
1702 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 47, NO. 11, NOVEMBER 1999

Diffraction by Lossy Dielectric Wedges Using
Both Heuristic UTD Formulations and FDTD

Jean-Fran¸cois Rouviere, Nicolas Douchin, and Paul F. Combes

Abstract—An improvement of the uniform theory of diffraction
(UTD) coefficient for the case of a lossy dielectric wedge when
a transmitted ray exists is presented. We elaborated two new
terms that are added to the classical UTD diffraction coefficient,
so that we obtain continuity of the total field. This new UTD
formulation is compared to a numerical method based on finite
difference time domain (FDTD). We outline the adaptation of the
FDTD grid calculation, which was necessary to isolate only one
edge diffraction and to treat two-dimensional (2-D) structures
with two infinite sides. This comparison allows one to conclude
that the new diffraction coefficient is relevant for the case of a
lossy dielectric wedge. Then we present a comparison between
two different versions of the UTD diffraction coefficient based on
single or multiple reflection in the case of a dielectric slab. Thus,
we can conclude to the significance of the multipaths for modeling
dielectric structures. Finally, we analyze the results obtained with
two consecutive wedge vertices in order to show that the slope
diffraction related to the doubly diffracted field allows one to
predict the field behind the structure when the transmitted field
doesn’t exist.

Index Terms—Electromagnetic diffraction, FDTD, geometrical
theory of diffraction, lossy media, wedges.

I. INTRODUCTION

W ITH the expansion of mobile cellular communications
there is a need for more and more precise and general

radiowave propagation models. Moreover, the large dimension
of objects in relation to the wavelength and the possibility to
repeat propagation calculation as often as possible in a limited
computation time lead to the use of high-frequency asymptotic
methods based on the ray concept, among which are the
geometrical theory of diffraction (GTD) and its extension the
uniform theory of diffraction (UTD) [1]. These techniques
allow one to compute reflection and diffraction effects that
are the dominant mechanisms in an urban environment.

The state of the art shows that these asymptotic wedge
diffraction methods were derived rigorously for perfectly con-
ducting infinite wedges or impedance wedges [2]–[4], but only
heuristic extensions have been proposed to handle dielectric
wedges as well as finite size ones. Several authors [5]–[7] pro-
pose heuristic approaches in the case of dielectric structures.
In [5], the study is limited to a dielectric slab. In this case,
the shadow boundary related to the transmitted rays is exactly
the same as the incident shadow boundary (ISB). Furthermore,
the validity of the approach is not completely verified. Indeed,

Manuscript received June 30, 1997; revised June 10, 1999. This work was
supported by FRANCE-TELECOM/CNET.

The authors are with ONERA/CERT/DERMO, Toulouse Cedex, F-31055
France.

Publisher Item Identifier S 0018-926X(99)09949-4.

the comparison between UTD and the moment method (MM)
is made only in the case of the backward scattering half-
plane directions and the calculation is not performed when
transmitter and receiver are located on each side of the
slab. Luebbers also studied dielectric structures: first in the
case of knife edges and great size wedges [6], but without
taking into account the transmitted field; then in the case
of rough lossy wedges [7], he developed a heuristic UTD
slope diffraction valid for diffraction over consecutive wedge
faces when transmission through the wedge can be neglected.
Nevertheless, in [6] and [7], no comparison with an exact
method [MM or finite difference time domain (FDTD)] is
presented.

Basically, materials used in urban environment are lossy
dielectrics and the set of scatterers encountered during a ray
path may include objects that cannot be considered infinite
in comparison to the wavelengths commonly used (30 cm).
Hence, there is a need to evaluate precisely the validity domain
and the accuracy of these extended asymptotic methods by
comparing them to exact approaches such as the FDTD.

In Section II, we report on the implementation of UTD
in the case of a lossy dielectric wedges including an extra
transmission coefficient. We propose a new approach to deal
with the two-dimensional (2-D) problem of the diffraction
by a lossy dielectric wedge. In case transmitted rays exist,
the classic UTD formulation with the four-terms diffraction
coefficient cannot compensate the discontinuity caused by the
transmitted field on the transmission shadow boundary (TSB).
Thus, we built up an improved formulation of the diffraction
coefficient in which appear two additional terms weighted
by the transmission coefficients of each dielectric interface.
Thus, the total field depending on a six-terms diffraction
coefficient is perfectly continuous whatever the incidence and
the polarization of the incident wave.

Then, in Section III, we compare the results obtained with
these asymptotic methods to those obtained with an exact
method (FDTD) in the case of a single wedge such as
in [8], where Stratiset al. use FDTD to obtain numerical
diffraction coefficients for generic infinite perfectly electrically
conducting (PEC), lossless, and lossy dielectric wedges. In this
section, we outline the adaptation needed to the classic FDTD
grid calculation to isolate only one edge diffraction and then
validate FDTD on a metallic case by comparing with UTD.
Results obtained in the dielectric case are also presented.

Even though good results have been obtained in application
of the six-terms UTD diffraction coefficient, some differences
remain as soon as we penetrate inside the shadow area. Since
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in this zone it only exists diffracted and transmitted fields we
think that we could improve the results by taking into account
multiple reflections and transmission. As the case of the wedge
is quite difficult to implement in UTD, in Section IV, we
compare both single and multiple reflection formulations in the
case of a dielectric slab. We obtain a good agreement between
UTD and FDTD, which could explain that the differences
obtained in the case of the dielectric wedge are due to the fact
that multiple reflections are not taken into account in this case.
In Section V, we also demonstrate how the double diffraction
coefficient can improve the results obtained with UTD when
multiple reflections are not included in the calculation.

II. I MPROVEMENT OF THEUTD DIFFRACTION

COEFFICIENT BY ADDING TWO NEW TERMS

The problem of the diffraction of an electromagnetic in-
cident wave by a metallic or dielectric edge (Fig. 1) is an
important canonical case in the frame of propagation studies
in urban environment when modeling radio communications
links with mobiles. The UTD is an asymptotic ray method
which is well known for its fast computation time, but only
rigorously established for perfectly conducting wedges. The
originality of our work consists in the improvement of the
diffraction coefficient for the case of diffraction by a wedge
made of a lossy dielectric material such as concrete

S/m). If the apex angle of the wedge is
small enough a transmitted ray exists across
the wedge from a new shadow boundary called transmitted
shadow boundary (TSB) [9]. For an incident wave on the
face, the space around the wedge can be split into four areas
limited by the incident shadow boundary (ISB), the reflected
shadow boundary (RSB), and the TSB. In each area the
following fields exist (Fig. 1):

Zone I ;
Zone II ;
Zone III ;
Zone IV .

Each geometrical optics (GO) field is discontinuous when
crossing the related shadow boundary, but this discontinuity
is compensated by an antisymetrical discontinuity of the
diffracted field. Thus, the total field is continuous all around
the wedge.

We remind the expression of the diffracted field in the space
around the wedge as

(1)

is the caustic distance,the observation distance, andthe
diffraction coefficient given by [1] as

(2)

To keep continuity of the total field in case of a lossy
dielectric wedges, we add two terms to the usual four-terms
diffraction coefficient. These introduce two finite discontinu-
ities, which compensate on each shadow boundary, those of

Fig. 1. Dielectric wedge geometry.

the GO fields. Thus, the new six-terms diffraction coefficient
is now expressed as

(3)

and are the reflection coefficients, respectively,
in TE(soft) or TM(hard) polarization cases. When the wave
penetrates from air into the dielectric, the reflection coefficient
in TE polarization is given by

(4)

In this case, we have and
.

On the other interface (dielectric/air), it is given by

and

(5)

The diffraction coefficients , , , and are defined
by [1] and [5] as

cot

(6)
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Fig. 2. Continuity of total UTD field with six-terms diffraction coeffi-
cient and comparison with the classical one (four terms).f = 900 MHz,
'0

= 105
�, s = 1 m, � = 10

�, �r = 10, � = 0:001 S/m.

Respectively, they ensure the continuity of the total field
when crossing the ISB, the ISB , the RSB , and the RSB,
but cannot compensate the discontinuity caused by the trans-
mitted field on the TSB. Thus, the total field around a dielectric
wedge, whose characteristics are given on Fig. 2, is clearly
discontinuous on this shadow boundary when using the four-
terms diffraction coefficient (2).

In (3), the two additional terms and allow ones to
compensate the discontinuity created by the transmitted field,
respectively, on the TSBand the TSB. According to the
heuristic formulation given in [5], and are weighted by
the reflection coefficients onface and face, respectively. In
the same way, and , which are related to the transmitted
field, are weighted by the transmission coefficients of each
dielectric interface

for and

for

Similarly to , we can write as

cot

(7)

• defines the TSB calculated by applying the
refraction Snell–Descartes law successively on the two
interfaces air/dielectric and dielectric/air at the diffraction
point

arcsin

arcsin

(8)

•

(9)
• is the nearest integer solution of

(10)

The expressions and are deduced from those of
and by changing into into , which defines
the TSB

arcsin

arcsin

(11)

•

(12)

• is the nearest integer solution of

(13)

Then we can write similarly to as

cot

(14)

In Fig. 2, the improvement due to the new six-terms diffrac-
tion coefficient can be seen for . Indeed, the
discontinuity observed for
(TSB) on the dashed lines disappears once the twoand

terms are added to the diffraction coefficient.

III. COMPARISON BETWEEN UTD AND FDTD
IN CASE OF A SINGLE WEDGE

Whereas ray methods like GTD and its extensions are based
on locality of the scattering sources, numerical methods make
the direct computation of the globally scattered field of a finite
body. Consequently, there are two ways of comparing results
given by both methods. First, one would consist in computing
the global field scattered by a finite object by summing up all
the ray contributions, but interpretation of the differences may
then be cumbersome. Instead, the approach we have retained
here is trying to isolate inside a numerical method the edge or
wedge diffraction, while keeping the geometrical parameters
as general as possible.

As UTD is used for a 2-D problem, we also use FDTD
in two dimensions on a cylinder with triangular basis, with
the goal of isolating one wedge diffraction illuminated by
a plane wave. We implement Yee’s leapfrog algorithm [10]
with Mur second-order absorbing conditions and Taflove’s
corner ones [11]. Dielectric losses of material are taken into
account conventionally through real electric conductivities.
The incident pulse has Rayleigh like spectrum and is centered
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Fig. 3. Grid of FDTD calculation.

about 900 MHz. The base of the triangle rests on the Mur
absorbing boundaries that have been adapted here and, along
them, no significant spurious reflections were found at the
junction of free-space and dielectric (Fig. 3). Because we
want to isolate only one wedge diffraction, the concept of
Huyghens surface for plane wave initialization is impossible
to implement here. So we launch the plane pulse from a
fictitious aperture CD (see Fig. 3) and improve the Mur
absorbing boundaries by adding broad-band tapered radar-
absorbing material (RAM) .

By studying the propagation of the incident pulse inside
the calculation domain, we can observe that if we choose
both an adapted time window and size of calculation domain,
we do not observe any spurious reflections generated by the
fictitious aperture CD. For this we choose the origin of the
time on the vertical axe OPand the propagation takes place
according to the horizontal direction. It may be seen in Fig. 4
that at P the pulse is delayed for 3.3 ns corresponding to the
distance OP m, and 6.6 ns later we observe an other
smaller pulse corresponding to the reflection on the top of the
wedge. The point Plocated on the incident shadow boundary
is illuminated by the pulse after this has been diffracted at O.
Then we observe it at 3.3 ns with a very attenuated amplitude.
For all the observation points, we observe only the diffraction
and reflection phenomena of the pulse. Otherwise, the signal
is quite flat during all the time analysis, which proves that no
spurious reflection is observed.

After having reduced all spurious reflections to negligible
levels, we validate our FDTD calculation domain by compar-
ing results in a perfectly conducting case. The wedge (Fig. 3)
of aperture and tip O is illuminated on its OA face by a
TE plane wave at 900 MHz impinging from . For
such a value of the geometrical optics shadow boundaries
are RSB and ISB . The observation points

are located on a circle centered at O and of radius
m. A fast Fourier transformation on FDTD results

and a normalization by the frequency spectrum of the incident

Fig. 4. Observation points (P1, P2, P4).

Fig. 5. Metallic wedge.f = 900 MHz, '0
= 105

�, s = 1 m, � = 10
�.

Fig. 6. Dielectric wedge.f = 900 MHz, '0
= 105

�, s = 1 m, � = 10
�,

�r = 0:001 S/m.

Rayleigh pulse are performed to compare with UTD results in
the frequency domain. We can check in Fig. 5 that agreement
between the two methods is excellent.

To demonstrate the effectiveness of the UTD six-terms
diffraction coefficient, we present (in Fig. 6) the results ob-
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Fig. 7. Illustration of reflection and transmission on thin dielectric slab.

tained on a dielectric wedge by comparison with the FDTD
method. The TSB depends on material properties and apex
angle and is determined from (10). A good agreement between
UTD and FDTD is obtained as a whole although differences
are observed when diffraction is the only contribution to the
total field (between ISB and TSB). As soon as GO field exists
the agreement is quite good. In [12], we showed that whatever
the value of the permittivity the differences between the two
methods do not exceed 0.5 dB. These one observed between
the ISB and the TSB can be explained by the heuristic nature
of the diffraction coefficients. Moreover, the UTD doesn’t take
into account multipaths between the two dielectric interfaces
which are calculated in the full wave FDTD approach.

IV. STUDY OF A THIN DIELECTRIC

HALF-PLANE WITH MULTIPLE REFLECTIONS

Because of the difficulty in UTD to implement the multiple
reflections in the case of a dielectric wedge, we assess their
influence in the more simple case of a dielectric slab using
both FDTD and UTD. In this way, we can have an easier
physical interpretation of the problem.

Consider the geometry of Fig. 7 showing a dielectric slab
of thickness illuminated by an incident field . In [5], the
expression of the incident reflected, diffracted, and transmitted
fields can be found. They depend on multiple reflection and
transmission coefficients that take the place of the single
reflection and transmission coefficients previously used in the
case of a dielectric wedge. Since the ISB and the TSB are
similar, here we use a four-terms formulation for the UTD
diffraction coefficient in which the reflection and transmission
coefficients are derived from an infinite sum of terms related
to each path inside the slab. From [5], the total layer reflection
and transmission coefficients are

and (15)

Fig. 8. FDTD modeling of the dielectric half-plane.

Fig. 9. UTD/FDTD comparison using geometry shown in Fig. 8.f = 900

MHz, '0
= 55

�, Q1Q2 = 10 cm, �r = 10, � = 0:001 S/m.

(16)

is the single reflection coefficient from (4).
Thus, the diffraction coefficient is calculated by

(17)

in which id given by (6).
In UTD, we treat this problem by using this theory applied

on an infinite half-plane. That is possible only if the thickness
of the slab is small enough to consider than ISB and TSB

are the same.
In Fig. 8, we represent the geometry used in FDTD. The

slab of thickness is illuminated on its QA face
by a TE plane wave at 900 MHz impinging from .
The observation points P are located on a circle centered at O
and of radius m.

Results presented on Fig. 9 are quite convincing: as soon as
we use a UTD formulation taking into account multiple reflec-
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Fig. 10. Geometry of the diffraction by two consecutive wedges.

tions, the agreement with the FDTD is very good. Otherwise,
if we use only the single reflection coefficient, differences of
about 5 dB appear once the reflected and the incident fields
disappear.

V. STUDY OF A THICK DIELECTRIC

HALF-PLANE WITH DOUBLE REFLECTION

Even if we use multiple reflections, it remains small dif-
ferences (1–2 dB) after the ISB inside the shadow boundary
in Zone V (Fig. 10). That’s why we introduce a second-order
contribution, which is calculated using the slope diffraction.
The latter allows one to find the doubly diffracted field by

and in the shadow region. The expression of this new
contribution is given by [7] as

(18)

with

(19)

The expressions of the two diffraction coefficients and
are developed in [7].

On Fig. 10 for an incident wave on the face, the space
around the slab can be split into five areas limited by the
double scattered shadow boundary (DSSB), the RSB, the ISB
and the scattered shadow boundary (SSB). In each area the
following fields exist:

Zone I ;
Zone II

- ;
Zone III - ;
Zone IV - ;
Zone V - .

(a)

(b)

Fig. 11. UTD/FDTD comparison using geometry shown in Figs. 8 and 10.
f = 900 MHz, '0

= 55
�, s = 1 m, Q1Q2 = 90 cm, �r = 10, � = 1

S/m. (a) FDTD versus UTD without slope diffraction. (b) FDTD versus UTD
with slope diffraction.

To calculate such a geometry, we now have to apply the
UTD, not on an infinite half-plane as in the case of the
slab, but on two consecutive wedge vertices. Indeed, the
slope diffraction coefficient has been developed for a sufficient
separation distance between these two consecutive wedges.
This case is different from the case of an infinite half-plane
because the ISB and the TSB cannot be merged here due
to the thickness of the structure. Furthermore, in order to
minimize the transmitted field and to keep the assumptions
of the application domain of the slope diffraction coefficient,
we choose a high lossy dielectric S/m) and a large
thickness cm.

The results presented on Fig. 11(a) show a good agreement
between UTD and FDTD for modeling the diffraction by two
dielectric consecutive wedges before the SSB. Indeed, the only
field calculated after the ISB is the diffracted field by
whose propagation is limited by the face of the structure.
Furthermore, for predicting the field all around the slab even
in Zone V, we had to take into account the doubly diffracted
field by and [Fig. 11(b)]. It’s the only field present
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in this zone. Thus, the results are quite good in all the space
around the structure.

VI. CONCLUSION

An improvement of the UTD diffraction coefficient for the
case of a lossy dielectric wedge has been presented. It allows
one to consider the transmitted field through the structure by
adding two new terms in the classical formulation of the
diffraction coefficient. This new diffraction coefficient has
been validated by a comparison with FDTD. In order to
model exactly the same structure with these two methods, we
previously adapted the FDTD time window and its calculation
domain to isolate only one edge diffraction. Then we obtain
a quite good agreement between the two methods. Small
differences exist between the ISB and the TSB because we
haven’t taken into account multipaths inside the dielectric
wedge. Thus, by implementing UTD and FDTD in the case of
a thin dielectric slab, we have shown that multiple reflections
inside the dielectric structure should be taken into account for
a good agreement between UTD and a full wave approach
such as FDTD. Finally, when losses are so important that the
transmitted field doesn’t exist, we have shown that it’s possible
to predict properly the field behind a thick dielectric slab by
taking into account a slope diffraction coefficient generating
the doubly diffracted field.

Note that in all our comparisons, typical UTD computation
time are 0.01s on a HP735 work station against about 15 mn
on a CRAY computer for FDTD. Thus, the UTD applied on
dielectric structures is a very convenient method, fast and
accurate, to calculate propagation in an urban environment.

Some more improvement could be achieved as the im-
plementation of both transmission and slope transmission.
Finally, we expect a further validation of our theoretical study
from a comparison of all the results presented here with
measurements.
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