and the

. e e e ller values op andb, andk is given in (4).
The nonzero fieldsE! )(p z) E,(, )(p z) and H )(p z) Sma , a .
z bl bl bl 45 bl _
of the z-directed electric currend.(z’) at the radiusb are The mnonzero fields of the-directed magnetic current

; . . )
given by (5)-(7) with the vector potentigl(p, z) replaced by Q?%II)OV\C/); [tlhg' surface of the circular cylinder are given
A.(p,z), which is calculated by the Green’s function of the '

infinite circular cylinder [17] as follows: 1 aH™
yinder [17] B (p2) = o (©9)
. iwe 0z
Ap,2) = / dz G (p, 2 | b,2")J.(7) (86) Egnz>(p,z)zilﬁ( H™) (89)
—1 # we pOp ¢
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H™ (p, 2) = iwe / d G (p, x| a, 2 ) My(')
(90)
1 oo nl H(l)(ﬁp)
G (x| a2y = —=— [ daeel=1271
2 K HSY (ka)
0
(91)

If we treat M, as a known source, which gives an incident
wave of the scattering problem, the following integral equation
for .J. is obtained by the electric field boundary condition onGy (p,2 | b,2")

the surface of the circular pipe

Eénl)(b, Z) + Egﬁ)(b7z) = O7 (|Z| S l) (92)

We will use Galerkin’s method to solve the above integral
equation. We expand. (z) with a class of expansion functions

V. (2),(n =1,2,3,---) as follows:
J.(2) = i X, U, (2) (93)
n=1
U, (z) = %sm{ o7 (z+ l)} (94)

where X,,, (n = 1,2,3,---) are unknown coefficients to be

determined. The integral equation (92) is equivalent to the

following form in Galerkin's sense:
i
/ dz W (2){ES (b, 2) + E(b,2)} = 0
—1

). (95)
M()(S(Z — Zo)

(71:172737--

After some calculations, by assumidd,(z) =
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calculate the radiation pattern of the current distribution. We
will neglect contribution ofM,, for the radiation pattern by
assuming that the dimension of the annular ring slot is much
smaller compared with the circular pipe. The magnetic field
Héf) of J, is calculated by (7) and (86) as follows:

{
H (p,2) = / a7 G (p, 2 |0,7)0.(<)  (104)

= L6z 0.7) (105)
o
; W
— & dov I{ezodz—z |‘E[11 (Kp)
4 J o Hé )(na)
A To(rb)HEY (ra) — HEY (k) Jo(ra)}
(p=b). (106)

In the far-field region, an asymptotic approximation can be
employed for the integral in (106) with the aid of the following
formula [17]:

r

do F(ov, K)HD (rp)el#l

oo

F(kcos @, ksin 9)%&”—1‘("“)”/ 2 (07)
z = Rcos@ (108)
p= Rsind (109)
R=\/p?+ 22 (110)

for simplicity, (95) reduces to the following simultaneous

linear equations with respect t&,,

i Arnan =P,

n=1

(96)

g
/ dOé Brnn ﬂ

H(l) (ka)
: {,]O(Kb)Hé ) (ka) — Hé (k) Jo(ra)}
(97)
(98)

rnn =

Brnn(a) = Crn( ) + Srn(a)SN( )

/ da (1) (xb)
H(l) (ka)

A Cm () cos(azg) + S () sin{azo) }

l (99)
Cula) = /_ 42 U(z) cos(az) (100)
- (2%;(?((@;7)()2{(—1)" —1} (101)

i
Sn(a) = L i U(z) sin(az) (102)
- (2517;;1?(82)2 {(=D" +1}. (103)

An approximate solution is obtained by replacing the summ
tion in (96) by finite/;V terms and a matrix inversion. Now we

The final expression of the far-field is given as follows:

Ey) = nH{ (111)
ethR nkbsin 6 )
o~ . Jo(kbsin@)Hy ' (kasin )
R 2%l (kasing) b 0
N
- Hél) (kbsin6)Jo(kasin )} Z XnDp(kcos8)
n=1
(112)
l
D, (a) = / dz WU, (z)e "= (113)
-1
_ nm n —7(yl i(yl

Fig. 8 shows the calculated and measured radiation patterns of
ECCD in Fig. 7, where the parameters are the same as those
in Fig. 6 in the previous section with=1; =I5 andzg = 0.

V. ARRAY PERFORMANCE

ECCD array antenna witln radiating elements can be
analyzed by an equivalent circuit for collinear antennas [18],
[19] shown in Fig. 9. The feeding point of the array is located
at the distancel, measured from the first radiating element
and the end of the feeding coaxial cable, which is located at the
distanced,, from the last radiating element, is terminated with
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a quarter wavelength

Caleulated impedance transformer open end

......... Measured

Feeding
point ; ‘ !

Power (dB)

-30 ‘ . ‘
0 45 90 135 180 —
Elevation angle 6 (deg) Zin

Fig. 8. Calculated and measured radiation pattern of ECCD, where the
parameters are the same as those in Fig. 6.

Fig. 10. Geometry and equivalent circuit of a prototype four-element ECCD
array antenna, where the parameters of radiating elements are the same as
those in Fig. 6,c,, = 2 inside the feeding coaxial cable except in the
guarter wavelength impedance transformer, where= 1, the inner and

outer radii of the transformer, a®0026\ 7, and 0.010A ¢, respectively,
anddy = 0.44X,.

Fig. 9. Equivalent circuit for ECCD array antenna. 1 ————— Calculated

or T Measured

a load of impedanc&y.. d,,,, (m =1,2,---,n— 1) represent

the spacings betweemth andm + 1th radiating elements.

k; and Z; represent the propagation constant and the charac-
teristic impedance of the feeding coaxial cable, respectively.
Zm, (m =1,2,---,n) represent the self impedancesrath
radiating element which are calculated as follows:

Return Loss (dB)

! | !
0.7f, fo 1.3fo

Ly = 1/Ym (115) Fig. 11. Return loss (power) of ECCD array antenna in Fig. 10. The antenna
is designed to be matched #.

where Y,,, stands for the self admittance afith radiating

element calculated by (81). in Fy,. It is noted that (118) is sufficient to determine (116)
The input impedancé;, of the array antenna is calculated?®CauseZin(Vz, 11.) in (116) depends only on the ratio &%,

by using theF' matricesFZ, F,, (m = 1,2,---,n) of the and I. The voltageV,,, and current/,,, seen from the feed

m?

equivalent circuit as follows: side at themth radiating element are given as follows:
Vrn A A A VL
Vv :FmFmFm Frgr-- P FnFn (122)
T = = (116) <Im) Fim ' Ir
I
<‘;> :FOFIZFlFQZFQ---F,,,_anZFn<‘I/L> (117) where Av,, = I Zm, (m = 1,2,---,n) give the array
L excitation distributions.
VL = ZpIg, (118)
P~ <1 Z,,,) (119) VI. FABRICATION AND MEASUREMENTS
0 1 A four-element array antenna as shown in Fig. 10 was
ro— cos O, —iZysinb, (120) fabricated. The antenna was designed to have a uniform
™ \(—i/Zf)sin 6y, cos O, aperture field distribution. The parameters of the radiating
O = kydy, (121) elements are all identical to those of Figs. 6 and 8 in the

previous sections. The inner and outer radii of the feeding

coaxial cable ar€.0026 zo and0.0085A fo, respectively. The
whereV, I and Vy, I;, represent the voltage and current atable is filled with dielectric material of dielectric constant
the feeding port and those at the termination, respectivéfy, e, = 2.0. The spacingsl;, do, andds between the radiating
represents thé” matrix of the serial impedanck,,,, and the elements are all identical t6.71A o, which corresponds to
effect of lengthd,,, of the feeding coaxial cable is containedlA, where A\, = Asy/\/e.. The feeding coaxial cable is
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0 gain—of the antenna was 91%. A good omnidirectional pattern
Calculated in Az angles as well as a uniform aperture field illumination
Measured in El angles were observed.
Fg -10t 1
=~ VII. SUMMARY
% An electromagnetically coupled coaxial dipole array antenna
o 20} ] has been proposed. An analysis as well as experimental
verifications of the antenna have been carried out.
30 oL APPENDIX
o 90 135 180 : : o .
Elevation angle 8 (deg) In 'Fh|s Ap_pendm, a factorization pro_cedure fa[r(a)_ is
described. First of all, we decomposé«) into two functions
LM (a) and L?(a) as follows:
E Calculated ‘
-z, e Measured J (1) (2)
i ] L(a) = L'WY () L' ()
: | LO(@) = b3 Kora) — Ko(ah)Io(1a)
w
o :#: ’ = E{JO(HCL)N()(KJ()) — No(ka)Jo(kb)}
180 -90 0 90 180 Ko(vb)
Azimuth angle ¢ (deg) L(Q)(a) = W-

Fig. 12. Radiation characteristics of the four-element ECCD array antenna

in Fig. 10, where the angle$ and ¢ are defined in Fig. 7. As the integral functionL)(«) is even with respect te,
the following factorization into the infinite product form is

open ended and the distandg between the feeding point POSSible [8]-[11]:

of the last radiating element and the open end of the cable is

(3/4)A,. Near the feeding point of the array, an impedance LW(a) = LSLI)(Oc)L(,l)(oc)
matching section is formed. The section consists of a quarterL(l)(a) L(l)(—a)

wavelength impedance transformer with a coaxial cable. The - CaGn
impedance matching is carried out as follows: by varying _ {L(l)(o)}l/QG_X(U(a) H 14 ot
the distanced, between the feeding point of the array and it ap,
that of the first radiating element (see Fig. 10) the imaginary b b

; (1) o a) _ _ o a)
part of Z,, can be canceled, wher&,, is calculated by x'/(«a) = e 1-Cc—In e
(116). Now we haveZ,, = Z, = real. The characteristic

impedanceZ; of a quarter wavelength impedance transformer ) )
is determined byZ, = \/Z.Z; to realize the matching, wherea,, is a zero point offL'(«) in the quer'h(?;h plane
where Z; is the characteristic impedance of the feedl:gnd itis located atr,, ~ ”m/() —a) asn — co. x'/(a) has
coaxial cable. The designed parameters of the transfornfGen determined such thaf, () has an algebraic growth
are as follows: the inner and outer radii of the coaxial cabf$ [«| — oo, 7| < K} in th'S caseL( ) ~ a V21t
are 0.0026) ;o and 0.010) ;0, respectively, the length of thecan be also shown that™(a) ~ « 1/2. For L®(a), the
coaxial cable is(1/4)Aso, wheree,. = 1 inside andd, = Bates—Mittra factorization formula fak(va) [9] is applied:
0.44),. Fig. 11 shows a comparison between calculated and

measured values of the return loss of the fabricated array, K(va) = G(«)

where the input impedance was designed to be matchgég at = G4 (a)G_()

The correspondence between the two values is considered to . 1/2

be fair, however, not negligible disagreements are observed, G (a) = [ﬂHél)(/m)}

which is considered to be due to the following reasons. The 2

mutual couplings are neglected between the radiating elements o exp{_ik_a n 1y 1n<a — ’Y) + (e a)}
outside the feeding cable. The region near the open end of 2 7r k ’
the feeding coaxial cable is simply modeled by the transmis-

sion line model in Fig. 10, some treatments, e.g., inclusion (e, a) / HCORD)

of radiation effects, may be needed. Finally, more precise 1

modeling of the transition between the radiating element and/(w, @, a) = [1 - }
J 24+ {N 2

the feeding coaxial cable is considered to be important to " rea { olwa)}* +{No(wa)}

improve the correspondence in Fig. 11 as well as those in X 1n<1 + %)

Fig. 6. Fig. 12 shows the radiation characteristics of the array. k2 —w

The efficiency—measured gain versus calculated directive/k2 — w? = i/ w? — k2
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2

k

Qa
—1In
T

Gila) ~a~t/* exp{

(

From the above formulad,(®(«) is factorized as follows:

)}

(lo| = o0, 7 > —ko).

[14]

[15]

LO(a) = LP ()P (a)
L) = LP(=a) [16]
@ | HS (kD) Y2 ik(b— a) [17]

=e — D, expy T T
HSV(ka [18]
N inb—a) (a— ’7) (o, b)} [19]
T k
&aya,b) = gla,b) — ¢(a, a)
@) = =), 20
X P

whereLf)(a) ~1 andL(_Q)(a) ~ 1 can be shown iffir| < k2
as |a| — oo.

Now we havel (a) = LY(a)L®P(a) ~ a~1/2 and
Ly(a) = LY (@) LY () ~ a1/2, which prove (37).
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