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Theoretical Performance Limits on
Tropospheric Refractivity Estimation Using
Point-to-Point Microwave Measurements

Joseph TabrikianSenior Member, IEEEand Jeffrey L. Krolik,Member, IEEE

Abstract—Ducted propagation above the ocean surface can these refractivity parameters by microwave sensing techniques.
seriously impact shipboard radar and communications. Point-to- Both coherent and incoherent signal models consisting of
point microwave measurements have been proposed as a meangeyeral discrete frequencies are considered
of estimating tropospheric refractivity for the purposes of charac- . )

A common tool for evaluating the performance of a pa-

terizing surface-based ducts. This paper addresses the theoretical ’ s ’ )
performance of refractivity estimates that can be made by com- rameter estimation algorithm is the Cramer—Rao lower bound

bining field measurements at different frequencies with prior (CRLB) [11]. The CRLB has been widely used for ex-
statistics of refractivity variation. Parameterizing the refractiv-  ploring fundamental performance limits in many different
ity profile using empirical orthogonal functions derived from a  fia|ds (see, e.g., [6], [7]). The use of the CRLB is usually
historical database, both Cramer—Rao performance bounds and . .. - . -

the maximum a posteriori (MAP) estimate are discussed using justified by appealing to the property, Wh'ch as_serts that. It can
coherent or incoherent signals. Results obtained using a realistic P& closely approached by the maximum-likelihood estimator

model of refractivity conditions off Southern California suggest under asymptotic conditions, i.e., “sufficiently large” signal-
that multifrequency propagation measurements can significantly to-noise ratio (SNR) and/or observation time. However, when
improve the estimation of refractivity and propagation 10ss pro- oy statistical information on the unknown parameters is
files. available, the Bayesian version of the bound [11] is potentially
Index Terms—Microwave measurements, refractivity, tropo- more appropriate. For cases where prior statistical information
spheric propagation. exists only for some of the unknown parameters, the hybrid
CRLB based on the Bayesian CRLB has been proposed in [9].

|. INTRODUCTION The Bayesian and hybrid versions of the CRLB, however, do

|not always vyield greatest lower bounds (i.e., “tight” bounds)

HE vertical and horizontal refractivity profile in coasta . ) .

: ) even asymptotically. Tighter Bayesian bounds have thus been
regions determines, to a large extent, the performance ’ ) . . .
) 2 eveloped by Weiss—Weinstein [12], Ziv—Zakai [14], and
of shipboard radar and communications systems. If the at: . .

more recently, a hybrid-type Barankin bound by Reuven and

mospheric conditions, particularly water-vapor spatial dIStrk/Iesser [8]. However, calculation of these bounds involves an

bution, were known, numerical propagation models could k()a%(tremely large amount of computation, which makes them

used for such purposes as predicting detection ranges, cor-

) i ' L ractical for the refractivity estimation problem. Thus, in
recting altitude estimates, and estimating surface backscatte : T - ]
. . . .. arder to include the effect o priori statistical knowledge in
strength. Since direct measurement of atmospheric condltlcms

is difficult and expensive, remote sensing by multiple point-tg. > PaPe’: the performance of an optimal Bayesian estima-
P ' 9oy bie p or—the maximuma posteriori (MAP) method—is evaluated

point propagation loss measurements at different frequencaessan indicator of the limiting performance.

has been proposed as a means of synoptic monitoring of tropo—The remainder of this paper is organized as follows
spheric refractivity. The effect of the variability of atmospheri?n '

C . . ) . In. Section Il, the problem is defined and formulated. In
refractivity on propagation estimates using real data promgsection lll, the hybrid CRLB for this problem is developed
has been investigated in [10]. '

and it is shown why it is not a greatest lower bound,

The objective of this paper is to examine the INVers&ven asymptotically. In Section IV, the MAP estimator is

problem of determining refractivity from propagation mea-

. . : .Bresented and its performance is studied. Section V presents
surements. In order to estimate refractivity, a parameterization . St
Simulations which illustrate the expected performance of the

of the refractivity profile is required. In this paper, Paramy ap estimator for tropospheric refractivity estimation. The

eterization based on the second-order statistics of historical . . .
- . ccfnclusmns are presented in Section VI.
refractivity measurements is proposed and then used to cal-

culate fundamental performance bounds on the estimation of
Il. REFRACTIVITY ESTIMATION PROBLEM FORMULATION
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estimation, in order to include the effects of ducting, iB. Measurement Model
this work, historical atmospheric sounding data are used 0|, order to estimate the refractivity profile, the electromag-

derive a basis in terms of empirical orthogonal functiongeyic field at different frequencies is sampledMatpoints in

(EOF'S) [S]¢m(2),m = 1,---, M. This leads to the following gace Consider the following measurement model for a signal
decomposition of the refractivity profile(z) as a function of composed ofL, different discrete frequencies:

height
yl:a’l(T?Z?g)sl(ol)—’_nlv l:]-va (6)
n(z) = m(z) + ¥(z)g 1) . .
wherey, is N x 1 vector representing the complex envelope
where the functionm(z) represents the known mean off the measured signal by the different sensors at frequéncy
the refractivity profile and¥(z) = [¢1(2),-- -, (2)] is a and s;(8;) is the complex envelope of the signal at frequency
row vector of EOF’s. The unknown coefficient vectgris i With unknown phasé,. The additive measurement noise
assumed to be a zero-mean random vector, which expredgedS @ zero-mean Gaussian vector with covariance matrix
the uncertainty in the refractivity profile. In this paperis £, = o°I, wherel is an identity matrix of sizeVL—the
assumed to be multivariate Gaussian distributed. Note that fHémber of sensors times the number of frequencies. The vector
Gaussian assumption ignores the higher order momengs of«(-; - *) is @ known vector function representing the field as
which may be relevant in some circumstances. a function of the sensor range height z, and the unknown
Sampling the refractivity profile of (1) at heights, - - -,y  refractivity vector parametey. The vector functiorng, (-, -, )
the resultingVequations can be expressed in matrix notatidgin be determined using a full-field numerical propagation

as model such as the radio physical optics (RPO) code [3]. The
signal amplitude is known except the paramefigr which
n=m+Wg (2) represents the phase of thté frequency. Defining
A
where Y= [?/f, Tt 7y:£]T
CEN 0"

n=[n(2), ()l = 0.0

m=[m(z1), . m(zn)]" 5(0) = [s1(81), - sr.(0r)]"

=0 (z), -, 0T (2n)]" RN

and 7" stands for the transposition operation. The vegjor and

expresses the variation of the refractivity from the mean A(r, 2, g)

along different basis vectors corresponding to the columns of ai(r.7,9) 0 0 ... 0

the matrix . 0
Using the above parameterization, estimating the refractivity,,

profile can be performed by estimating the vecipr In =

order to obtain prior statistics on the random paramegteat : : :

least A/ independent measurements of the refractivity profile 0 | T 0 ap(rzg)

are needed. Using a set &8f historical refractivity profiles

sampled atN heights denoted{n,,}*’_,, the mean and

covariance matrix of can be approximated by y=A(r,z9)s(0) +n. (7)

then (6) can be rewritten as

1 M The problem addressed here is estimation of the refractivity
m=E(n)~ 1Y Z T (3) profile parameterg using the measuremenis The source
! location, defined by the parametsfs =), is assumed to be

m=

M

A 1 - known. In addition, prior statistical information on the vector
C, = cov(n) ~ M Z (i — m)(ny, —m) (4) parameterg is assumed available from historical profiles via
m=1 the decomposition of (5). The vector of phages a nuisance
where H is the Hermitian transpose. The matuk can be Parameter. . _ .
obtained by singular value decomposition @, Two different signal models are considered here. In the first,
the signals at different frequencies are coherent and, therefore,
C,=wvCw". (5) the relative phases at different frequencies are assumed known.

The reference phagt, however, is assumed unknown. In the
This process also provides the second-order statistical infsecond case, the signal at different frequencies is incoherent
mation on the vectoy, C,. By definition, the matrixC, is and the nuisance parameters &e= [0;,---,0;]*. Note that
diagonal implying that the elements gfare statistically un- in general A unknown parameters in the vecipare required
correlated. Knowledge of the prior distribution of the unknowto perfectly represent the refractivity profiles of the historical
parameters is important in the estimation process and is usedlas. However, according to the prior statistical information,
ana priori distribution in the calculation of the hybrid boundthe variance of the higher order terms gfire usually close
as well as MAP estimate. to zero. Therefore, these terms can be assumed to be known
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and the number of the unknown parameters to be estimatad inability to estimate the desired parameters using the
can be decreased tf, < M. measurements only. Adding the prior statistical information,

In the case of a single sensd¥,= 1 and the vector§a; }=, through the matrix/,, however, assures a finite bound at any
are scalars. The block diagonal matrik in (7) becomes SNR or number of measurements. Calculation of this bound,

diagonal such that however, requires an expectation ovir with respect to the
. random refractivity parameterg. The expectation can be

A(r, z, g) = diag(b(r, 2, g)) (8) approximated by averaging;, for different realizations of the

(b(r, 2,9l = ai(r, 2, 9), l=1,--,L. (9) refractivity profiles obtained from historical refractivity data.

To evaluate the hybrid CRLB for refractivity estimation with
herent signals, the unknown vector includes one nuisance
paramete#; in addition toA4, elements of. Theijth element

Focusing in this paper on the case of a single source—receigg
pair, the measurements can thus be formulated as

y=h,.(a)+n. (10) of the matrixJ; for the coherent case is thus given by
h defined asy 2 [47, 67T, and the el o o' b b
The vectora is defined asx = [¢g*,©" ]*, and the elements 2s's 9a 9a " 0a
of h,.(a) are given by {1k = Re ZHQ% |biq2 (14)
b =
dg

A 0
h, . = b(r, ~ IV {=1--- L. 11 . .
[r. ()i = [st][b(r, 2, g)Lie o (11) since #; cancels out. In the incoherent case, the unknown

In the above model, the parameter of intergss unknown Vector includesL nuisance parameters in addition to th
random, while the unknown nuisance paramegeis deter- €lements ofg. Theijth element of the matriy; is given by
ministic. In the following sections, the hybrid CRLB and(15), shown at the bottom of the page. Note that in both cases,
performance of the MAP estimator for this model will bghe matrixJ; is independent of the phase vec@rsince the
discussed. dependence on the signal phase disappears in the prgfdsct
The expressios’’s/s? in (15) is defined here as the SNR.
ll. HYBRID CRLB The matrix J, contains thea priori covariance matrix of
) o ) the unknown parameter vector. The covariance matrix of the
In order to account for prior statlstlc_al information on Som@ectorg can be calculated as described in Section II-A and
but not all the _parameters, the hybrid form of Cramer—ng given by the diagonal matri€’,. Since for both coherent
bound has previously been proposed [9], [11]. The expressigRy jncoherent signals no prior information on the nuisance

for the hybrid CRLB on the vectog is vector paramete® is available, it must be treated as unknown

cov(g,0) > (EqlJ1(g,0)] + J2)71 (12) deterministic and the matrid, is given by (see [9])
Cc, 0
where J;(g,©) is the Fisher information matrix (FIM) of J2 = [Og 0} (16)

a2 (g9,0) using the measuremenis
9 where the sizes of the zero matrices are determined by the

(@), = E 9 In f(yla)d In f(yle) (13) Mumber of unknown phase parameters in each case.
P Yl Jo; Jda The CRLB is known to be an asymptotically greatest lower

. bound and it can be achieved by the maximum-likelihood
gnd the ma”.'x."z st_ands for_the FIM of thg vectgy based on estimator. The Bayesian CRLB on the other hand is not a tight
its prior statistical information. The functiofi(y|c) denotes

i . . . bound even asymptotically [1]. The condition under which
the conditional probability density of the vectgrgiven the the Bayesian version of the CRLB can be achieved by some
vector parametete.

The use of prior statistical information is important inestlmator s (see [11])
the refractivity estimation problem because the matfix 9 In(f(y, @) 4y —a Yy 17)
is singular when the number of complex measurements is da ’ ’
less than the half the number of unknown parameters. Thiberei(y) is an unbiased estimate of which achieves the
implies the conventional CRLB goes to infinity, indicatingoound. Note thaf (y, &) denotes the joint probability density

_ ab* i
albl 0
ov" ob A%
dg dg bt
2sH s 0 aLbL
Uihij = =5 Re Ol 0 g (15)
1 og |b1]2 0
—=Jj
0 b*/ﬁ 0 |br|?
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function ofy ande. Such a condition is not satisfied in general The MAP estimate ofx maximizes the function:(y, «)
cases and, thus, the bound is usually unachievable. Thereféoe,a given measurement vectgr Therefore, the gradient of
the hybrid CRLB is usually not tight, even asymptotically. «(y,a) with respect tox is zero aténr.ar(y)

If the matrix J; is singular, then by increasing the SNR 0
to infinity, only the nonzero eigenvalues df go to infinity u, (y,éniar) = 0 (22)

while other eigenvalues remain zero. Therefore, adding th . ; h | i the deri
prior statistical information, which does not vary with SNR' eretiq(-, ) IS a row vector whose elements are the deriva-
ves of u(-, -) with respect to the elements in the row vector

is expected to result in a constant error covariance as the
SNR goes to infinity. However, in the refractivity estimatiorf*
problem whereJ; is singular, the hybrid CRLB leads to

the unrealistic conclusion that the mean-square error of the

refractivity estimation may go to zero as SNR goes to im‘initzet Aa denote the estimation error of Aa — & o
- = GMAP — Q.

even whenJ; is singular. The reason is that the expectatio, o : . .
over the matrixJ, with respect to the unknown random pa_gubstltutmn of (18) into (22) and expanding the Taylor series

rameters makes it nonsingular. Thus, although the mdtriis to first order gives
singular for any value of the unknown parameters, its expecteqlif (y, oviap)
value with respect to the unknown random parameters is a H

nonsingular matrix whose eigenvalues increase with SNR. At =u, (h(a,) +n,0, + Ac)

A Ju(y, @)

u.(y,

high SNR’s, the matrixJ, becomes negligible with respect =ull (b)), @)

to Eg[J1(g,0)] and, therefore, the bound on error covariance {3%(% a) 1 uq(y, a) Aa} _

is approximated byE!; '[J1(g,©)]. This matrix is inversely Jy K da y=h(ex,) B
proportional to SNR and thus goes to zero as SNR goes ’ (24)

to infinity. Thus, the hybrid CRLB is not a useful tool for
prediction of performance limits in the refractivity estimationyhere

roblem.
p 811,@ (yv a) é aQU’(ya a)
dy T Qo Oy,
IV. MAXIMUM A POSTERIORI ij ) J
ESTIMATOR PERFORMANCE ANALYSIS [3%(1/, a)} A Puly, @)
Since, as discussed in the previous section, the Bayesian da i da;da

CRLB ca_n_be ex_pect_ed to provide only a v_veak |n_d|cat|on To evaluate (24), considering the derivatives with respect to
of refractivity estimation performance, in this section, the

. ) .. & at the true value ofy, i.e.,y = h(a,), @ = a, achieves
performance of the optimal MAP estimator of the refractlvm{ :

, , _ he maximum ofln f(y|a)
parameters is examined. To derive the performance of a
general MAP estimator, consider the following measurement 9 ln f(y|a)

_ nH
model: da 0.

y=h(es)

a=a,

¥ = kom0, +n (18)  Therefore, the gradient of (21) with respectedds given by

and letar, denote the true vector parameter to be estimated. o In fla)
The MAP estimator of the vector parameter given the ua(h(c,), o) = e (25)
measurement vectay is *=o

. and (24) can be written as

anap(y) = arg max f(y, @) (19) 4)

Oln fle) | Oualy.a)  Oualy,c) \ _
where f(y, ) is the joint probability density function of the doctl dy n da y=h(a,)
measurement vecter and the parameter vected: Of interest F=%o 26
here is the error around the true valuenofNote that the MAP (26)
estimator can also be written as Therefore, the estimation erraxe is approximately

aniar(y) = arg max u(y, @) (20) o {_ { S (o, a)} =
whereu(y, a) is defined as Ocx
; a1l Ou,(y,
u(y, a) S flyla) +1n f(a). (21) - { - {{(a) + & (y.) 77} . (27)
aa ay y=h(oz,,)

a=a,

The goal here is to calculate the statistics of estimates of
the parameter of interesk, assuming small errors in theEquation (27) shows the relation between the additive noise
neighborhood ofw,. For this purpose, the relation betweem and the resulting errors in the estimation @ffor small

small errors in the datg and estimate of,, is derived. errors and/or large SNR’s. The above equations permits the
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Four coherent tones at 100, 119, 141, 168 MHz, SNR = 30 dB Four incoherent tones at 100, 119, 141, 168 MHz, SNR = 30 dB
1500 T T T i - 1500 : T : = -
e s - P
—— Mean profile . —— Mean profile d P
Bare e e
— — Estimated refractivity uncertainties e e — — Estimated refractivity uncertainties P P
Prior refractivity uncertainties Y, s Prior refractivity uncertainties L ! /. -
s . ’ g
1000+ . 1000+ 1
B E
£ £
K= =
@ (7]
I I
500 B 500 y
0 L 1 1 1 0 LA L 1 L
300 350 400 450 500 550 300 350 400 450 500 550
Modified refractivity Modified refractivity

Fig. 1. The reference refractivity profile bracketed by curves, which are ofég- 2. The reference refractivity profile bracketed by curves, which are one
STD away using coherent signals at four frequencies. STD away using incoherent signals at four frequencies.

Tones at 100, 119, 141, 168 MHz, SNR = 30 dB

1500

derivation of the statistics ofAa from probability density
functions ofy and a.

In order to compare the performance of the MAP estimator
with the Bayesian CRLB, consider the case where the noise
vector n and the unknown parametet are independent 4
Gaussian vectors

7 NN(Oan)
a~N(a,R,).

Height [m]

For the model of (18) and this Gaussian assumption, the FIM’s,
J., and J. are given by

Prior

— — Incoherent frequencies
8hH (a) 1 ah(a) —— Coherent frequencies
J = R, (28)
da da ; s
a=a 0 15 20 25
-1 e Modified refractivity STD
Jo =R (29)

Fig. 3. The modified refractivity profile STD for prior information only and

. . . . .prior information in addition to measurements of coherent/incoherent signals.
Using the expression in (27) under a Gaussian assumptlgn, g

calculation of the gradient,, (y, c) is required. By substituting o
Gaussian density functions for the measuremenend the NOW the MAP estimation errofa can be expressed as

parametersy into (21) one obtains Aa= — (Ji(a,) +J2)7"
_, Oh(a e on" (a) 1 .
ua(y, @) = (y — h(a))"R;* 8(01) —(a—a)R;'. (30) . < oo ) R, n+Jr(@—ao)|. (34)
Using (30) and the prior density function af one may obtain ~ The bias of the estimator can be calculated by averaging
the required terms for calculatinde in (27) the estimation erroa: Aa, = Eya(Aa). The averaging
. operation results in
{W} Ma) [aha—@] R (31) Aoy, = (i) + o) a(@ — ) (35)
=h(c, (64
Y amex, a=a, and the conditional mean-square error of the MAP estimator is
[8%(.«/, a)} _ | (@) R ah(a)] Eyja(Aada |a) = (J1(a) + J2) M1 (@) + Jo(@ — )
o Jyzhien) Ocr Al (@—a)d2)(Ji(@) +J2)t (36)

- R Thus, the global mean-square error of the MAP estimator is
= — (Ji(a,) + J2) (32) obtained by expectation of (36) with respectdo
P?—ﬁ“)} R @—a,) = Jo@—a,). (33) Fuelbada)=Eu((Ji(@)+J2)7 (Ji(e) + J2@ - a)
o a=a, (@— o) I)(Ji(a)+T)7h.  (37)
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The prop. loss al 327 MHz for the mean profile

T 7 T T T

g

Height [m]

80 100 120

= 1 1
70 80 90 100 10 120 130 140 150 160 170
Prop. loss [dB]

Fig. 4. The propagation loss for the mean profile.

In the special case wherd; is not a function ofa, the typical profile was used as a reference profile around which the
mean-square error of the MAP estimator becomes performance evaluation has been carried out. The performance
Eyo(Aadal) = (J1 + Jo)7L (38) evalu_ation has bee_n made around _this refgrence profile.
) . i i i Using the equations developed in Section IV {6r, J5,
This result coincides with the Bayesian ,CRLB _(12) SINCEng (37), the covariance matrix on estimation of the unknown,
E"‘.(Jl) - J.l' In other wgrds, the MAP espmator IS aSYMBi4ndom refractivity parameter vectgr is calculated. The
;o;z:sallri/ofgtém:rl];nodnach|eves the CRLB in cases whde expectation in (37) is approximated by averaging modified
P ' refractivity profiles from VOCAR data [13]. Given the covari-
ance matrix on estimation error of the matgixone may obtain
V. ESTIMATION OF REFRACTIVITY ESTIMATOR PERFORMANCE the covariance matrix on estimation error of the modified

In this section, a performance evaluation of the MAgefractivity profile n by using (5). In Fig. 1, the reference
estimator of the modified refractivity profile [2], [4] is pre_refract|V|ty pr_ofl_le is plotted brack(_eted by curves that are one
sented. The scenario considered here approximates thatigndard deviation (STD) away using: 1) only prior refractivity
the variability of coastal atmospheric refractivity (VOCAR)statistics and 2) a MAP estimate obtained using prior statistics
experiment described in [13]. A range independent propagatimether with field measurements made by the sensor assuming
environment is considered. Measurements are assumed &@PRerent signals at different frequencies. Clearly, with only
single receiver located at a height of 30.5 m and at a ranget@¢ field measurements, as modeled by (7), one is not able to
132.6 km from the transmitter located at the same height. TR&timate the refractivity profile. However, such measurements
sampling grid in height was chosen adaptively by RPO. TKk®mMbined with the prior refractivity parameter distribution
data model consists of four narrow-band signals at frequencf@ be used to significantly reduce the uncertainty in the
of 100, 119, 141, and 168 MHz. The number of EOF'’s, th&rofile. Fig. 2 shows the performance when incoherent signals
is, the length of the uncertain vector, is chosen to be 20. Bath the four frequencies are used. Comparison of the standard
the coherent case where the relative phase between the sigé@iations of the modified refractivity profile estimation for
is known and the incoherent case where the relative phasé®@h coherent and incoherent signals versus that achieved
unknown were considered. using only the prior statistics is given in Fig. 3. In both

Prior statistics were estimated using real measuremengherent and incoherent cases, one can observe that a signif-
of modified refractivity profiles taken during the VOCARIcant improvement in modified refractivity profile accuracy is
experiment. A total of 42 measured profiles were used in ordehtained from the MAP estimate that uses field measurements.
to estimate the variance of the modified refractivity profile at The proposed technique for estimating the propagation loss
different heights according to (3) and (4). Parameterization c&n be applied at any frequency, regardless of the frequencies
the modified refractivity profile deviation was done using thesed to estimate the refractivity profile. In this model, the
decomposition in (5) from which the matri is calculated. A refractivity profile is estimated using coherent measurements
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Normalized prop. loss STD at 327 MHz, prior statistics

Height [m]

20 40 80 80 100 120
Range [km]

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0
Prop. loss accuracy [dB)]

Fig. 5. Normalized STD of the propagation loss-prior statistics only.

Normalized prop. loss STD al 327 MHz, coherent frequencies

Height [m]

-20 -18 -16 -14 -12 -10 -8 - -4 -2 0
Prop. loss estimation accuracy [dB]

Fig. 6. Normalized STD of the propagation loss with estimation of the profile by four coherent frequencies.

at discrete frequencies 100, 119, 141, and 168 MHz, while the the frequency where propagation assessment is required.
estimated refractivity profile is used to estimate the propadaig. 4 shows the propagation loss for the mean profile as a
tion loss at 327 MHz. The propagation loss was computedfanction of range and height. The variance of the propagation
a different frequency than those used to estimate refractiviss estimates may be achieved using Monte-Carlo evaluation
to provide an indication of how useful the technique mighdf a numerical propagation model for modified refractivity
be in applications where measurements cannot be collecpedfiles distributed with covariance predicted by the bound of
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(12). For this purpose, 100 realization of the electromagnetifs] S. Li and P. M. Schultheiss, “Depth measurement of remote sources

field with independent randomization of the vecgaaccording using multipath propagation,IEEE J. Oceanic Eng.vol. 18, pp.
379-387, July 1993.

to its prior statistics. A? previously assumeq1 the vegtd$ (7] s Narasimhan and J. L. Krolik, “Fundamental limits on acoustic source
Gaussian. The normalized standard deviation (STD) of the range estimation performance in uncertain ocean channklg\toust.

; i i ; Soc. Amer.vol. 97, no. 1, pp. 215-226, 1995.
pr_opggatlon l_OSS base_d on the prior information Only Versu% I. Reuven and H. Messer, “A Barankin-type lower bound on the
prior information plus field measurements were evaluated and’ estimation error of a hybrid parameter vectolZEE Trans. Inform.

presented in Figs. 5 and 6, respectively. The normalized STD Theory vol. 43, pp. 1084-1093, May 1997. o
[9] Y.Rockah and P. M. Schultheiss, “Array shape calibration using sources

is defined as in unknown locations. I. Far-field sourcdgEE Trans. Acoust., Speech
NSTD A I I Signal Processingvol. ASSP-35, pp. 286299, Mar. 1987.
= std/ mean [10] T. Rogers, “Effects of the variability of atmospheric refractivity on
. . . propagation estimatesJEEE Trans. Antennas Propagatol. AP-44,
where Ly is the STD of the propagation loss, afd,.,,, is pp. 460-465, Apr. 1996.

the mean of the propagation loss. Comparison of Figs. 5 anditgl H. L. Van TreesDetection, Estimation and Modulation TheoryNew
York: Wiley, 1968.

indicate that microwave remote sensing can very significanis] A weiss and E. Weinstein, “A lower bound on the mean square error

improve the accuracy of propagation loss predictions. Fig. 5 in random parameter estimatioEEE Trans. Inform. Theoryvol. 31,
shows that the NSTD around 100 km in low heights is aboyt, PP 680-682, 1985. o _
. - . . ] R. A. Paulus, “An experiment in variability of coastal atmospheric
0 dB, i.e., standard deviation of the propagation loss using NO" refractivity,” Proc. Int. Geosci. Remote Sensing Symp. (IGRASS).
measurements is close to its mean. Fig. 6 shows that the SEI'D %9924, VOId 1|\,/ng. If%—gs& | ound |
: : : : . Ziv an . Zakai, “Some lower bounds on signal parameter esti-
of the estimated propagation loss in the same region can bd mation " IEEE Trans. Inform. Theoryvol. IT-15, pp. 386-391, May

reduced to—4 dB, i.e., an accuracy of 40% around the mean. 1969,

VI. CONCLUSIONS

In this paper, the problem of tropospheric refractivity mea-
surements using remote microwave sensing technique has been
addressed. It is shown that unlike the CRLB, the hybrid CR
is in general not tight even asymptotically. Thus the MA
estimator is proposed for this problem and its performan
has been analyzed and evaluated. Performance evalua =
of the MAP estimator indicates that while prior statistic!
on refractivity alone yield poor predictions, the fusion o
these statistics with a few propagation loss measurements §

potentially predict propagation losses at different frequenci€ 1998 h IS Al Lo oo
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