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Electric-Dipole Radiation over a Wedge
with Imperfectly Conductive Faces:

A First-Order Physical-Optics Solution
Athanasios I. Papadopoulos,Student Member, IEEE, and Dimitrios P. Chrissoulidis,Member, IEEE

Abstract—We solve a three-dimensional (3-D) electromagnetic
diffraction problem involving an obtuse wedge with penetrable
planar faces and an electric dipole which is parallel to the edge of
the wedge. The analytical formulation is based on Stratton–Chu
integrals of the electromagnetic field, which is excited by the
dipole source on infinitely extending planes that coincide with
the faces of the wedge. Fictitious charges are introduced along
the edge to account for the discontinuity of the electromagnetic
field on the faces across the edge. We evaluate asymptotically
the integral expressions for the electric-field intensity far from
the edge to obtain uniformly valid formulas. Our first-order
physical-optics solution incorporates single reflection from both
faces, the lateral wave, the edge-diffracted space wave, the edge-
diffracted lateral wave, and transition terms which ensure that
the electromagnetic field is finite and continuous at the single-
reflection and lateral-wave boundaries. The numerical results
establish the validity of this solution through a reciprocity check
and comparisons with other analytical solutions.

Index Terms—Diffraction by wedges, electromagnetic diffrac-
tion, electromagnetic scattering.

I. INTRODUCTION

ELECTROMAGNETIC (EM) wave scattering by pene-
trable wedges or corners is important in a variety of

applications; consequently, it has attracted the interest of
many researchers [1]–[24]. The surface impedance boundary
condition (SIBC) is usually imposed on the wedge faces
[1]–[18]; other approaches are based either on a heuris-
tic extension of the perfect conductivity uniform theory of
diffraction (UTD) [20]–[22] or on physical-optics (PO) ap-
proximations [23]–[25].

An exact solution to the scalar problem of plane wave
scattering by an impedance wedge of arbitrary angle was given
by Maliuzhinets [1] for the special case of normal incidence;
the field, within the framework of the Maliuzhinets solution,
is expressed as a Sommerfeld spectral integral. Tiberioet al.
[2] obtained uniform far-field formulas by removal of the
singularities of the asymptotic expressions given in [1]. The
theory of [1] and [2], properly adapted to a wedge of arbitrary
angle, was developed further by Griesser and Balanis [3],
who obtained numerically efficient expressions. The response
of a half-plane with two face impedances to plane wave
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and line-source excitation was determined by Sanyal and
Bhattacharyya [4]. The case of line-source illumination of a
generic impedance wedge was studied by Tiberioet al. [5] and
Pelosiet al. [6], who derived asymptotic expressions for the
edge-diffracted field; the source in these papers was assumed
to be far from or at the edge of the wedge. Manaraet al. [7]
used the solution of [5] to derive asymptotic expressions for
the surface wave components of the field. Recently, Otero and
Rojas [8] used the solution of [1] to evaluate the line-source
response of an impedance wedge with no restrictions on the
location of the source or the field point.

When skew incidence is considered, the problem is rather
involved and, therefore, only special cases had been treated
[9]–[16] until recently. Pelosi et al. [17] employed an
incremental-length diffraction coefficient formulation, which
applies to impedance wedge problems possessing an explicit
solution for the related Sommerfeld spectrum. Recently,
Demeterscu [18] presented the exact solution to a diffraction
problem involving an impedance wedge of arbitrary angle and
an obliquely incident plane wave.

The SIBC is the starting point of the aforementioned papers.
Alternatively, the UTD solution to diffraction by a perfectly
conductive wedge [19] was heuristically modified [20]–[22]
to account for finite conductivity and/or surface roughness.
Furthermore, plane wave scattering by a dielectric wedge was
studied [23]–[25] through a PO approximation based on a dual
integral equation in the spectral domain.

In this paper, we present a first-order PO solution to the
three-dimensional (3-D) problem of dipole radiation over a
wedge with imperfectly conductive faces. Our solution can be
applied to studies of mixed-path propagation of EM waves
(e.g., over a coastal wedge). As yet, to the best of our
knowledge, there is no exact solution to this 3-D problem.
When point-source excitation is considered, the applicability
of the SIBC is limited to strongly refractive media, such as
metallic materials [26]. Hence, it is uncertain whether an
extension of existing methods based on the SIBC to 3-D
geometry would model efficiently wedge-type problems in-
volving poor conductors such as dry land. The heuristic
UTD can be applied to point-source excitation; although its
predictions agree with those of other methods as well as with
measurements [20], [22], [27], its applicability is questionable
because it lacks a rigorous theoretical basis.

Our formulation is based on the Stratton–Chu integral
equation [28]. The far-field solution for dipole radiation over
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(a)

(b)

Fig. 1. Geometric configuration. (a) Electric dipole source, the images with
respect to face 1 and face 2 and the arbitrary field point. (b) Side view.

a conductive half-space [29] serves as first-order approx-
imation of the EM field on each face of the wedge. In
order to compensate for the discontinuity of the field on the
faces across the edge of the wedge, we introduce fictitious
charges along the edge. The resulting integral expressions are
asymptotically evaluated in the high-frequency regime. Thus,
uniformly valid formulas are obtained, which allow for easy
identification of the individual diffraction mechanisms. The
edge-diffraction mechanism of our solution is augmented with
an edge-diffracted lateral wave, the contribution of which
is shown to be significant in some cases. The numerical
results establish the validity and reveal several attractive
features of our solution. We present a reciprocity check and
comparisons with numerical results obtained through other
analytical methods. Finally, we investigate the contribution
of the edge-diffracted lateral wave to the total edge-diffracted
field.

II. PHYSICAL-OPTICS FORMULATION

The geometry of this radiation problem is presented in
Fig. 1. Both faces of the wedge are planar and imperfectly
conductive; is the (complex) refractive index of the
medium under each face and is the wedge angle. For the

sake of analytical convenience, we introduce the Cartesian
coordinate systems and ; the -axis
coincides with the edge, whereas the- and -axes are
normal to the faces. Excitation is provided by an electric Hertz
dipole, which is parallel to the edge of the wedge; the current
density of this source is , where

is the electric dipole moment,
, and . The harmonic time dependency is

henceforth suppressed and, without loss of generality, we may
use the normalization condition .

The scattered electric-field intensity above the wedge obeys
the Stratton–Chu integral equation

(1)

where consists of face 1, face 2, and [Fig. 1(b)]; the
latter connects the two faces through infinity; is the unit
vector normal to ; is
the free-space Green’s function. Due to the radiation condition,
the contribution to from is zero. Therefore,

, where represents the contribution of faceto
the scattered electric-field intensity.

The PO formulation of this paper is based on the assumption
that the EM field on face, which is a semi-infinite plane over
a medium of refractive index , is approximately the EM
field that would be excited by the very same source on the
corresponding, infinitely extending plane. Hence, according to
[29], and on both faces can be expressed by use of
Sommerfeld integrals in the spatial-frequency domain. If only
high excitation frequencies are considered (i.e., ),
the electric-field intensity at any point on face

can be expressed as the sum of a geometrical optics (GO)
term and a lateral-wave (LW) term; thus,
on face . The following expressions can be obtained for the
terms , of

(2a)

(2b)

where

(3a)

(3b)
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is the unit-step function, ,
, and the variables , , , are

defined as follows:

(4a)

(4b)

(4c)

The discontinuity of at , which may
falsely be interpreted as an end-point contribution, is avoided
by use of the following continuous expression:

(5)

which is equivalent to that of (2b); a proof of (5) and the defi-
nition of are given in the Appendix. Expressions similar
to those of (2a) and (5) can be obtained for the corresponding
terms , of the magnetic-field intensity on face
, wherein

(6a)

(6b)

must be used instead of and , respectively.
It is an essential part of our approach that LW terms are

taken into account when the dipole is over face, which is
equivalent to the condition ; if the latter is not
true, and are ignored. Since, generally, GO and
LW terms coexist, (1) yields

(7)

where and

(8)

the superscript standing for GO or LW; is the
intrinsic impedance of free space. As only high frequencies are
considered, both terms in the right-hand side of (7), hereinafter
denoted as and , can be evaluated asymptotically
through use of the modified steepest-descent method (SDM)
[31], which allows for saddle points to be near the end-points
of the integration path.

The Cartesian coordinates, are convenient integration
variables for the evaluation of

(9)
Upper and lower signs in (9) correspond to and ,
respectively. The presence of , in the integrand gives
rise to four branch-point singularities in the complex-
plane and the complex -plane. The corresponding branch
cuts are drawn along and . The
contours of integration are properly indented so that they lie
in the Riemann surface with and .
By application of the modified SDM to the integral over
and then to the integral over , we derive the following
high-frequency expression:

(10)

where ,
,

, , and ,
, , ;

. The first term in the right-hand side of (10) is
the contribution of the saddle point to the integral; it represents
the singly-reflected field from face, which is discontinuous
across the corresponding single reflection boundary (RB). The
second term is the end-point contribution; it represents the
edge-diffracted field, which is infinite along the RB. The
third term eliminates the singularities of the other terms, thus
leading to a uniformly valid expression for . Far from
the RB, the third term is insignificant and, therefore, it may
be ignored.

We follow a slightly different procedure for the asymptotic
evaluation of , which may be written as
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. Each of these terms is expressed as a double
integral:

(11a)

(11b)

Upper and lower signs in (11b) correspond to and ,
respectively. When applying SDM to (11a), we account for the
branch points introduced by , the corresponding branch cuts
are along , and the contour of integration is properly
indented so as to lie in the Riemann surface . The
presence of branch cuts in the complex-plane has no effect
on the integral over , as calculated by SDM, because the
steepest-descent contour (SDC) through the saddle points
and does not intersect the branch cuts. As regards the
integral over , we apply SDM with respect to the saddle point

, which is in the Riemann surface . The
end-result is the following asymptotic expression for :

(12)

where
, ,

, , and
. Similar asymptotic evaluation of

yields (13), shown at the bottom of the next page, where

, , ,
; ,

, ;
is determined from the equation

, which is solved numerically; the appropriate
solution must conform to the restrictions

and , which ensure that the radiation
condition is satisfied. In the special case , though,
it is readily verified that . Adding (12) and (13),
we obtain (14), shown at the bottom of the page. The first
term in the right-hand side of (14) is the lateral wave on
face ; the second term is the edge-diffracted lateral wave,
the contribution of which to the total edge-diffracted field is
examined in Section IV. The remaining transition terms in
the right-hand side of (14) ensure the continuity of the field
across the boundaries of the region wherein the lateral wave
is present.

III. CORRECTION TOPHYSICAL-OPTICS SOLUTION

Up to this point, though, the analytical formulation has the
drawback that the field on the faces is discontinuous across
the edge. In order to account for this discontinuity, additional
terms must be included in the right-hand side of (1).

We consider the auxiliary geometry of Fig. 2, wherein both
faces of the wedge acquire the shape of a cylindrical surface
near the edge; let be the radius of that cylindrical surface.
According to the surface equivalence theorem [28], the field

(13)

(14)
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Fig. 2. Auxiliary geometry in the vicinity of the edgeC.

(a)

(b)

Fig. 3. Reciprocity error of the edge-diffracted part of the field:
jEd

x(~R; ~R0)j=jEd
x(~R0; ~R)j versus �1(x = x0 � 100 m; r = 50 m;

r0 = 100 m; �0;1 = 120�; � = 160�). (a) Land and (b) coastal wedge.

above the wedge, thus smoothened, is identical to that radiated
by an equivalent electric current and an
equivalent magnetic current on the faces.
If the field on each face is approximated independently (as
in Section II) the aforementioned equivalent surface currents
will be discontinuous across line, where the two faces meet
(Fig. 2); therefore, Maxwell’s equations will not hold there,
unless fictitious charges are considered on. The discontinuity
of gives rise to an electric charge along, the line density
of which is [30]. By the same token,
the discontinuity of gives rise to a magnetic charge along

(a)

(b)

Fig. 4. Edge-diffracted electric-field intensity over land wedge:j ~Edj versus
�1(x = x0; r = 20 m; r0 = 400 m; �0;1 = 40�; � = 160�). (a) Dry
and (b) wet land faces.

, its line density being . As the latter
does not contribute to the scattered electric-field intensity, we
only need to consider .

In the limit , which corresponds to the sharp wedge of
Fig. 1, . This line charge
contributes to as follows:

(15)

and after some algebra it is proved that ,
where

(16)

and .
Asymptotic evaluation of the integrals in (16) yields the
following high-frequency expression for (see (17) at
the bottom of the page). Thus, everything included,
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is the scattered
electric-field intensity from the wedge.

IV. NUMERICAL RESULTS

Our solution was first checked with respect to the principle
of reciprocity, according to which the component of the
scattered electric-field intensity in the direction of the dipole
axis must be unaffected by an interchange of the field and
source positions. Hence, should hold
for any pair of position vectors , [Fig. 1(a)]. The GO
singly-reflected wave from and the lateral wave on either
face, which are represented by the first term in the right-
hand side of (10) and (14), respectively, obviously satisfy
reciprocity. The remaining, edge-diffracted, part of, which
is herein denoted as , can only be checked numerically.
Moreover, we examine the effect of the correction term
on the reciprocity error. The numerical results correspond to
a land-sea (i.e., coastal) wedge and a land–land wedge; we
used the refractive indices and

for sea and (dry) land, respectively. The
excitation frequency is GHz.

Plots of , which must be equal to
one (i.e., 0 dB) for an exact solution, are presented in Fig. 3;
the azimuth angle of the field point , which is at constant
distance from the edge, varies in the range . Devia-
tions of from the aforementioned
reference level represent the reciprocity error of the edge-
diffracted part of the field for the specific pair of positions

, . Numerical results obtained without the correction term
are also presented. The reciprocity error is negligible in

the vicinity of the single reflection boundaries RB1 and RB2
and it is equal to zero in the backscattering direction BS. In
the case of the sloping land wedge [Fig. 3(a)] the reciprocity
error of the uncorrected edge-diffracted field is less than 0.2
dB in most directions. Addition of the correction term
results in further reduction of the reciprocity error, which is
thus kept small even close to the faces, where the first-order
PO solution deteriorates. Similar remarks may accompany the
numerical results for the coastal wedge [Fig. 3(b)]: compared
to the previous case, the reciprocity error is slightly greater
and yet it is less than 0.5 dB in most directions; if is
taken into account, though, the reciprocity error may increase
in directions near a face of the wedge.

We next investigate a special scattering geometry, which
allows for comparisons of our PO solution to a rigorous
solution [1]–[3] and to a heuristic UTD solution [22]. The
dipole source and the field point are both on the same-plane
(i.e., ), but , which is approximately the case of
a plane wave normally incident upon the edge of the wedge.
A sloping land wedge (Fig. 4) as well as a flat coastal wedge
(Fig. 5) are considered. Results for dry land, with refractive

(a)

(b)

Fig. 5. Edge-diffracted electric-field intensity over coastal wedge:j~Edj
versus�1(x = x0; r = 20 m; r0 = 400 m; �0;1 = 20�;� = 180�).
(a) Dry and (b) wet land face.

index as above and wet land with
at GHz, are presented in both cases. The surface
impedance of the faces required for the exact solution is
determined from .

The plots of versus indicate that, generally, our
PO solution is more accurate than the heuristic UTD solution.
The latter deviates from the exact solution, especially when
the nulls of the heuristic diffraction coefficient do not coincide
with the faces of the wedge. In the case of the sloping land
wedge (Fig. 4), the heuristic UTD solution improves as
increases seemingly because the nulls approach the faces of the
wedge. This trend is disproved in the case of the coastal wedge
(Fig. 5), where the nulls are very close to the faces for both
values of . The inconsistent behavior of the heuristic UTD
solution for increasing raises questions about its accuracy
and its limit of applicability. On the other hand, our PO
solution is in very good agreement with the exact solution in a
wide range of scattering directions; discrepancies are observed

(17)
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(a)

(b)

Fig. 6. Edge-diffracted electric-field intensity at constant altitude over
land-land wedge:j ~Edj versusy1(z1 = 50 m; y0;1 =�5 m; z0;1 = 0:05 m;

� = 180�). (a) x � x0 = 0. (b) x � x0 = 150 m.

when the field point is close to a face, regardless of the wedge
angle and of the refractive index of the medium under each
face. Still, our PO solution consistently provides more accurate
numerical results than the heuristic UTD solution, as long as
the field point is not very close to the faces.

Finally, we investigate the contribution of the edge-
diffracted lateral wave to the total edge-diffracted field. The
lateral wave is usually ignored by other solutions, such as the
heuristic UTD solution discussed above; this is justifiable, up
to a point because if , the GO currents on the faces are
generally stronger than the LW currents and, therefore, space-
wave diffraction dominates over lateral-wave diffraction. Yet,
there are special cases (e.g., the source being very close to a
face and not very far from the edge), which allow for the two
diffraction mechanisms to be comparable. We examine two
such cases next (Fig. 6): the magnitude of the electric-field
intensity associated with the edge-diffracted space wave and
the edge-diffracted lateral wave and both are plotted versus
the horizontal distance from the edge at constant altitude
above a nonsloping land wedge. The left-hand face of the
wedge represents fertile land , the
right-hand face represents dry land ,
and the source is over the latter. The constant altitudeis
chosen so that the field point is not very close to either face of

Fig. 7. Contour deformation in the complexa-plane; the steepest-descent
contour is shown for#0i =

~#�i and#0i =
~#+i .

the flat wedge. Evidently, if the source and the field point are
over the same face, both diffraction mechanisms must be taken
into account. If [Fig. 6(b)], an interference pattern is
present on the plot of the total edge-diffracted electric-field
intensity; this pattern is attributed to the phase difference of
the two edge-diffracted waves, which is not independent of

in this case.

V. CONCLUSION

This paper presents a first-order PO solution to the 3-D
problem of electric dipole radiation in the presence of a
wedge with penetrable planar faces. In its present form, the
theory applies to a dipole that is parallel to the edge, the
discontinuity of the surface EM field across the edge is
taken into account, and interactions between the two faces are
neglected. The integral expressions for the scattered electric-
field intensity are evaluated asymptotically by use of the
steepest-descent method. The resulting solution accounts for
the GO singly-reflected waves, the lateral wave, the edge-
diffracted space wave, and the edge-diffracted lateral wave.
The latter may be an important diffraction mechanism under
certain conditions. Our solution also includes transition terms,
which ensure that the EM field is finite and continuous at the
single-reflection boundaries and the lateral-wave boundaries.
Reciprocity is satisfied, especially when a heuristic correction
term is included. Accurate results are obtained whenever
multiple-reflection mechanisms are negligible or nonexistent,
provided that the field point is not very close to either face of
the wedge. The analytical formulation of this paper is currently
extended to deal with excitation by arbitrarily oriented electric
or magnetic dipoles and with problems of wave propagation
over a ridge in hilly or mountainous terrain.

APPENDIX

The analytical procedure toward a closed-form expression
for the dipole radiation over a conductive half space involves
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the asymptotic evaluation of the integral

(18)

where extends from to and has

a branch-point singularity of the type (Fig. 7).
By application of the standard SDM, is approximated
as follows:

(19)

where and represent the saddle-point and
branch-point contribution to the integral of (18), respectively.
However, a continuous asymptotic expression for is
required since does not intersect the branch cut.

According to complex function theory, the integral along the
SDC, which is approximated in the right-hand side of (19) by
the continuous term , is discontinuous at , this
discontinuity being equal to the integral around the branch
cut. Hence, must be augmented with an appropriate
discontinuous term to cancel out the discontinuity of

, as given by (19).
We consider the general expression

, where , are analytic at
. Close inspection of the integral along the SDC suggests that

the aforementioned discontinuity is associated with integration
of the singular part of from to (Fig. 7),
where as . Hence, may be expressed
as follows:

(20)

We use the approximation

in the vicinity of ; moreover, we
introduce the variable ,
thus transforming (20) into the following:

(21)

By use of the definition for the
incomplete Gamma function [32] and the approximation

, we obtain the asymptotic expression

(22)

It can be shown that (22) is equivalent to

(23)

and, if , as given by (23), is incorporated in the right-
hand side of (19), we obtain

(24a)

(24b)

If , then ; since , as
given by (24a), is continuous at .

So far, we have assumed that is close to , which
implies that is close to ; yet, (24) may be used for any

, provided that is chosen so that
as moves away from . Considering that

for large must be chosen
so that . Convenient choices for are along the
dashed curves that emanate from (Fig. 7); those curves

correspond to and

, for and
, respectively. Furthermore, the preceding analysis, if

extended to complex values of and yields the following
generalized result:

(25)

where or zero, and or one, if
the SDC does or does not intersect the branch cut, respectively.
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