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Electric-Dipole Radiation over a Wedge
with Imperfectly Conductive Faces:
A First-Order Physical-Optics Solution

Athanasios |. PapadopouloStudent Member, IEEEand Dimitrios P. Chrissoulidisylember, IEEE

Abstract—We solve a three-dimensional (3-D) electromagnetic and line-source excitation was determined by Sanyal and
diffraction problem involving an obtuse wedge with penetrable Bhattacharyya [4]. The case of line-source illumination of a
planar faces and an electric dipole which is parallel to the edge of generic impedance wedge was studied by Tibetial. [5] and
the wedge. The analytical formulation is based on Stratton—Chu . . . .
integrals of the electromagnetic field, which is excited by the Pelos'?t al. [6], Who derived asymptotlc expressions for the
dipole source on infinitely extending planes that coincide with €dge-diffracted field; the source in these papers was assumed
the faces of the wedge. Fictitious charges are introduced along to be far from or at the edge of the wedge. Maneral. [7]
the edge to account for the discontinuity of the electromagnetic ysed the solution of [5] to derive asymptotic expressions for
field on the faces across the edge. We evaluate asymptoticallyye gyrface wave components of the field. Recently, Otero and

the integral expressions for the electric-field intensity far from . . .
the edge to obtain uniformly valid formulas. Our first-order Rojas [8] used the solution of [1] to evaluate the line-source

physical-optics solution incorporates single reflection from both response of an impedance wedge with no restrictions on the
faces, the lateral wave, the edge-diffracted space wave, the edgelocation of the source or the field point.
diffracted lateral wave, and transition terms which ensure that When skew incidence is considered, the problem is rather

the elt_actromagnetlc field is finite an_d continuous at_the single- involved and, therefore, only special cases had been treated
reflection and lateral-wave boundaries. The numerical results .
recently. Pelosiet al [17] employed an

establish the validity of this solution through a reciprocity check _[9]_[16] until X . - . .
and comparisons with other analytical solutions. incremental-length diffraction coefficient formulation, which

applies to impedance wedge problems possessing an explicit
solution for the related Sommerfeld spectrum. Recently,
Demeterscu [18] presented the exact solution to a diffraction
problem involving an impedance wedge of arbitrary angle and
. INTRODUCTION an obliquely incident plane wave.

LECTROMAGNETIC (EM) wave scattering by pene- The SIBC is the starting point of the aforementioned papers.
trable wedges or corners is important in a variety dhlternatively, the UTD solution to diffraction by a perfectly
applications; consequently, it has attracted the interest @fnductive wedge [19] was heuristically modified [20]-[22]
many researchers [1]-[24]. The surface impedance bound##yaccount for finite conductivity and/or surface roughness.
condition (SIBC) is usually imposed on the wedge facdsurthermore, plane wave scattering by a dielectric wedge was
[1]-[18]; other approaches are based either on a heuridudied [23]-[25] through a PO approximation based on a dual
tic extension of the perfect conductivity uniform theory ofnitegral equation in the spectral domain.
diffraction (UTD) [20]-[22] or on physical-optics (PO) ap- In this paper, we present a first-order PO solution to the
proximations [23]-[25]. three-dimensional (3-D) problem of dipole radiation over a
An exact solution to the scalar problem of plane wavwedge with imperfectly conductive faces. Our solution can be
scattering by an impedance wedge of arbitrary angle was givapplied to studies of mixed-path propagation of EM waves
by Maliuzhinets [1] for the special case of normal incidencée.g., over a coastal wedge). As yet, to the best of our
the field, within the framework of the Maliuzhinets solutionknowledge, there is no exact solution to this 3-D problem.
is expressed as a Sommerfeld spectral integral. Tibetrial. When point-source excitation is considered, the applicability
[2] obtained uniform far-field formulas by removal of theof the SIBC is limited to strongly refractive media, such as
singularities of the asymptotic expressions given in [1]. Th@etallic materials [26]. Hence, it is uncertain whether an
theory of [1] and [2], properly adapted to a wedge of arbitra§xtension of existing methods based on the SIBC to 3-D
angle, was developed further by Griesser and Balanis [ggometry would model efficiently wedge-type problems in-
who obtained numerically efficient expressions. The respong@ving poor conductors such as dry land. The heuristic
of a half-plane with two face impedances to plane waJéTD can be applied to point-source excitation; although its
predictions agree with those of other methods as well as with
Manuscript received April 6, 1998; revised July 14, 1999. measurements [20], [22], [27], its applicability is questionable
The authors are with the Department of Electrical and Computer Enginegjacause it lacks a rigorous theoretical basis.

ing, Faculty of Technology, Aristotle University of Thessaloniki, GR-54006 . . .
Tﬁessalonﬁ/(i Greece. ¥ Y Our formulation is based on the Stratton—Chu integral
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sake of analytical convenience, we introduce the Cartesian
coordinate systemsO;zy1z1) and (O;zysz2); the x-axis
coincides with the edge, whereas the and z,-axes are
normal to the faces. Excitation is provided by an electric Hertz
dipole, which is parallel to the edge of the wedge; the current
density of this source ig'(R) = ri.c/“'8(K — Ko), where
me = meZ is the electric dipole momenRo = 2ol +Y0,: 0+
70,7, andi = 1,2. The harmonic time dependeney~* is
henceforth suppressed and, without loss of generality, we may
use the normalization conditiom. = jweg.

The scattered electric-field intensity above the wedge obeys
the Stratton—Chu integral equation

Field Point

Face 2

Tmage 2 / - !
R, _ AR .

B (R) = j[s [ jwnoGN x H)+ (8 x B)

X V'G+ (N - E)YW'Q]ds' (1)

Image 1
@ where S consists of face 1, face 2, arfil,, [Fig. 1(b)]; the
latter connects the two faces through infinity; is the unit
s, vector normal taS; G(R — B') = ¢ %lB-R1/4n|R— R'| is
the free-space Green'’s function. Due to the radiation condition,
the contribution toE* from S.o IS zero. Therefore f* =
Es + E3, WhereEﬁiS represents the contribution of faéeto
the scattered electric-field intensity.
9, The PO formulation of this paper is based on the assumption
that the EM field on face, which is a semi-infinite plane over
a medium of refractive index,, is approximately the EM
field that would be excited by the very same source on the
corresponding, infinitely extending plane. Hence, according to
[29], E and H on both faces can be expressed by use of
Sommerfeld integrals in the spatial-frequency domain. If only
(b) high excitation frequencLes are considered (ilgk, > 1),
Fig. 1. Geometric configuration. (a) Electric dipole source, the images with€ electric-field intensityr = E; at any point(z’, ;) on face
respect to face 1 and face 2 and the arbitrary field point. (b) Side view. ¢ can be expressed as the sum of a geometrical optics (GO)
term and a lateral-wave (LW) term; thug; = ECC + £V

a conductive half-space [29] serves as first-order apprd¥? face:i. The following expressions can be obtained for the
imation of the EM field on each face of the wedge. iferms EGO, EMW of E;

Y ' Face 1

order to compensate for the discontinuity of the field on the ~ o—iko R}

faces across the edge of the wedge, we introduce fictitious E-°(2’, 1)) = E7°(¢}, 9%) T (2a)
charges along the edge. The resulting integral expressions are ko R cos(@—an)
asymptotically evaluated in the high-frequency regime. Thus, EL“ (', y)) = LVV(QO ) eIt )

uniformly valid formulas are obtained, which allow for easy ‘ ‘ 27r\/p4R43 sin® (9 — az)
identification of the individual diffraction mechanisms. The v ¢
edge-diffraction mechanism of our solution is augmented with x U (0] — 9s), (2b)

an edge-diffracted lateral wave, the contribution of which
is shown to be significant in some cases. The numencap
results establish the validity and reveal several attractivé™ (¢}, 9)) = k3 sin ¥’ cos ¥,

features of our solution. We present a reciprocity check and 9 oot d! [2 2.4 2
comparisons with numerical results obtained through other sin ) sin” ¢} + co nj —sin

. X X X . . X |z
analytical me_thods. Finally, we investigate the cont_nbutlon n2 cos ¥, + y/n2 _ sin2 W,
of the edge-diffracted lateral wave to the total edge-diffracted
field. i sin ¥, sin ¢}, — n?2; cos Y, ,
- 05 ¢;
2 / 2 i 02 g/
Il. PHYSICAL-OPTICS FORMULATION n; cos¥; +\/nj —sin"¥;
The geometry of this radiation problem is presented in . (3a)
Fig. 1. Both faces of the wedge are planar and imperfectly g (gh) = —A[i(silf @ +n?— 1)
conductive;ny, ns is the (complex) refractive index of the i/ COS G;

medium under each face ardis the wedge angle. For the — §; sin ¢} cos @, + 2;n; cos a; cos <p;] (3b)
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U(-) is the unit-step functiong; = sin™'n;, ¥; = Rea; — whereR! = \/(x — /)2 + (y; — ¥})? + 27 and
cos~!(sech(Ima;)), and the variablesk,, o}, %, ¥, are o
defined as follows: (ko) HE (R')

=&[ze], + R Zoh] , + (x — 2')e] ]

1,2

x' — xg = pl cos o}, = R.sind) cos ¢} (4a) R, — 2], — (i — )]
’ ;o / r ’ ’ 0,7 i,y i/,
Y —Yo,. = Py Sy, = Rz Slnﬁi S @; (4b) — 3 [(.’L’ _ .’L'/)C’y + (y _ y/)e’y o ] (8)
20, = R} cos¥,. (4c) . e v Ty LA

) o N . _ the superscript standing for GO or LWZ, = \/p10/c0 is the
The discontinuity of EF(a',4}) at 9] = 9;, which may jpyinsic impedance of free space. As only high frequencies are
falsely be interpreted as an end-point contribution, is avoidednsidered, both terms in the right-hand side of (7), hereinafter

by use of the following continuous expression: denoted a€**“? and £:Y, can be evaluated asymptotically
. e—iko R, cos(]—a) through use of the modified steepest-descent method (SDM)
EWV (@ o)) = &V (¢h) g(¥}) (5) [31], which allows for saddle points to be near the end-points
27r\/ PR3 sin® (¥, — a;) of the integration path.

The Cartesian coordinatas, ¢/ are convenient integration
which is equivalent to that of (2b); a proof of (5) and the defivariables for the evaluation of?“°
nition of g(+#,) are given in the Appendix. Expressions similar N o
to those of (2a) and (5) can be obtained for the correspondi%wo _ i/ oo {/oo 13790 7 e ko (RI+RY da:’} .
0 —0o0

terms HSC, H* of the magnetic-field intensityf; on face 8w2RR]*
1, wherein 9)
TGO/, 1 ol Upper and lower signs in (9) correspondite= 1 andi = 2,
hi™ (i, ;) respectively. The presence &, R/ in the integrand gives
rise to four branch-point singularities in the complek
= wepko cos ¥} | & sin? ¥} sin ¢/, cos ¢} plane and the compley.-plane. The corresponding branch
cuts are drawn alondmR; = 0 and ImR/ = 0. The
contours of integration are properly indented so that they lie
cos ¥} — \/n] —sin® ¥ in the Riemann surface within R, < 0 and Im R/ < 0.
. ) , 2 2 By application of the modified SDM to the integral over
n; cosd; +4/n; —sin”J; and then to the integral ovey], we derive the following
) n? cos, — sin? 9! sin? @l(cos 9] — 1/n2 — sin® ) high-frequency expression:
' 02 cos; 4 \fn? —sin 0 g0 BRI i g - )

=

¢ - 47Tjk‘0RiZi

sin ¥, sin ¢ (—1)iroFSO (R’S)O)ijkoD

A

N ZZ (6a) + 4 r'k - - ,'k . D
cos ¥ + nf — sin? 9, 7 jko(ryo,i + rovi)v/2mikorro
E— F;Go R’gg c—ikoD ‘
B () - = 8&;,;;‘;‘7‘ sen(~1) (¢ + g0 — 1))
WEQL/COSA; | ., o 1) sin o , JRo4bi 2 .
= Pt ) singicosy] x [F(v/kolBs — DI2) — 1/y/jrkol s = D]
e (10)
—gji(l—(nf—i—l) sin? ¢§)—éiw .
cos a; whereR7) = (&(xozita20,)+0i (Yo, 2i+yiz0,)) [ (zi+20,4),

(60) 350 — (gt} /(r+70), BZ = (2—20)2 + (i — 0,12+

must be used instead &f°° and &Y, respectively. (2 +200)%, D* = (& = x0)* + (r +0)*, andy; = oS i,

It is an essential part of our approach that LW terms a?éj; rSin i, yoi = 10C0S P, 20 = Tosindoi; f(§) =
taken into account when the dipole is over fagavhich is ¢~ erfc(€+5€). The firstterm in the right-hand side of (10) is
equivalent to the condition—1)iyq; < 0; if the latter is not the cqntrlbutlon of thg saddle pom; to the m}egr@l; it rgpresents
true, "W and A" are ignored.ysince, generally, GO an&he singly-reflected f|e!d frqm facg whl_ch is discontinuous
LW ter?‘ns coexigt (1) yields across the corresponding single reflection boundary (RB). The

’ second term is the end-point contribution; it represents the
edge-diffracted field, which is infinite along the RB. The

—Jko B | - - : S . "
Ef = // % CO(RNe ko B third term eliminates the singularities of the other terms, thus
faces ST HG I leading to a uniformly valid expression chf’GO. Far from
the RB, the third term is insignificant and, therefore, it may
s o e TRoR} cos(di—a;) be ignored.
+ FY(R) = g s M e

We follow a slightly different procedure for the asymptotic
evaluation of £:7%

T

R)
V) oV Tt Y R i ,
\/p i sin®(; — aq) , which may be written ast?"™" =
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—

E7W 4+ B3IV Each of these terms is expressed as a doublitere BFY = (zo + (p; — 2 tana;) cos )i + (yoq +
integral: (pi — zitana;)sing)gi, pi = 70, tand;, R? = (pi —
o [ p2m ko R i) + 2y 5= —jlni(pi — pi) + zicosa; — Ry), and
BV _ mikoso cosa / / FIW (R © ! & = 87“./]{0/2‘7 sgn(d; — ;). Similar asymptotic evaluation of
s 0 o 8r2RY? T Ef};/,Ly“ yields (13), shown at the bottom of the next page, where
g(ﬁ/i)\/;/ie—jnikopg ; REZZY) = ‘T/i,s‘/i” p;?s = (‘T/i,s - ‘TO)Q + y(%,i’ R;,Qs = p;?s + ZOQ,i'
Vcoma —ma W) g2 = (@, —2)? + 0% 01, = sin (o /R ). 5 =
' o [ oo —J(ni(pi—pi ) Fzicosai— Ry ), & = siv/ko/2) sgn(Re s;);
BoW  pomihoss cosas / {/ FIW (R a; , is determined from the equation(z] ,—z0)/ 0} ,+(2} ,—
’ Foo [J—oo x)/R!, = 0, which is solved numerically; the appropriate
(Yoo (RE i) solution must conform to the restrictiol:{n.p; , + R} >
y dz’ 3 dy.. 0 andIm{n;p. , + R/} <0, which ensure that the radiation
8W2R§'2\/P§(P§ cos a; — nizo,i)° } condition is satisfied. In the special case= zg, though,

(11b) it is readily verified thatz; ; = z. Adding (12) and (13),

we obtain (14), shown at the bottom of the page. The first
Upper and lower signs in (11b) correspond te 1 andi =2, term in the right-hand side of (14) is the lateral wave on
respectively. When applying SDM to (11a), we account for thface ¢; the second term is the edge-diffracted lateral wave,
branch points introduced b, the corresponding branch cutsthe contribution of which to the total edge-diffracted field is
are alondm R/ = 0, and the contour of integration is properlyexamined in Section IV. The remaining transition terms in
indented so as to lie in the Riemann surfdaelz! < 0. The the right-hand side of (14) ensure the continuity of the field
presence of branch cuts in the complgixplane has no effect across the boundaries of the region wherein the lateral wave
on the integral over, as calculated by SDM, because th¢s present.
steepest-descent contour (SDC) through the saddle pgints
andy; £+ 7 does not intersect the branch cuts. As regards the
integral overp’, we apply SDM with respect to the saddle point lll. CORRECTION TOPHYSICAL-OPTICS SOLUTION

pi— 7 tan a;, which is in the Riemann surfaden R’ > 0. The  yp to this point, though, the analytical formulation has the
end-result is the following asymptotic expression f§t,":  drawback that the field on the faces is discontinuous across
o the edge. In order to account for this discontinuity, additional
o FEV(REY ) emikotrepititzo.cosas) terms must be included in the right-hand side of (1).
bew 8 jkozin/pi(pi cos a; — ni(zi + 20,1))3 We consider the auxiliary geometry of Fig. 2, wherein both
~ ~ ~ faces of the wedge acquire the shape of a cylindrical surface
X [2U(0i = 90) + (J(&) sen(di — 95) near the edge; let be the radius of that cylindrical surface.
— 1/§7;\/7r/€0)6_k05?] (12) According to the surface equivalence theorem [28], the field

SDIW ( DIWY —jko(nipi+(zi+2 i) cos a;
snw _ JL (£ e omipit(zitzo.0) )

R 8mkozin/pi(pi cos a; — ni(z; + 204))°
(—1)1‘13}“’(Eg‘l’))p;ie—f’“o%ﬂ cos a;g(zg/iys; Ré,s) /QjR/iise—jko (nip; ,+RY,)

[20((-=1)"*Res;) + (=1)' (£(&) sen(Re s;)

— 1/8“/ Wko)e_kosf] + (13)
8mko (niyo, R, +yip} ) \/Wko (nivg  RIZ + 1202 ) (0}, cos ai — nizo )3
. . ﬁLVV ELVV e—jkg (nipi+(zit+=20,:) cosa;) 5 ]
EAW oy L (Fis) [U(0; — ;) — U((=1) ' Re s;)]
' 4 ikoz; \/pi(pi cosa; —n;(z + 20,))3
(_1)iﬁiLw(ﬁiLE))pg?se—jko(mm,ﬁm cos ai+R7',s)g(19/i7S;R/i7s) /2‘732,/,5
8mho(niyo R + yipéjs)\/ﬂko (nzyng;’g’ + 7‘2p’5’5) (P} s cosa; —mizo;)?
FTW (R’L?;)e—jko (n;pi+z0,; cosa; +R;) ~ ~ )
o =[f(&) sen(d; — 0i) — 1/5;\/wko
8mjkozin/pi(pi cosa; — ni(z + 20,))
-1 iﬁI,VV R’LVV ijko(ngpgvs-f—zmicosai+R§CS)
S k), 156 sem(Besy) - 1/5/rko] 14)

8mjkozin/ pi(pi cosa; — ni(zi + 20,))
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Edge-Diffracted Electric Field Intensity

1E-01
RB2 RB1
1E-02
1E-03
1E-04 §
Face | 1E-05
—Exact Solution
1E-06 : --Heuristic Solution
Fig. 2. Auxiliary geometry in the vicinity of the edg€. ‘ —PO Solution
1E-07
0 20 40 60 80 100 120 140 160
Azimuth Angle (degrees)
5 Reciprocity Error (dB)
@
RB2 RB! BS
1
Edge-Diffracted Electric Field Intensity
0 1E-01
-1 1E-02
2 1E-03 |
-3 75,C _
£ =0 1E£-04 -
4 N ;
1E-05 I
) 20 40 60 80 100 120 140 160 — Exact Solution
Azimuth Angle (degrees) 1E-06 ! -+ Heuristic solution
1 —PO Solution
(€Y 1807 :
0 20 40 60 80 100 120 140 160

. . Azimuth Angle (degrees)
4 Reciprocity Error (dB)

; ‘RB2 RBI (b)
‘ Fig. 4. Edge-diffracted electric-field intensity over land Wed|g§€l| versus
2 d1(x = w0, r=20m, 7o =400 M, ¢ = 40°, & = 160°). (a) Dry
1 ] and (b) wet land faces.
0 A\v N N
1 C, its line density being, = ¢- [E1 — Es]c/jw. As the latter
does not contribute to the scattered electric-field intensity, we
2 only need to considep,.
-3 ‘ In the limit e — 0, which corresponds to the sharp wedge of
. : Fig. 1, pc — & - (Ha(2',0) — H1(2',0))/jw. This line charge
o 20 40 60 80 100 120 140 160 g. - pe —»(S 2(e,0) . 12, 0))/5 9
A contributes toE* as follows:
zimuth Angle (degrees)
- 1
) EFC == / pV'G Al (15)
€o.JC
Fig. 3. Reciprocity error of the edge -diffracted part of the field: S o S o
|E4(R; Ro)|/|EX(Ry; B)| versus¢n(z = xzo — 100 m, + = 50 m, and after some algebra it is proved thet< = £y —E)T,

rg =100 m, ¢g,; = 120°, & = 160°). (a) Land and (b) coastal wedge. \yhere

above the wedge, thus smoothened, is identical to that radiatefi< = / FEO(RY+FIMR ) g(0})
by an equivalent electric curreni’eq = N’ x H and an -0

equivalent magnetic current/,, = —N’ x E on the faces. o R (1—cos(9—a1)) \ k(R

If the field on each face is approximated independently (as et e 2 do’
. . . . ! I

in Section Il) the aforementioned equivalent surface currents \/p;R; sin®(9; — ai)/ 8m2 R R, e
will be discontinuous across lin@, where the two faces meet yi_(]_ﬁ)

(Fig. 2); therefore, Maxwell's equations will not hold there,
unless fictitious charges are considereddiThe discontinuity and F” (R = kohi ((x — «")& + (yi — yi)0i + 7%:) [weo-

of JE,,1 gives rise to an electric charge aloag the line density Asymptot|c evaluation of the integrals_ |n (16) yields the
of which isp, = ¢- [HQ—Hl]C/Jw [30]. By the same token, following high-frequency expression foE (see (17) at
the discontinuity 01‘1\/[eq gives rise to a magnetic charge alonghe bottom of the page). Thus, everything includést, =
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EPSO 4 B39 4 B2 4 Ey™Y 4 E=C is the scattered

. . . . Edge-Diffracted Elcctric Field Intensit;
electric-field intensity from the wedge. g o edne e e

1E-03
IV. NUMERICAL RESULTS :

Our solution was first checked with respect to the princigley,
of reciprocity, according to which the component of the
scattered electric-field intensity in the direction of the dipalg,s
axis must be unaffected by an interchange of the field and :
source positions. Hencé&;? (R; Ro) = E2(Ro; R) should hold ;o — txact Solution

. . = . -s-Heuristic Solution
for any pair of position vectors:, Ry [Fig. 1(a)]. The GO —PO Solution
singly-reflected wave from and the lateral wave on eithgry,
face, which are represented by the first term in the right- °
hand side of (10) and (14), respectively, obviously satisfy
reciprocity. The remaining, edge-diffracted, partéﬁ, which (a)
is herein denoted a&, can only be checked numerically.
Moreover, we examine the effect of the correction teic 1E-02
on the reciprocity error. The numerical results correspond to
a land-sea (i.e., coastal) wedge and a land-land wedge; W&
used the refractive indicea, = 9.73 — j3.69 and n; =
2.24 — j4.02 x 103 for sea and (dry) land, respectively. The"®
excitation frequency i = 1 GHz. LE-05

Plots of |[E4(R; Ry)|/|E%4(Ro; R)|, which must be equal to |
one (i.e., 0 dB) for an exact solution, are presented in Fig. &;06
the azimuth angle, of the field pointﬁ, which is at constant DN

) R . . 1E-07 -»-Heuristic Solution
distancer from the edge, varies in the range, ¢). Devia- — PO Solution
tions of |[EX(R; Ry)|/|E%(Ry; R)| from the aforementioned ;5 s
reference level represent the reciprocity error of the edge-
diffracted part of the field for the specific pair of positions
}E, EO. Numerical results obtained without the correction term (b)

E* are also presented. The reciprocity error is negligible mg. 5. Edge-diffracted electric-field intensity over coastal wedgé?|

the vicinity of the single reflection boundaries RB1 and RBZersuséi (¢ = g, = 20 mrg = 400 m,¢9,, = 20°,& = 180°).

and it is equal to zero in the backscattering direction BS. (R Dry and (b) wet land face.

the case of the sloping land wedge [Fig. 3(a)] the reciprocity

error of the uncorrected edge-diffracted field is less than Gr&lex as above and wet land with = 5.47 — j3.28 x 1072

dB in most directions. Addition of the correction terfi¥:*C at f = 1 GHz, are presented in both cases. The surface
results in further reduction of the reciprocity error, which igmpedance of the faces required for the exact solution is
thus kept small even close to the faces, where the first-ord@termined fromz; = Zy/\/n? — cos? ¢o ;.

PO solution deteriorates. Similar remarks may accompany theThe plots of|Ed| versus¢; indicate that, generally, our
numerical results for the coastal wedge [Fig. 3(b)]: compard&D solution is more accurate than the heuristic UTD solution.
to the previous case, the reciprocity error is slightly great@he latter deviates from the exact solution, especially when
and yet it is less than 0.5 dB in most directions;Af-< is  the nulls of the heuristic diffraction coefficient do not coincide
taken into account, though, the reciprocity error may increasith the faces of the wedge. In the case of the sloping land
in directions near a face of the wedge. wedge (Fig. 4), the heuristic UTD solution improves |ag|

We next investigate a special scattering geometry, whiaficreases seemingly because the nulls approach the faces of the
allows for comparisons of our PO solution to a rigorousiedge. This trend is disproved in the case of the coastal wedge
solution [1]-[3] and to a heuristic UTD solution [22]. The(Fig. 5), where the nulls are very close to the faces for both
dipole source and the field point are both on the sarpéane values ofn;. The inconsistent behavior of the heuristic UTD
(i.e.,z = xzg), butrq > r, which is approximately the case ofsolution for increasingn,| raises questions about its accuracy
a plane wave normally incident upon the edge of the wedgend its limit of applicability. On the other hand, our PO
A sloping land wedge (Fig. 4) as well as a flat coastal wedgelution is in very good agreement with the exact solution in a
(Fig. 5) are considered. Results for dry land, with refractiveide range of scattering directions; discrepancies are observed

20 40 60 80 100 120 140 160 180
Azimuth Angle (degrees)

Edge-Diffracted Electric Field Intensity

-04

—Exact Solution

0 20 40 60 80 100 120 140 160 180
Azimuth Angle (degrees)

1

— — . X L STW 2 BTW —5ko (s o' z0.; cos a; + R .
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Edge-Diffracted Electric Field Intensity

1E-03 Alma
— Space Wave

Lateral Wave

—Sum

1E-04

1E-05 |

1E-06 : '
-200  -160  -120  -80 -40 0 40 80 120 160 200

Horizontal Distance from Edge (m)

@)

C Rea
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— Space Wave
-- Lateral Wave Fig. 7. Contour deformation in the complexplane; the steepest-descent
—Sum contour is shown fow’, = 97 and v’ = 9.

1E-04 |

the flat wedge. Evidently, if the source and the field point are
over the same face, both diffraction mechanisms must be taken
into account. Ifz # xg [Fig. 6(b)], an interference pattern is
present on the plot of the total edge-diffracted electric-field
intensity; this pattern is attributed to the phase difference of

15-06 : the two edge-diffracted waves, which is not independent of
=200 -160 -120  -80 -40 0 40 80 120 160 200 " in this case.

Horizontal Distance from Edge (m)

1E-05

(b) V. CONCLUSION

Fig. 6. Edge-diﬁﬁacted electric-field intensity at vconstant altitude over This paper presents a first-order PO solution to the 3-D
land-land wedgelE?| versusy; (z1 = 50 m,yo,1 = —5 M, 29,1 = 0.05 m, . . . .
® = 180°). () — 70 = 0. (b) # — 70 = 150 m. problem of electric dipole radiation in the presence of a
wedge with penetrable planar faces. In its present form, the
when the field point is close to a face, regardless of the wedt §c(:)(;>r/1tiizﬁ“e?)ftoth2 dsﬁﬁ!fc;haEtl\/:s fiz?c;a!ilr;(s)sﬂ]cﬁee(i?jeétri]se
angle and of the refractive index of the medium under ea . Y . . 9
en into account, and interactions between the two faces are

face. Still, our PO solution consistently provides more accural . ) .
numerical results than the heuristic UTD solution, as long $§glected. The integral expressions for the scattered electric-

the field point is not very close to the faces leld intensity are evaluated asymptotically by use of the

Finally, we investigate the contribution of the edge§teepe5t-descent method. The resulting solution accounts for

diffracted lateral wave to the total edge-diffracted field. Tht e GO singly-reflected waves, the lateral wave, the edge-

lateral wave is usually ignored by other solutions, such as gféal(:t?gr srgzceb(\e/vz\r/]e_,manodrt;l:ﬁ de.?f?:(;?g:a;t:gh;?i rgl V\rﬁi\(/aer.
heuristic UTD solution discussed above; this is justifiable, u rtain nditiyn 0 rl pl tion II in : des tran itli N tu m
to a point because |h;| > 1, the GO currents on the faces arg©riain condiions. LUr SOIUton aiso Includes transition terms,

generally stronger than the LW currents and, therefore, spatic PT0TE BT B8 PR TS T B8 SOAON B T
wave diffraction dominates over lateral-wave diffraction. Yet 9 )

there are special cases (e.g., the source being very close eglprocny is satisfied, especially when a heuristic correction

face and not very far fom the edge), which alow for the wh (L 8 CCRET TP oS E L R
diffraction mechanisms to be comparable. We examine two P glg '

such cases next (Fig. 6): the magnitude of the electric-fie%OVided that the field point is not very close to either face of
e the wedge. The analytical formulation of this paper is currently

intensity associated with the edge-diffracted space wave an . o S ) .
the edge-diffracted lateral wave and both are plotted vers%)éended t_o dgal with excngtlon by arbitrarily oriented electrlc
the horizontal distancg; from the edge at constant altitude®” magn_etlc cﬁpo]es and with problems O.f wave propagation
above a nonsloping land wedge. The left-hand face of tRYer @ ridge in hilly or mountainous terrain.

wedge represents fertile lagd; = 3.16 — j2.84 x 10~2), the

right-hand face represents dry lafieh = 2.24—54.02x10~3), APPENDIX

and the source is over the latter. The constant altitudes The analytical procedure toward a closed-form expression

chosen so that the field point is not very close to either face fof the dipole radiation over a conductive half space involves
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the asymptotic evaluation of the integral and, if I;(¥;), as given by (23), is incorporated in the right-
hand side of (19), we obtain
I(0; =/ F(a)e FroRicos(¥:=a) g 18
W= J 1 O 1) ~ L0 + (990 (242)

whereC extends from-r /2 — joo to 7 /24 joo andF( Yhas g(¥)) = U0, —9;) + = sgn(d; — 0)0(3/2, —u;).  (24b)
NG

a branch-point singularity of the typg —sin? a (Fig. 7). R

By application of the standard SDM,(ﬁ’i) is approximated If ¥ — 9;, thenw; — 0; sincel'(3/2,0) = /w/2, I(¥;), as

as follows: given by (24a), is continuous &k, = ;.
) ) ) .- So far, we have assumed tha§ is close toa;, which
() = Lp (7)) + Dop(95)U (95 — ;) (19) implies that, is close tod;; yet, (24) may be used for any

(0,7/2), provided thatao is chosen so thag(d;) —

— 4;) as ¥, moves away fromd;. Considering that
w;) /= ¢"y/—u; for large |u;|, ap must be chosen

so thatRew; < 0. Convenient choices fosiy are along the

required since’ does not intersect the branch cut. dashed curves that emanate fram (Fig. 7); those curves
According to complex function theory, the integral along the 5

SDC, which is approximated in the right-hand side of (19) b‘}P”eSpO”d toRey/n? —sin"a = 0 and lm(a — a;) =
the continuous terni,,(v9}), is discontinuous a#, = 9;, this cosh™ (csc(Rea)) — cosh™(csc(Re q;)), for ¢, < 9; and
discontinuity being equal to the integral around the branel > ¥;, respectively. Furthermore, the preceding analysis, if
cut. Hence I, (¥,) must be augmented with an appropriatextended to complex values & and+, yields the following
discontinuous ternf () to cancel out the discontinuity of generalized result:
I1(9), as given by (19).

We consider the general expressidf(a) = Fi(a) + g(03; R)) = oa(0; R')+—/3(192;R§)F(3/27—ui) (25)

N
Fy(a)y/n? —sin® a, where Fy (a), Fh(a) are analytic atw =

a;. Close mspectlon of the integral along the SDC suggests tidtere «(v;; ;) = 1 or zero, and3(¥;; ;) = —1 or one, if
the aforementioned discontinuity is associated with integratidft€ SDC does or does not intersect the branch cut, respectively.

of the singular part of'(a) from ag to 7 /2+9}4joc (Fig. 7),

where I,,(¢#,) and I,,(+%,) represent the saddle-point ancf
branch-point contribution to the integral of (18), respectlvelyf, 3/2
However, a continuous asymptotic expression f¢v}) is

whereag — a; asv, — ;. Hence,l4(¥;) may be expressed REFERENCES
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