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Application of the Multilevel Single-
Linkage Method to One-Dimensional
Electromagnetic Inverse Scattering Problem
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Abstract—An inverse scattering method for the reconstruction only yield the correct results if they converge to the global
of the permittivity and conductivity profiles of a multilayered  optimum of the objective function.
medium and for that of the impedance profile of a nonuniform Local optimization methods such as the conjugate gradient

transmission line is proposed. The inversion is based on the thod h ft b d for 1-D i tteri
global minimization of an objective function by the multilevel metho ave orten been used for 1-U inverse scattering

single-linkage method. The objective function is defined as the Problems [5]-[7]. To ensure the convergency of a local op-
mean-square error between the measured data and the data timization method to the global optimura,priori information

obtained from the solution of the forward problem. An exact must be incorporated in the definition of the objective function
formulation for the gradient of the objective function in closed as well as in the selection of the initial profile. However

form is derived. The necessary condition for the unique solution th . taintv that th thod to the t
of the inverse problem of a nonuniform transmission line is ere IS No cenainty that me metnod CoNverges 1o the utle

discussed. Reconstruction examples using both experimental andsolution, which corresponds to the global optimum. One way
noisy synthetic data are presented. to overcome this problem is to apply global optimization
methods, such as simulated annealing (SA) [8], and genetic
algorithms (GA) [1].
SA is based on the analogy between the physical annealing
. INTRODUCTION process of solids and the problem of finding the minimum of
HE one-dimensional (1-D) inverse scattering problem &0 objective function [9]. In SA, a control parameter known as
to reconstruct the material parameters of layered medfe temperature is lowered slowly while at each temperature
from the so-called scattering data, e.g., reflection coefficierggveral values for the objective function are experienced. As
measured at different frequencies and/or at different incide¢f0ling proceeds, the variation domain of the function is
angles. The reconstruction of the permittivity and conductivitigduced and becomes restricted to a point (minimum point)
profiles of a multilayered medium and the identification okt temperature zero. GA optimize a function using processes
the impedance profile of a nonuniform transmission liné)spired from the mechanics of natural selection and genet-
are the examples of typical 1-D inverse scattering probleni€s (€.9., crossover and mutation) [10]. The optimization is
One-dimensional inversion methods can be divided into twascomplished by evolving a population of candidate solu-
categories [1]. The first category includes all direct inversidipns and improving incrementally the individuals forming the
methods such as the layer stripping method [2]-[4]. The sdeopulation.
ond comprises the so-called model-based inversion methodslhe main drawbacks of SA and GA are that they are not
When the scattering data is incomplete and contaminated wefficient in terms of computation time and are not sufficiently
noise, the performance of the second category is super@§curate in locating the exact solution. On the other hand, the
to the first. Much attention has therefore been paid to tifeultilevel single-linkage method (MLSL), which incorporates
model-based inversion approach. a local optimization method into the global search [11]-[13],
Model-based inversion methods rely on an optimizatiopffers efficiency and accuracy. A comparison between GA
procedure in which the profile of a medium is reconstructeétnd MLSL has been performed by Renders and Flasse [14].
by optimizing a suitable objective function. The value ofhey have proposed a hybrid version of genetic algorithms
this function indicates the closeness between the obsengnbining principles from GA and local gradient search
(measured) data and the synthetic data that is generatedt@gpniques to reduce the computing time and to improve the
solving the forward scattering problem. In general, becaugecuracy of GA. The conclusion was that the hybrid method
the forward model is nonlinear, the resulting objective functid§ superior to the standard GA but, overall, it produces poorer
may have several optima. The model-based inversion methé@sults than those of MLSL. In addition, the convergence of
GA and its variants to the global optimum is only guaranteed in
a weak probabilistic sense, whereas there exists a probabilistic
Manuscript received March 26, 1998; revised August 16, 1999. This wogarantee that the MLSL finds the global optimum of a func-
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Fig. 2. A three-layer slab placed in free-space.

Several reconstruction examples are used to demonstrate
o O —mm - o the performance of the proposed 1-D inversion method. In the

R, R, R, case of multilayered media the observed data is synthetic, i.e.,
L L,, L, the simulated reflection coefficient. Gaussian noise is added to

Y, this data to simulate practical applications. For the nonuniform
G, Gy Gy transmission line, both experimental and noisy synthetic data
C, Cos Cy are used. The experimental reflection coefficients are measured

O -mm - 2% by using an HP-8753B network analyzer.
z=0 Z; Zy 2y
[I. FORMULATION OF THE FORWARD PROBLEM

(b) The derivation of the reflection coefficient for multilayered

Fig. 1. (a) The structure of an-layer medium. (b) The structure of a Media and for a nonuniform transmission line is well known,
nonuniform transmission line. e.g., [16]. For completeness and for ease of later discussion, the

expressions necessary for the solution of the forward problem

is based on the assumption that the function and its gradi@ﬁ? given below.

are continuous. The advantages of SA and the standard GA . .

are that they require only the value of the objective functio"ﬁ' Multilayered Medium

and they are simple to implement. The geometry of the problem is illustrated in Fig. 1(a) where
In this paper, a 1-D inverse scattering method based on thel E wave is incident on the first interface at= 0. The

MLSL is used to reconstruct the permittivity and conductivitynultilayered medium consists aff homogeneous layers. The

profiles of a multilayered medium. The method is also appligtth layer is characterized by conductivity,, permittivity ¢,

to find the parameters of a nonuniform transmission line. TIREMeability;io and thickness,,,. Suppose that the incident

MLSL is employed to minimize the mean-square error (MSE)E Plane wave has g-component electric field with an

function, which is obtained from the difference between tHBCIdent angled relative to » direction and has time factor

measured reflection coefficients and those calculated from W(jwt)’ wherew is the angular frequency. The reflection

forward model. The forward model for multilayered media angoefﬁment atz = 0 s given by

the transmission line can be formulated in a closed-form [16]. H(w) = Yo - Wl' @
In the present paper, the gradient of the objective function is Yo+ W,

derived analytically. This greatly increases the efficiency @f/; can be derived from

the inversion method. There is no need to specify the initial Wit + Yy tanh i

profile for the proposed method, although the bounds of the W =Yn 2)

parameters have to be specified. Thus, any prior knowledge of Yon o+ Wt tar.1h ufnhm

the parameters can be used to narrow the parameter boulfi€re = 1,2.---.M — 1, andWy, is given by

For multilayered media, the inversion method offers simul- Wi = Y. (3)
taneous reconstruction of the permittivity and conductivit L _

profiles from the reflection coefficient data of a TEM plani/.m’ the intrinsic admittance of thenth layer, andu,, are
wave at a set of discrete frequencies. The necessary conditioff" by

for reconstructing uniquely the parameters of a nonuniform Y, = - (4)
transmission line from the reflection coefficient data will also Jwho

be discussed. U, = [¥2, — 75 sin® 6] 12 (5)
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Fig. 3. Synthetic data for the reflection coefficients of the three-layer slab obtained for a TE wave incidence at 15 frequencies equally spaced in the
interval [5 MHz, 75 MHz]. (a) Incident anglé = 0°. (b) Incident angle? = 45°.

where~,,, the propagation constant of theth layer, is equal [ll. I NVERSE SCATTERING METHOD
to Considerry,ro, -- -,y are the measured reflection coeffi-
Y 211/2 cients at a number of frequencies. For a multilayered medium,
Y = [p00mw = poeme” ]/ 6) they can be measured at a number of incident angles as well.
Furthermore, considex as a point in a multidimensional
A. Nonuniform Transmission Line space with the dimension given by all constitutive parameters

Fig. 1(b) shows a nonuniform transmission line wild defining a layered medium or a nonuniform transmission line,
uniform sections.R,,,, L., Cn, and G,,, are, respectively, €.9., for a multilayer medium, this point can be represented as
the series resistance, series inductance, shunt capacitance, and x = (21,22, 23, -

. 1, 42,43,
shunt conductance per unit length;, denotes the length of 9
the mth section. The nonuniform line is excitedat 0 from
a uniform transmission line with a characteristic admittansghere K = 3M — 1. The objective function for the inversion
Y. There is a direct analogy between a multilayered mediumethod is defined as follows:

"xl(—laxl()

= (o1, €1,h1, 00, €M)

and a nonuniform transmission line [16]. The expressions T

derived in the previous subsection are equally applicable here. fx)= N Z |H, (%) — 702 (10)

In addition, w,, = v (i.e., 8 = 0°) and the expression for n=1

Yy, [17] is changed to where H,,(x) denotes the reflection coefficient obtained from

the forward model under the same conditions as the measured
(7) datar,. The actual constitutive parameters are found by
minimization of the functionf(x). A global optimization
whereY,, is the characteristic admittance of theth section. method should be used fof(x), which may have several
The propagation constant,, is given by minima. For the present investigation, the MLSL method is
adopted due to its efficiency in comparison with other methods
Y = (B + G L ) (G + jwCi )|/, (8 [9], [10], [14], [18], [19]

U'rn

an = 5 .
Ry, +jwly,
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Fig. 4. lllustration of the performance of the MLSL method in minimizing ’
the objective function for the three-layer slab. The number of layers assumed (a)
is two, three, and four. The observed dat& at 0°is free of noise.

-
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Because of the nonlinearity of the forward model together . |- No. of layers = 2

9.

: H : : No. of layers = 3
with the inadequacy of the measured data, inverse scattering ol o o Nooflayers—4
problems are often ill-posed. An ill-posed problem can be ,
converted to a well-posed one by introducing the bounds on Noise 5.0, = 0
the parameters on physical grounds [1]. The global minimum il Incident angle = 0 deg.
is therefore found within the range of parameters specified by WS

. . at
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Fig. 5. (a) The conductivity and (b) permittivity profile reconstructed from

It should be noted that the inverse method cannot reconstrgl%lfgr;iat\rlnl:l(:|dence, noise-free data. The three-layer structure is found by the
the five parameters defining a section of a nonuniform trans-
mission line. The necessary condition which must be satisfied
in order to uniquely reconstruct the profile of a nonuniform 2) Determine a set of the reduced sample points by taking
transmission line is discussed in Section I1I-C below. A brief ~ the kP points with the smallest function values, where
account of the algorithm associated with the MLSL method ¢ is any fixed number in (0, 1].
and the derivation of the gradient of the objective function 3) Select start points from the reduced sample points for
required by the MLSL method are given, respectively, in local searches. The selection procedure will be discussed

hi\rgin S hm, S hi\gax’ m = 1a e aM' (ll)

Sections IlI-A and B. later.
4) Perform local minimizations from the selected start
A. The Multilevel Single-Linkage Method points.

5) If the stopping rule is satisfied, the lowest local minimum
is taken as the global minimum, otherwise go to Step 1).
In Step 3), at theth iteration, each reduced sample point
S={x|li<z<w,i=1--- K} (12) x s selected as a start point for a local minimization provided
O%at the start point has not been used at a previous iteration and
that there is no sample poigtwithin the critical distancel(%)
pf x with f(y) < f(x). The critical distance is given by [12]

The MLSL method is used to search the global minimum of
the objective functiory(x) in a feasible regiort defined by

wherel; andw; are respectively the lower and upper boun
of the parameter:;.
The MLSL method is a stochastic iterative algorithm, whic

combines random search with a local optimization method. K log kP /K
The kth iteration of the algorithm outlined by Byret al. [13] d(k) = n~1/? [F <1 + 5)\1/(5)p P } (13)
is as follows.

1) GenerateP sample points drawn from a uniform distri-where I' denotes the gamma functionf(S) denotes the
bution over.S, and calculate the corresponding funckebesque measure 6f andp is a positive constant. Rinnooy
tional values at these points. Ad# points to the Kan and Timmer [12] have proven that when > 0, all
(initially empty) set of sample points. local minima of f(x) will be found within a finite number
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where ‘Re” and “x” denote the real part and complex conju-
gation, respectively. Using (1)—(3), one can derive
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Eol i ] where V;,, = OW; /9z,. The expression fo¥,, depends on
g ' the relation between andm. If ¢ < m, we have
@
= ' )
10 E . Y. .
B e Vi _—"" (1 (TH)yHVitl (18)
m Y;+Wz+ltrz ( ( 1) ) m
° 2 Numberof Function Evaluation 1ot whereT; = tanhu;h;. For the case of = m andz,, = o,

or €,,, V' is given by

Fig. 6. The objective function versus the number of function evaluations

o A - ; Y,
mr;ﬁn&thi oltjos_e;Yed data at normal incidence is corrupted by a Gaussian noyzz: <Tm[(Wm+1)2+(Ym)2+2Yme+1Tm]a—m

m

2 2 aTm 2
of iterations with probability one. Moreover, when > 4, YT = (W) ]3xnl>/(Ym+Wm+le) )
the total number of local searches started by the MLSL (29)
method will be finite with probability one even if the sampling
continues forever,p is set to four in our reconstruction The expression fo¥* whenz,, = h,, is
examples.

A Bayesian stopping rule is applied in Step 5). Lst V7 = Youm[l — (Tp)?] (Yin)? — (Wm+1)2_ (20)
denote the number of local minima found afteriterations. (Yo + Wit 1)?
S\iVBe":l]y(;?an estimate of the total number of local minima Il§inally, for the special case ah — M, (19) is simplified to

Y
_ M _ 9fMm
w(ékP —1) (14) Vil =5 (21)
EkP —w—2 M

Moreover, a Bayesian estimate of the portionfcovered Y /92, and 9T, /dx,, in (19) and (21) forz,, = o,
by the regions of attraction of the local minima found so fa&nd ¢,, are

is given by Y, 1 T, [1 = (T)2] 22)
(ng —w— 1)(£kP + w) (15) ao—rn N 2“7717 ao—rn B 2an
ERP(ERP — 1) N _ ) N T _ . O, 23)

dem

The algorithm is terminated after thkth iteration if the dom Jem dom

estimate given by (14) is greater thanby less than 0.5 and  Due to the similarity between the formulation of the forward

the estimate given by (15) is greater than a value near but l@gsblem for a multilayered medium and that of a nonuniform

than 1 such as 0.999. transmission line, (16)—(21) are applicable to the latter case.
A modified Newton’s method is used for the local minin addition, 8Y,,, /9z,, and 9T, /9, for =,, = R, L,

imization. This method requires both the gradient vectay,,, and C,, can be written as

and the Hessian matrix (i.e., the second derivatives) of the

objective function to find a minimum point. We derive an N Yo T Y[l = (T)?]hm (24)
exact and closed-form expression for the gradient of the R, 2up, OR, 2
objective function in the next subsection. The Hessian matrix is Y i Yy, 0L, i T (25)
estimated by finite differences within the optimization routine, 8L, J "OR,, 0L, J "OR,,
which is taken from the NAG library [20]. oY, 1 oT,, 1= (Tn)?hm 26
aGrn B 2U'rn’ aGrn B 2an ( )
B. The Closed-Form Expression for the Gradient ay,, . 0Y, otT,, . 0T, 27)
= JWn ) = JWn
The derivation of the gradient for multilayered media is ac,, ’“raa,. ac, ~’"aa,,

considered first. Let,,, be one of the parameters,{, ¢,., and
- T . where use has been made of (7) and (8).
h.,) of the mth layer. The derivative of the objective function "~ ) . .
It is noteworthy that with regard to the recursive equation

1 given by (10) with respect ta, can be obtained as (18), the computation time for calculating the gradient is in

N oOH proportion to that needed for calculating the objective function

e Z(H" — )" o "] (16) itself. This greatly improves the efficiency of the optimization
n=1 m procedure.

af 1
= —R
otm N
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Fig. 7. Influence of noise on the reconstructed profile. Fig. 8. lllustration of the improvement of the reconstructed profile for

three-layer structure using more observed data. The results are based on the

. i . observed data at 15 frequencies and two incident angfeartd 45%).
C. Necessary Condition for the Unique Reconstruction of the

Parameters of a Nonuniform Transmission Line ) .
One of the five parameters must be known in order to recon-

It is not possible to uniquely reconstruct all five parametetgy,ct a section of a nonuniform transmission line. Note that the
defining a section of a nonuniform transmission line. This i, termsar, /w andac /w in (30) are frequency independent.
because the reflection coefficient of a nonuniform transmissi®ferefore. the five parameters cannot be calculated by taking
line depends on these parameters only throighand Yon.  intg account the value df,, and7,, at several frequencies. In
Manipulating (7),7;, can be written as practice R,,, andG,, are often negligible. The four conditions

) are therefore reduced to two. Thus, one of the remaining three
Ty, = tanh[( R jwLop ) hmYm]. 28 ! . o L
m = tanh{(Fo + jo L )hm Y] (28) parameters must be assumed known. This additional condition

With the known values oF,, andZ,., we can deriveR,,, + is known as the necessary condition for the inverse problem

jwLm)hm from the above equation. The value 6, + of a nonuniform transmission line. In a similar manner, it can
jwCim )R, is then calculated frony;, by noting be shown that this condition is valid even if both transmission

and reflection data are available.

(29)

Q,, + jwC,, 1?
m P m
} : IV. RECONSTRUCTION EXAMPLES

an = -
|:an + jWLrn
This section is devoted to three reconstruction examples to

Thus, four relations can be derived from the real and imaginat%monstrate the proposed inversion method

parts of the two complex equations (28) and (29)

Ropho = GR A. General Considerations

Lnhm = apJw In the usual description of the i_nversion met_hod_, it is

Gho o4 (30) assumed that the number of layers is known, which is often
mitm = 0 a priori information in some applications. However, if the

COmhom = ac/w. number of layers is unknown, to find the structure of a
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8 ose The computational efficiency of global optimization meth-
7 ods is usually measured in terms of the number of evaluations
s} of the objective function. Both the evaluation of the objective
w5} function and that of its gradient are required by the MLSL
at method. In order to estimate the computation cost, the compu-
al ] tation time for gradient evaluation is measured as a proportion
Number of frequencies = 36 of that for the function evaluation. For the examples given
2t Incident angle = 0 , 45 deg. 4 . ) g
below, it has been found that the proportional constant is
! nearly two.
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2-axis (cm) B. Examples

Example 1: This example is the one considered in [5].
() The goal is to reconstruct the permittivity and conductivity
Fligt-) 9. (a tThet cdor;ducti;/ri]ty ar}:i (tt;) permift;ivity tprofgtes Ofdthi tthree_-la%Eprofiles of a three-layer slab placed in free-space as shown in
St oconsrcte) o e eflecton cosfients btanca s e PXlg, 2. The thickness of the whole ensemble together with
MHz] with linear spacing. the permittivity and conductivity of the bottom half-space
are assumed known in [5]. In contrast, we only assume that
) the bottom layer is free-space. The observed data,are
medium, the prese.nt mgthod employs a_procedure Wh'ébnerated by using the equations presented in Section Il
makes use of the inversion method iteratively. At thih To simulate the presence of the noise in the observed data,
iteration of this procedure, while the medium is considered @aussian noise is added. The noise is a Comp|ex random
consists oft layers, the constitutive parameters of the mediuvariable whose real and imaginary parts are independent
are reconstructed by the inversion method. The resultant MSEaussian random variables with zero mean and standard
fx, which is viewed as the value of the objective function at itdeviation &.
global minimum, is compared with the one from tfie— 1)th ~ The parameters of> and ¢ in the MLSL method are set
iteration (fk—l)- If they are Sufﬁcienﬂy close, two cases mayo SOOand 0.01, reSpeCtively. In addition, the feasible region
arise: one is that the parameters of two adjacent layers &rdS given by
matched (i.e.¢,,, = o,,—1 ande,, = ¢,,_1) and the other is 0<0,, £05S/m ¢ < e, < 100¢q
that the thickness of a layer converges to zero. For both cases, 0<h,<100cm m=123.

one layer can be omitted and the reconstructed profilefor

layer medium is the same as that {ér1)-layer medium. This The aboye bounds on permittivity anq pc_)nduct|V|ty are Tc'u.ﬁ"
ciently wide that they cover the permittivity and conductivity

would happen folk = M + 1, whereM is the actual number . : . )

. ) of most materials, which may be found in an environment.
of layers. When the observed data is free of noise, the valueAS shown in Fig. 3, the reflection coefficients are obtained
of the objective function at its global minimum far/-layer for 5 TE wave incidence at 15 frequencies equally spaced in
and (M +1)-layer mediums are equal (i.fas = far41)- FOr  the interval [5 MHz, 75 MHz] and at two incident angles
the case wherg the data is corrupted by noise, we generaglly= (0° and 45°. Gaussian noise with different standard
have fir+1 < fa. Consequently, the iterative procedure adeviations is introduced to simulate the effect of noise.
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Fig. 11. The reflection coefficients of the transmission line shown in Fig. 10.
The data is measured by an HP-8753B network analyzer at 16 frequencies
equally spaced in the interval [100 MHz, 250 MHz]. (b)

Fig. 13. A comparison between the known (a) capacitance and (b) char-
acteristic impedance with those provided by the inversion method for the
x 1072 transmission line shown in Fig. 10.

No. of local minima found=14

of the inversion method can be observed from this exam-

§°'°' 1 ple. First, the objective function has several local minima.
‘goﬁ_ Consequently, local optimization methods cannot in general
gr find the right solution. Second, the global minimum of the
§O-4 three-layer structure is the same as that of the four-layer
structure. For the latter case, the thickness of one layer

o2f has converged to zero. The third feature is that both the

conductivity and permittivity profiles can be simultaneously
% 7000 2000 3000 4000 5000 6000 7000 8000 5000 reconstructed from the reflection coefficients obtained for
Number of Function Evaluation normal inCidence.
_ ! o of the berf " Hod in minimis The results in the presence of a Gaussian noise with a
T e e LS. et I "imZktandard deviation — 10 are Shown n Figs. 6 and 7, where
the influence of the noise is clearly visible. Nevertheless, this
influence can be reduced by extending the data to include
The profile is first reconstructed from noise-free data g@iore frequencies and incident angles. In Fig. 8, the data at 15
an incident angled = 0°. Fig. 4 illustrates that how the frequencies over the range of [5 MHz, 75 MHz] and at two
objective function is reduced by the MLSL method undéncident angle® = 0°,45° have been used. The improvement
the assumptions that the number of layers is two, three, agcpparent. Further improvement can be achieved by doubling
four. The number of minima for each layer structure is alshe frequency points (Fig. 9). It should be noted that the
given. The conductivity and permittivity profiles derived froomumber of layers is assumed to be there for the results of
the inversion method are shown in Fig. 5. Three featur&¥gs. 8 and 9.
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for 50€2 line and 56 pF/m for 752 line. The series inductance
L,, (given in Fig. 10) is calculated by using

Zrn = (Lnl/Cnl)l/Q

where Z,, is the characteristic impedance of thagh section.
The fourth line is terminated by a 30-load so that it can be
considered as an infinitely long transmission line.

Since the value of?,,, andG,,, of the lines are nearly zero,
the value of one of the three parametdrs, C,,, and h,,
has to be known according to the necessary condition. In this
example, the value of.,, is assumed known and’,, and
h,, are reconstructed by the inversion method. The bounds of
these parameters are set to

35.3 < (C1,C3 <200 pF/m 44.5 < Cs, Cy < 200 pF/m
0< hl,hg,hg < 200 cm.

(32)

The lower bounds ofC,, are obtained in accordance with
(LmCrm) Y% < 3 x 10% m/s which indicates the velocity of
the wave traveling along the lines cannot be in excess of the
velocity of light. The parameters af and ¢ in the MLSL
method are set to 100 and 0.05, respectively.

The reflection coefficients measured at 16 frequencies over
the frequency range of [100 MHz, 250 MHz] with linear
spacing are shown in Fig. 11. The objective function during
minimization and the reconstructed profile are illustrated in
Figs. 12 and 13, respectively. The profile of the characteristic
impedance shown in Fig. 13(b) is obtained from the profile
of the capacitance per unit length by using (32). Note that in
this example the number of sections is assumed to be four. It

Fig. 14. Synthetic data for the reflection coefficient of the transmission ligan be seen that there is an error in the reconstructed profile.

whose profile is shown by the solid lines in Fig. 16. The data is obtained
101 frequencies with logarithmic spacing in the interval [10 MHz, 1 GHz].

Noise $.D.=0.0 , No. of minima found=17
Noise S.0.=0.001 , No. of minima found=15
- Noise S.D. = 0.01, No. of minima found=9

Mean Square Error

V] 0.5 1 1.6 2 25 3
Number of Function Evaluation

35

x 10*

Aithough the measurement noise can be considered having
contributed in generating this error, we think the dominant
sources of this error are the following.

1) The value of the capacitance per unit length is a nominal
value and the actual value may be different from the
nominal one.

2) The series resistance is neglected whereas its value for
502 cables at 100 MHz is nearly 2/m which is
considerable.

Example 3: This example is concerned with the simulta-

neous reconstruction of four parametdts L, G, and C of

a nonuniform transmission line from synthetic data assuming
that the lengths of the sections are known. In practice, these
parameters vary with frequency. The variationslofGG, and

C are small whereas that @t is considerable. The frequency
dependence oR,,, can be modeled by,,, = @Q,,+/w. Thus,

Fig. 15. The objective function versus the number of function evaluation@m IS t0 be reconstructed. Consequently, (24) is replaced with

Example 2 This example aims at testing the inversion
method with experimental data. A nonuniform transmission
line which consists of four coaxial sections as shown in
Fig. 10, is investigated. An HP-8753B network analyzer
with an output impedance of 52 is used to measure the
reflection coefficients. The lines are standard 3Cand 75
2 coaxial cables which have negligible series resistance an
shunt conductance. The nominal value of the shunt capacitaRce
per unit lengthC,,,, provided by the manufacturer, is 100 pF/m@; = 0,

the following expression:

2
o _ /o Y2
aTrn _ an[]- - (Trn)Q]hrn
0Qm V" 2 '

The line parameters chosen for this example are shown by
thg solid lines in Fig. 16. The corresponding values for the
arameter,, are

Q2 =2x107% Q3=05x10"1, Qs =0.
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Fig. 16. Simultaneous reconstruction of the (a) conductarcéb) capacitance”, (c) resistanceR, and (d) inductancé..

The line is excited from a uniform line with a characteristienethod is successful with a minimum amount of information
admittanceYy = 0.02 S/m. The other side is left open, i.e.regarding the structure of the system under investigation. If the
Yy = 0. The parameters of and ¢ in the MLSL method observed data is free from noise, accurate reconstruction can
are set to 1000 and 0.005, respectively. The search regiorbésachieved. When the observed data is corrupted by noise, the
selected as adverse effect of noise can be reduced by using an enlarged

. observed data.
0< @ < 0.0, 1/(0-090m) < Ly, £0.55 pH/m Further improvement in the performance of the reconstruc-

0< G, £1000MS/m 10 < Gy, <200 pF/m, tion algorithm in the presence of noise may be achieved

for m =1,2,3,4. by adding an appropriate regularization factor to the MSE
function. This is left for future work.
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