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Application of the Multilevel Single-
Linkage Method to One-Dimensional
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Abstract—An inverse scattering method for the reconstruction
of the permittivity and conductivity profiles of a multilayered
medium and for that of the impedance profile of a nonuniform
transmission line is proposed. The inversion is based on the
global minimization of an objective function by the multilevel
single-linkage method. The objective function is defined as the
mean-square error between the measured data and the data
obtained from the solution of the forward problem. An exact
formulation for the gradient of the objective function in closed
form is derived. The necessary condition for the unique solution
of the inverse problem of a nonuniform transmission line is
discussed. Reconstruction examples using both experimental and
noisy synthetic data are presented.

Index Terms—Inverse scattering, nonhomogeneous media.

I. INTRODUCTION

T HE one-dimensional (1-D) inverse scattering problem is
to reconstruct the material parameters of layered media

from the so-called scattering data, e.g., reflection coefficients
measured at different frequencies and/or at different incident
angles. The reconstruction of the permittivity and conductivity
profiles of a multilayered medium and the identification of
the impedance profile of a nonuniform transmission line,
are the examples of typical 1-D inverse scattering problems.
One-dimensional inversion methods can be divided into two
categories [1]. The first category includes all direct inversion
methods such as the layer stripping method [2]–[4]. The sec-
ond comprises the so-called model-based inversion methods.
When the scattering data is incomplete and contaminated with
noise, the performance of the second category is superior
to the first. Much attention has therefore been paid to the
model-based inversion approach.

Model-based inversion methods rely on an optimization
procedure in which the profile of a medium is reconstructed
by optimizing a suitable objective function. The value of
this function indicates the closeness between the observed
(measured) data and the synthetic data that is generated by
solving the forward scattering problem. In general, because
the forward model is nonlinear, the resulting objective function
may have several optima. The model-based inversion methods
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only yield the correct results if they converge to the global
optimum of the objective function.

Local optimization methods such as the conjugate gradient
method have often been used for 1-D inverse scattering
problems [5]–[7]. To ensure the convergency of a local op-
timization method to the global optimum,a priori information
must be incorporated in the definition of the objective function
as well as in the selection of the initial profile. However,
there is no certainty that the method converges to the true
solution, which corresponds to the global optimum. One way
to overcome this problem is to apply global optimization
methods, such as simulated annealing (SA) [8], and genetic
algorithms (GA) [1].

SA is based on the analogy between the physical annealing
process of solids and the problem of finding the minimum of
an objective function [9]. In SA, a control parameter known as
the temperature is lowered slowly while at each temperature
several values for the objective function are experienced. As
cooling proceeds, the variation domain of the function is
reduced and becomes restricted to a point (minimum point)
at temperature zero. GA optimize a function using processes
inspired from the mechanics of natural selection and genet-
ics (e.g., crossover and mutation) [10]. The optimization is
accomplished by evolving a population of candidate solu-
tions and improving incrementally the individuals forming the
population.

The main drawbacks of SA and GA are that they are not
efficient in terms of computation time and are not sufficiently
accurate in locating the exact solution. On the other hand, the
multilevel single-linkage method (MLSL), which incorporates
a local optimization method into the global search [11]–[13],
offers efficiency and accuracy. A comparison between GA
and MLSL has been performed by Renders and Flasse [14].
They have proposed a hybrid version of genetic algorithms
combining principles from GA and local gradient search
techniques to reduce the computing time and to improve the
accuracy of GA. The conclusion was that the hybrid method
is superior to the standard GA but, overall, it produces poorer
results than those of MLSL. In addition, the convergence of
GA and its variants to the global optimum is only guaranteed in
a weak probabilistic sense, whereas there exists a probabilistic
guarantee that the MLSL finds the global optimum of a func-
tion within a finite number of local searches. The MLSL also
offers a significant improvement in accuracy and efficiency
over SA [15]. The limitation of the MLSL is that the method
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(a)

(b)

Fig. 1. (a) The structure of anM -layer medium. (b) The structure of a
nonuniform transmission line.

is based on the assumption that the function and its gradient
are continuous. The advantages of SA and the standard GA
are that they require only the value of the objective function
and they are simple to implement.

In this paper, a 1-D inverse scattering method based on the
MLSL is used to reconstruct the permittivity and conductivity
profiles of a multilayered medium. The method is also applied
to find the parameters of a nonuniform transmission line. The
MLSL is employed to minimize the mean-square error (MSE)
function, which is obtained from the difference between the
measured reflection coefficients and those calculated from the
forward model. The forward model for multilayered media and
the transmission line can be formulated in a closed-form [16].
In the present paper, the gradient of the objective function is
derived analytically. This greatly increases the efficiency of
the inversion method. There is no need to specify the initial
profile for the proposed method, although the bounds of the
parameters have to be specified. Thus, any prior knowledge of
the parameters can be used to narrow the parameter bounds.
For multilayered media, the inversion method offers simul-
taneous reconstruction of the permittivity and conductivity
profiles from the reflection coefficient data of a TEM plane
wave at a set of discrete frequencies. The necessary condition
for reconstructing uniquely the parameters of a nonuniform
transmission line from the reflection coefficient data will also
be discussed.

Fig. 2. A three-layer slab placed in free-space.

Several reconstruction examples are used to demonstrate
the performance of the proposed 1-D inversion method. In the
case of multilayered media the observed data is synthetic, i.e.,
the simulated reflection coefficient. Gaussian noise is added to
this data to simulate practical applications. For the nonuniform
transmission line, both experimental and noisy synthetic data
are used. The experimental reflection coefficients are measured
by using an HP-8753B network analyzer.

II. FORMULATION OF THE FORWARD PROBLEM

The derivation of the reflection coefficient for multilayered
media and for a nonuniform transmission line is well known,
e.g., [16]. For completeness and for ease of later discussion, the
expressions necessary for the solution of the forward problem
are given below.

A. Multilayered Medium

The geometry of the problem is illustrated in Fig. 1(a) where
a TE wave is incident on the first interface at . The
multilayered medium consists of homogeneous layers. The

th layer is characterized by conductivity , permittivity ,
permeability and thickness . Suppose that the incident
TE plane wave has a -component electric field with an
incident angle relative to direction and has time factor

, where is the angular frequency. The reflection
coefficient at is given by

(1)

can be derived from

(2)

where , and is given by

(3)

, the intrinsic admittance of the th layer, and are
given by

(4)

(5)
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(a)

(b)

Fig. 3. Synthetic data for the reflection coefficients of the three-layer slab obtained for a TE wave incidence at 15 frequencies equally spaced in the
interval [5 MHz, 75 MHz]. (a) Incident angle� = 0

�. (b) Incident angle� = 45
�.

where , the propagation constant of theth layer, is equal
to

(6)

A. Nonuniform Transmission Line

Fig. 1(b) shows a nonuniform transmission line with
uniform sections. , , , and are, respectively,
the series resistance, series inductance, shunt capacitance, and
shunt conductance per unit length; denotes the length of
the th section. The nonuniform line is excited at from
a uniform transmission line with a characteristic admittance

. There is a direct analogy between a multilayered medium
and a nonuniform transmission line [16]. The expressions
derived in the previous subsection are equally applicable here.
In addition, (i.e., ) and the expression for

[17] is changed to

(7)

where is the characteristic admittance of theth section.
The propagation constant is given by

(8)

III. I NVERSE SCATTERING METHOD

Consider are the measured reflection coeffi-
cients at a number of frequencies. For a multilayered medium,
they can be measured at a number of incident angles as well.
Furthermore, consider as a point in a multidimensional
space with the dimension given by all constitutive parameters
defining a layered medium or a nonuniform transmission line,
e.g., for a multilayer medium, this point can be represented as

(9)

where . The objective function for the inversion
method is defined as follows:

(10)

where denotes the reflection coefficient obtained from
the forward model under the same conditions as the measured
data . The actual constitutive parameters are found by
minimization of the function . A global optimization
method should be used for , which may have several
minima. For the present investigation, the MLSL method is
adopted due to its efficiency in comparison with other methods
[9], [10], [14], [18], [19].
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Fig. 4. Illustration of the performance of the MLSL method in minimizing
the objective function for the three-layer slab. The number of layers assumed
is two, three, and four. The observed data at� = 0

�is free of noise.

Because of the nonlinearity of the forward model together
with the inadequacy of the measured data, inverse scattering
problems are often ill-posed. An ill-posed problem can be
converted to a well-posed one by introducing the bounds on
the parameters on physical grounds [1]. The global minimum
is therefore found within the range of parameters specified by

For a multilayered medium:

For a nonuniform transmission line:

(11)

It should be noted that the inverse method cannot reconstruct
the five parameters defining a section of a nonuniform trans-
mission line. The necessary condition which must be satisfied
in order to uniquely reconstruct the profile of a nonuniform
transmission line is discussed in Section III-C below. A brief
account of the algorithm associated with the MLSL method
and the derivation of the gradient of the objective function
required by the MLSL method are given, respectively, in
Sections III-A and B.

A. The Multilevel Single-Linkage Method

The MLSL method is used to search the global minimum of
the objective function in a feasible region defined by

(12)

where and are respectively the lower and upper bounds
of the parameter .

The MLSL method is a stochastic iterative algorithm, which
combines random search with a local optimization method.
The th iteration of the algorithm outlined by Byrdet al. [13]
is as follows.

1) Generate sample points drawn from a uniform distri-
bution over , and calculate the corresponding func-
tional values at these points. Add points to the
(initially empty) set of sample points.

(a)

(b)

Fig. 5. (a) The conductivity and (b) permittivity profile reconstructed from
normal incidence, noise-free data. The three-layer structure is found by the
algorithm.

2) Determine a set of the reduced sample points by taking
the points with the smallest function values, where

is any fixed number in (0, 1].
3) Select start points from the reduced sample points for

local searches. The selection procedure will be discussed
later.

4) Perform local minimizations from the selected start
points.

5) If the stopping rule is satisfied, the lowest local minimum
is taken as the global minimum, otherwise go to Step 1).

In Step 3), at the th iteration, each reduced sample point
is selected as a start point for a local minimization provided

that the start point has not been used at a previous iteration and
that there is no sample pointwithin the critical distance
of with . The critical distance is given by [12]

(13)

where denotes the gamma function, denotes the
Lebesque measure of and is a positive constant. Rinnooy
Kan and Timmer [12] have proven that when , all
local minima of will be found within a finite number
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Fig. 6. The objective function versus the number of function evaluations
when the observed data at normal incidence is corrupted by a Gaussian noise
with �� = 10

�3.

of iterations with probability one. Moreover, when ,
the total number of local searches started by the MLSL
method will be finite with probability one even if the sampling
continues forever. is set to four in our reconstruction
examples.

A Bayesian stopping rule is applied in Step 5). Let
denote the number of local minima found afteriterations.
A Bayesian estimate of the total number of local minima is
given by

(14)

Moreover, a Bayesian estimate of the portion ofcovered
by the regions of attraction of the local minima found so far
is given by

(15)

The algorithm is terminated after theth iteration if the
estimate given by (14) is greater thanby less than 0.5 and
the estimate given by (15) is greater than a value near but less
than 1 such as 0.999.

A modified Newton’s method is used for the local min-
imization. This method requires both the gradient vector
and the Hessian matrix (i.e., the second derivatives) of the
objective function to find a minimum point. We derive an
exact and closed-form expression for the gradient of the
objective function in the next subsection. The Hessian matrix is
estimated by finite differences within the optimization routine,
which is taken from the NAG library [20].

B. The Closed-Form Expression for the Gradient

The derivation of the gradient for multilayered media is
considered first. Let be one of the parameters (, , and

) of the th layer. The derivative of the objective function
given by (10) with respect to can be obtained as

(16)

where “ ” and “ ” denote the real part and complex conju-
gation, respectively. Using (1)–(3), one can derive

(17)

where . The expression for depends on
the relation between and . If , we have

(18)

where . For the case of and
or , is given by

(19)

The expression for when is

(20)

Finally, for the special case of , (19) is simplified to

(21)

and in (19) and (21) for
and are

(22)

(23)

Due to the similarity between the formulation of the forward
problem for a multilayered medium and that of a nonuniform
transmission line, (16)–(21) are applicable to the latter case.
In addition, and for , ,

, and can be written as

(24)

(25)

(26)

(27)

where use has been made of (7) and (8).
It is noteworthy that with regard to the recursive equation

(18), the computation time for calculating the gradient is in
proportion to that needed for calculating the objective function
itself. This greatly improves the efficiency of the optimization
procedure.
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(a)

(b)

Fig. 7. Influence of noise on the reconstructed profile.

C. Necessary Condition for the Unique Reconstruction of the
Parameters of a Nonuniform Transmission Line

It is not possible to uniquely reconstruct all five parameters
defining a section of a nonuniform transmission line. This is
because the reflection coefficient of a nonuniform transmission
line depends on these parameters only throughand .
Manipulating (7), can be written as

(28)

With the known values of and , we can derive
from the above equation. The value of
is then calculated from by noting

(29)

Thus, four relations can be derived from the real and imaginary
parts of the two complex equations (28) and (29)

(30)

(a)

(b)

Fig. 8. Illustration of the improvement of the reconstructed profile for
three-layer structure using more observed data. The results are based on the
observed data at 15 frequencies and two incident angles (0� and 45�).

One of the five parameters must be known in order to recon-
struct a section of a nonuniform transmission line. Note that the
two terms and in (30) are frequency independent.
Therefore, the five parameters cannot be calculated by taking
into account the value of and at several frequencies. In
practice, and are often negligible. The four conditions
are therefore reduced to two. Thus, one of the remaining three
parameters must be assumed known. This additional condition
is known as the necessary condition for the inverse problem
of a nonuniform transmission line. In a similar manner, it can
be shown that this condition is valid even if both transmission
and reflection data are available.

IV. RECONSTRUCTIONEXAMPLES

This section is devoted to three reconstruction examples to
demonstrate the proposed inversion method.

A. General Considerations

In the usual description of the inversion method, it is
assumed that the number of layers is known, which is often
a priori information in some applications. However, if the
number of layers is unknown, to find the structure of a
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(a)

(b)

Fig. 9. (a) The conductivity and (b) permittivity profiles of the three-layer
slab reconstructed from the reflection coefficients obtained at two incident
angles (0� and 45�) and at 30 frequencies over the range of [5 MHz, 150
MHz] with linear spacing.

medium, the present method employs a procedure which
makes use of the inversion method iteratively. At theth
iteration of this procedure, while the medium is considered to
consists of layers, the constitutive parameters of the medium
are reconstructed by the inversion method. The resultant MSE,

, which is viewed as the value of the objective function at its
global minimum, is compared with the one from the th
iteration . If they are sufficiently close, two cases may
arise: one is that the parameters of two adjacent layers are
matched (i.e., and ) and the other is
that the thickness of a layer converges to zero. For both cases,
one layer can be omitted and the reconstructed profile for-
layer medium is the same as that for -layer medium. This
would happen for , where is the actual number
of layers. When the observed data is free of noise, the value
of the objective function at its global minimum for -layer
and -layer mediums are equal (i.e., ). For
the case where the data is corrupted by noise, we generally
have . Consequently, the iterative procedure at

Fig. 10. A nonuniform transmission line.

iteration is terminated if

(31)

where is a small value less than one. Otherwise, the number
of layers is incremented and the process is repeated.

The computational efficiency of global optimization meth-
ods is usually measured in terms of the number of evaluations
of the objective function. Both the evaluation of the objective
function and that of its gradient are required by the MLSL
method. In order to estimate the computation cost, the compu-
tation time for gradient evaluation is measured as a proportion
of that for the function evaluation. For the examples given
below, it has been found that the proportional constant is
nearly two.

B. Examples

Example 1: This example is the one considered in [5].
The goal is to reconstruct the permittivity and conductivity
profiles of a three-layer slab placed in free-space as shown in
Fig. 2. The thickness of the whole ensemble together with
the permittivity and conductivity of the bottom half-space
are assumed known in [5]. In contrast, we only assume that
the bottom layer is free-space. The observed data,, are
generated by using the equations presented in Section II.

To simulate the presence of the noise in the observed data,
Gaussian noise is added. The noise is a complex random
variable whose real and imaginary parts are independent
Gaussian random variables with zero mean and standard
deviation .

The parameters of and in the MLSL method are set
to 500 and 0.01, respectively. In addition, the feasible region

is given by

S/m

cm

The above bounds on permittivity and conductivity are suffi-
ciently wide that they cover the permittivity and conductivity
of most materials, which may be found in an environment.

As shown in Fig. 3, the reflection coefficients are obtained
for a TE wave incidence at 15 frequencies equally spaced in
the interval [5 MHz, 75 MHz] and at two incident angles

and . Gaussian noise with different standard
deviations is introduced to simulate the effect of noise.
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(a)

(b)

Fig. 11. The reflection coefficients of the transmission line shown in Fig. 10.
The data is measured by an HP-8753B network analyzer at 16 frequencies
equally spaced in the interval [100 MHz, 250 MHz].

Fig. 12. Illustration of the performance of the MLSL method in minimizing
the objective function for the transmission line shown in Fig. 10.

The profile is first reconstructed from noise-free data at
an incident angle . Fig. 4 illustrates that how the
objective function is reduced by the MLSL method under
the assumptions that the number of layers is two, three, and
four. The number of minima for each layer structure is also
given. The conductivity and permittivity profiles derived from
the inversion method are shown in Fig. 5. Three features

(a)

(b)

Fig. 13. A comparison between the known (a) capacitance and (b) char-
acteristic impedance with those provided by the inversion method for the
transmission line shown in Fig. 10.

of the inversion method can be observed from this exam-
ple. First, the objective function has several local minima.
Consequently, local optimization methods cannot in general
find the right solution. Second, the global minimum of the
three-layer structure is the same as that of the four-layer
structure. For the latter case, the thickness of one layer
has converged to zero. The third feature is that both the
conductivity and permittivity profiles can be simultaneously
reconstructed from the reflection coefficients obtained for
normal incidence.

The results in the presence of a Gaussian noise with a
standard deviation are shown in Figs. 6 and 7, where
the influence of the noise is clearly visible. Nevertheless, this
influence can be reduced by extending the data to include
more frequencies and incident angles. In Fig. 8, the data at 15
frequencies over the range of [5 MHz, 75 MHz] and at two
incident angles have been used. The improvement
is apparent. Further improvement can be achieved by doubling
the frequency points (Fig. 9). It should be noted that the
number of layers is assumed to be there for the results of
Figs. 8 and 9.
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(a)

(b)

Fig. 14. Synthetic data for the reflection coefficient of the transmission line
whose profile is shown by the solid lines in Fig. 16. The data is obtained at
101 frequencies with logarithmic spacing in the interval [10 MHz, 1 GHz].

Fig. 15. The objective function versus the number of function evaluation.

Example 2 This example aims at testing the inversion
method with experimental data. A nonuniform transmission
line which consists of four coaxial sections as shown in
Fig. 10, is investigated. An HP-8753B network analyzer
with an output impedance of 50 is used to measure the
reflection coefficients. The lines are standard 50and 75

coaxial cables which have negligible series resistance and
shunt conductance. The nominal value of the shunt capacitance
per unit length , provided by the manufacturer, is 100 pF/m

for 50 line and 56 pF/m for 75 line. The series inductance
(given in Fig. 10) is calculated by using

(32)

where is the characteristic impedance of theth section.
The fourth line is terminated by a 50-load so that it can be
considered as an infinitely long transmission line.

Since the value of and of the lines are nearly zero,
the value of one of the three parameters , , and
has to be known according to the necessary condition. In this
example, the value of is assumed known and and

are reconstructed by the inversion method. The bounds of
these parameters are set to

pF/m pF/m

cm

The lower bounds of are obtained in accordance with
m/s which indicates the velocity of

the wave traveling along the lines cannot be in excess of the
velocity of light. The parameters of and in the MLSL
method are set to 100 and 0.05, respectively.

The reflection coefficients measured at 16 frequencies over
the frequency range of [100 MHz, 250 MHz] with linear
spacing are shown in Fig. 11. The objective function during
minimization and the reconstructed profile are illustrated in
Figs. 12 and 13, respectively. The profile of the characteristic
impedance shown in Fig. 13(b) is obtained from the profile
of the capacitance per unit length by using (32). Note that in
this example the number of sections is assumed to be four. It
can be seen that there is an error in the reconstructed profile.
Although the measurement noise can be considered having
contributed in generating this error, we think the dominant
sources of this error are the following.

1) The value of the capacitance per unit length is a nominal
value and the actual value may be different from the
nominal one.

2) The series resistance is neglected whereas its value for
50- cables at 100 MHz is nearly 2 m which is
considerable.

Example 3: This example is concerned with the simulta-
neous reconstruction of four parameters, , , and of
a nonuniform transmission line from synthetic data assuming
that the lengths of the sections are known. In practice, these
parameters vary with frequency. The variations of, , and

are small whereas that of is considerable. The frequency
dependence of can be modeled by . Thus,

is to be reconstructed. Consequently, (24) is replaced with
the following expression:

(33)

The line parameters chosen for this example are shown by
the solid lines in Fig. 16. The corresponding values for the
parameter are
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(a) (b)

(c) (d)

Fig. 16. Simultaneous reconstruction of the (a) conductanceG, (b) capacitanceC, (c) resistanceR, and (d) inductanceL.

The line is excited from a uniform line with a characteristic
admittance S/m. The other side is left open, i.e.,

. The parameters of and in the MLSL method
are set to 1000 and 0.005, respectively. The search region is
selected as

H/m

mS/m pF/m

for

Figs. 15 and 16 show the objective function graph and the
reconstructed profiles which make use of the synthetic data
shown in Fig. 14. For the noise-free data, the objective func-
tion approached zero and, therefore, the profiles were precisely
reconstructed.

V. CONCLUSION

A one-dimensional inverse scattering method for recon-
structing the parameters of layered media and nonuniform
transmission lines has been proposed. The method is based
on minimizing the MSE between the measured and calculated
data using the multilevel single-linkage method. Unlike the
inversion methods based on local optimization technique, the
proposed method is more likely to converge to the actual
profile regardless of the initial one. The gradient of the
objective function has been given in a closed form, which
greatly improves the efficiency of the MLSL method.

The reconstruction technique has been tested with both syn-
thetic and experimental data. It has been demonstrated that the

method is successful with a minimum amount of information
regarding the structure of the system under investigation. If the
observed data is free from noise, accurate reconstruction can
be achieved. When the observed data is corrupted by noise, the
adverse effect of noise can be reduced by using an enlarged
observed data.

Further improvement in the performance of the reconstruc-
tion algorithm in the presence of noise may be achieved
by adding an appropriate regularization factor to the MSE
function. This is left for future work.
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