
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 47, NO. 11, NOVEMBER 1999 1727

Theoretical Performance Limits on
Tropospheric Refractivity Estimation Using
Point-to-Point Microwave Measurements

Joseph Tabrikian,Senior Member, IEEE, and Jeffrey L. Krolik,Member, IEEE

Abstract—Ducted propagation above the ocean surface can
seriously impact shipboard radar and communications. Point-to-
point microwave measurements have been proposed as a means
of estimating tropospheric refractivity for the purposes of charac-
terizing surface-based ducts. This paper addresses the theoretical
performance of refractivity estimates that can be made by com-
bining field measurements at different frequencies with prior
statistics of refractivity variation. Parameterizing the refractiv-
ity profile using empirical orthogonal functions derived from a
historical database, both Cramer–Rao performance bounds and
the maximum a posteriori (MAP) estimate are discussed using
coherent or incoherent signals. Results obtained using a realistic
model of refractivity conditions off Southern California suggest
that multifrequency propagation measurements can significantly
improve the estimation of refractivity and propagation loss pro-
files.

Index Terms—Microwave measurements, refractivity, tropo-
spheric propagation.

I. INTRODUCTION

T HE vertical and horizontal refractivity profile in coastal
regions determines, to a large extent, the performance

of shipboard radar and communications systems. If the at-
mospheric conditions, particularly water-vapor spatial distri-
bution, were known, numerical propagation models could be
used for such purposes as predicting detection ranges, cor-
recting altitude estimates, and estimating surface backscatter
strength. Since direct measurement of atmospheric conditions
is difficult and expensive, remote sensing by multiple point-to-
point propagation loss measurements at different frequencies
has been proposed as a means of synoptic monitoring of tropo-
spheric refractivity. The effect of the variability of atmospheric
refractivity on propagation estimates using real data profiles
has been investigated in [10].

The objective of this paper is to examine the inverse
problem of determining refractivity from propagation mea-
surements. In order to estimate refractivity, a parameterization
of the refractivity profile is required. In this paper, a param-
eterization based on the second-order statistics of historical
refractivity measurements is proposed and then used to cal-
culate fundamental performance bounds on the estimation of
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these refractivity parameters by microwave sensing techniques.
Both coherent and incoherent signal models consisting of
several discrete frequencies are considered.

A common tool for evaluating the performance of a pa-
rameter estimation algorithm is the Cramer–Rao lower bound
(CRLB) [11]. The CRLB has been widely used for ex-
ploring fundamental performance limits in many different
fields (see, e.g., [6], [7]). The use of the CRLB is usually
justified by appealing to the property, which asserts that it can
be closely approached by the maximum-likelihood estimator
under asymptotic conditions, i.e., “sufficiently large” signal-
to-noise ratio (SNR) and/or observation time. However, when
prior statistical information on the unknown parameters is
available, the Bayesian version of the bound [11] is potentially
more appropriate. For cases where prior statistical information
exists only for some of the unknown parameters, the hybrid
CRLB based on the Bayesian CRLB has been proposed in [9].
The Bayesian and hybrid versions of the CRLB, however, do
not always yield greatest lower bounds (i.e., “tight” bounds)
even asymptotically. Tighter Bayesian bounds have thus been
developed by Weiss–Weinstein [12], Ziv–Zakai [14], and
more recently, a hybrid-type Barankin bound by Reuven and
Messer [8]. However, calculation of these bounds involves an
extremely large amount of computation, which makes them
impractical for the refractivity estimation problem. Thus, in
order to include the effect ofa priori statistical knowledge in
this paper, the performance of an optimal Bayesian estima-
tor—the maximuma posteriori (MAP) method—is evaluated
as an indicator of the limiting performance.

The remainder of this paper is organized as follows.
In Section II, the problem is defined and formulated. In
Section III, the hybrid CRLB for this problem is developed
and it is shown why it is not a greatest lower bound,
even asymptotically. In Section IV, the MAP estimator is
presented and its performance is studied. Section V presents
simulations which illustrate the expected performance of the
MAP estimator for tropospheric refractivity estimation. The
conclusions are presented in Section VI.

II. REFRACTIVITY ESTIMATION PROBLEM FORMULATION

A. Refractivity Parameterization

Parameterization of the refractivity profile is necessary in
order to obtain the bound on the variance of estimation errors.
While a trilinear profile has previously been used in refractivity
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estimation, in order to include the effects of ducting, in
this work, historical atmospheric sounding data are used to
derive a basis in terms of empirical orthogonal functions
(EOF’s) [5] . This leads to the following
decomposition of the refractivity profile as a function of
height

(1)

where the function represents the known mean of
the refractivity profile and is a
row vector of EOF’s. The unknown coefficient vectoris
assumed to be a zero-mean random vector, which expresses
the uncertainty in the refractivity profile. In this paper,is
assumed to be multivariate Gaussian distributed. Note that the
Gaussian assumption ignores the higher order moments of,
which may be relevant in some circumstances.

Sampling the refractivity profile of (1) at heights
the resulting equations can be expressed in matrix notation
as

(2)

where

and stands for the transposition operation. The vector
expresses the variation of the refractivity from the mean
along different basis vectors corresponding to the columns of
the matrix .

Using the above parameterization, estimating the refractivity
profile can be performed by estimating the vector. In
order to obtain prior statistics on the random parameter, at
least independent measurements of the refractivity profile
are needed. Using a set of historical refractivity profiles
sampled at heights denoted the mean and
covariance matrix of can be approximated by

(3)

(4)

where is the Hermitian transpose. The matrix can be
obtained by singular value decomposition of

(5)

This process also provides the second-order statistical infor-
mation on the vector , . By definition, the matrix is
diagonal implying that the elements ofare statistically un-
correlated. Knowledge of the prior distribution of the unknown
parameters is important in the estimation process and is used as
an a priori distribution in the calculation of the hybrid bound
as well as MAP estimate.

B. Measurement Model

In order to estimate the refractivity profile, the electromag-
netic field at different frequencies is sampled atpoints in
space. Consider the following measurement model for a signal
composed of different discrete frequencies:

(6)

where is vector representing the complex envelope
of the measured signal by the different sensors at frequency
and is the complex envelope of the signal at frequency

with unknown phase . The additive measurement noise
is a zero-mean Gaussian vector with covariance matrix

, where is an identity matrix of size —the
number of sensors times the number of frequencies. The vector

is a known vector function representing the field as
a function of the sensor range, height , and the unknown
refractivity vector parameter. The vector function
can be determined using a full-field numerical propagation
model such as the radio physical optics (RPO) code [3]. The
signal amplitude is known except the parameter, which
represents the phase of theth frequency. Defining

and

...
...

...
...

...
...

then (6) can be rewritten as

(7)

The problem addressed here is estimation of the refractivity
profile parameters using the measurements. The source
location, defined by the parameters , is assumed to be
known. In addition, prior statistical information on the vector
parameter is assumed available from historical profiles via
the decomposition of (5). The vector of phasesis a nuisance
parameter.

Two different signal models are considered here. In the first,
the signals at different frequencies are coherent and, therefore,
the relative phases at different frequencies are assumed known.
The reference phase, however, is assumed unknown. In the
second case, the signal at different frequencies is incoherent
and the nuisance parameters are . Note that
in general, unknown parameters in the vectorare required
to perfectly represent the refractivity profiles of the historical
data. However, according to the prior statistical information,
the variance of the higher order terms ofare usually close
to zero. Therefore, these terms can be assumed to be known
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and the number of the unknown parameters to be estimated
can be decreased to .

In the case of a single sensor, and the vectors
are scalars. The block diagonal matrix in (7) becomes
diagonal such that

(8)

(9)

Focusing in this paper on the case of a single source-receiver
pair, the measurements can thus be formulated as

(10)

The vector is defined as and the elements
of are given by

(11)

In the above model, the parameter of interestis unknown
random, while the unknown nuisance parameteris deter-
ministic. In the following sections, the hybrid CRLB and
performance of the MAP estimator for this model will be
discussed.

III. H YBRID CRLB

In order to account for prior statistical information on some
but not all the parameters, the hybrid form of Cramer–Rao
bound has previously been proposed [9], [11]. The expression
for the hybrid CRLB on the vector is

(12)

where is the Fisher information matrix (FIM) of

using the measurements

(13)

and the matrix stands for the FIM of the vector based on
its prior statistical information. The function denotes
the conditional probability density of the vectorgiven the
vector parameter .

The use of prior statistical information is important in
the refractivity estimation problem because the matrix
is singular when the number of complex measurements is
less than the half the number of unknown parameters. This
implies the conventional CRLB goes to infinity, indicating

an inability to estimate the desired parameters using the
measurements only. Adding the prior statistical information,
through the matrix , however, assures a finite bound at any
SNR or number of measurements. Calculation of this bound,
however, requires an expectation over with respect to the
random refractivity parameters,. The expectation can be
approximated by averaging for different realizations of the
refractivity profiles obtained from historical refractivity data.

To evaluate the hybrid CRLB for refractivity estimation with
coherent signals, the unknown vector includes one nuisance
parameter in addition to elements of . The th element
of the matrix for the coherent case is thus given by

(14)

since cancels out. In the incoherent case, the unknown
vector includes nuisance parameters in addition to the
elements of . The th element of the matrix is given by
(15), shown at the bottom of the page. Note that in both cases,
the matrix is independent of the phase vectorsince the
dependence on the signal phase disappears in the product.
The expression in (15) is defined here as the SNR.

The matrix contains thea priori covariance matrix of
the unknown parameter vector. The covariance matrix of the
vector can be calculated as described in Section II-A and
is given by the diagonal matrix . Since for both coherent
and incoherent signals no prior information on the nuisance
vector parameter is available, it must be treated as unknown
deterministic and the matrix is given by (see [9])

(16)

where the sizes of the zero matrices are determined by the
number of unknown phase parameters in each case.

The CRLB is known to be an asymptotically greatest lower
bound and it can be achieved by the maximum-likelihood
estimator. The Bayesian CRLB on the other hand is not a tight
bound even asymptotically [1]. The condition under which
the Bayesian version of the CRLB can be achieved by some
estimator is (see [11])

(17)

where is an unbiased estimate of which achieves the
bound. Note that denotes the joint probability density

...

...
. . .

(15)
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function of and . Such a condition is not satisfied in general
cases and, thus, the bound is usually unachievable. Therefore,
the hybrid CRLB is usually not tight, even asymptotically.

If the matrix is singular, then by increasing the SNR
to infinity, only the nonzero eigenvalues of go to infinity
while other eigenvalues remain zero. Therefore, adding the
prior statistical information, which does not vary with SNR,
is expected to result in a constant error covariance as the
SNR goes to infinity. However, in the refractivity estimation
problem where is singular, the hybrid CRLB leads to
the unrealistic conclusion that the mean-square error of the
refractivity estimation may go to zero as SNR goes to infinity
even when is singular. The reason is that the expectation
over the matrix with respect to the unknown random pa-
rameters makes it nonsingular. Thus, although the matrixis
singular for any value of the unknown parameters, its expected
value with respect to the unknown random parameters is a
nonsingular matrix whose eigenvalues increase with SNR. At
high SNR’s, the matrix becomes negligible with respect
to and, therefore, the bound on error covariance
is approximated by . This matrix is inversely
proportional to SNR and thus goes to zero as SNR goes
to infinity. Thus, the hybrid CRLB is not a useful tool for
prediction of performance limits in the refractivity estimation
problem.

IV. M AXIMUM A POSTERIORI

ESTIMATOR PERFORMANCE ANALYSIS

Since, as discussed in the previous section, the Bayesian
CRLB can be expected to provide only a weak indication
of refractivity estimation performance, in this section, the
performance of the optimal MAP estimator of the refractivity
parameters is examined. To derive the performance of a
general MAP estimator, consider the following measurement
model:

(18)

and let denote the true vector parameter to be estimated.
The MAP estimator of the vector parameter given the
measurement vector is

(19)

where is the joint probability density function of the
measurement vectorand the parameter vector. Of interest
here is the error around the true value of. Note that the MAP
estimator can also be written as

(20)

where is defined as

(21)

The goal here is to calculate the statistics of estimates of
the parameter of interest , assuming small errors in the
neighborhood of . For this purpose, the relation between
small errors in the data and estimate of is derived.

The MAP estimate of maximizes the function
for a given measurement vector. Therefore, the gradient of

with respect to is zero at

(22)

where is a row vector whose elements are the deriva-
tives of with respect to the elements in the row vector

(23)

Let denote the estimation error of .
Substitution of (18) into (22) and expanding the Taylor series
to first order gives

(24)

where

To evaluate (24), considering the derivatives with respect to
at the true value of , i.e., , achieves

the maximum of

Therefore, the gradient of (21) with respect tois given by

(25)

and (24) can be written as

(26)

Therefore, the estimation error is approximately

(27)

Equation (27) shows the relation between the additive noise
and the resulting errors in the estimation offor small

errors and/or large SNR’s. The above equations permits the
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Fig. 1. The reference refractivity profile bracketed by curves, which are one
STD away using coherent signals at four frequencies.

derivation of the statistics of from probability density
functions of and .

In order to compare the performance of the MAP estimator
with the Bayesian CRLB, consider the case where the noise
vector and the unknown parameter are independent
Gaussian vectors

For the model of (18) and this Gaussian assumption, the FIM’s,
, and are given by

(28)

(29)

Using the expression in (27) under a Gaussian assumption,
calculation of the gradient is required. By substituting
Gaussian density functions for the measurementsand the
parameters into (21) one obtains

(30)

Using (30) and the prior density function of, one may obtain
the required terms for calculating in (27)

(31)

(32)

(33)

Fig. 2. The reference refractivity profile bracketed by curves, which are one
STD away using incoherent signals at four frequencies.

Fig. 3. The modified refractivity profile STD for prior information only and
prior information in addition to measurements of coherent/incoherent signals.

Now, the MAP estimation error can be expressed as

(34)

The bias of the estimator can be calculated by averaging
the estimation error . The averaging
operation results in

(35)

and the conditional mean-square error of the MAP estimator is

(36)

Thus, the global mean-square error of the MAP estimator is
obtained by expectation of (36) with respect to

(37)
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Fig. 4. The propagation loss for the mean profile.

In the special case where is not a function of , the
mean-square error of the MAP estimator becomes

(38)

This result coincides with the Bayesian CRLB (12) since
. In other words, the MAP estimator is asymp-

totically optimal and achieves the CRLB in cases where
does not depend on.

V. ESTIMATION OF REFRACTIVITY ESTIMATOR PERFORMANCE

In this section, a performance evaluation of the MAP
estimator of the modified refractivity profile [2], [4] is pre-
sented. The scenario considered here approximates that of
the variability of coastal atmospheric refractivity (VOCAR)
experiment described in [13]. A range independent propagation
environment is considered. Measurements are assumed at a
single receiver located at a height of 30.5 m and at a range of
132.6 km from the transmitter located at the same height. The
sampling grid in height was chosen adaptively by RPO. The
data model consists of four narrow-band signals at frequencies
of 100, 119, 141, and 168 MHz. The number of EOF’s, that
is, the length of the uncertain vector, is chosen to be 20. Both
the coherent case where the relative phase between the signals
is known and the incoherent case where the relative phase is
unknown were considered.

Prior statistics were estimated using real measurements
of modified refractivity profiles taken during the VOCAR
experiment. A total of 42 measured profiles were used in order
to estimate the variance of the modified refractivity profile at
different heights according to (3) and (4). Parameterization of
the modified refractivity profile deviation was done using the
decomposition in (5) from which the matrix is calculated. A

typical profile was used as a reference profile around which the
performance evaluation has been carried out. The performance
evaluation has been made around this reference profile.

Using the equations developed in Section IV for, ,
and (37), the covariance matrix on estimation of the unknown,
random refractivity parameter vector is calculated. The
expectation in (37) is approximated by averaging modified
refractivity profiles from VOCAR data [13]. Given the covari-
ance matrix on estimation error of the matrix, one may obtain
the covariance matrix on estimation error of the modified
refractivity profile by using (5). In Fig. 1, the reference
refractivity profile is plotted bracketed by curves that are one
standard deviation (STD) away using: 1) only prior refractivity
statistics and 2) a MAP estimate obtained using prior statistics
together with field measurements made by the sensor assuming
coherent signals at different frequencies. Clearly, with only
the field measurements, as modeled by (7), one is not able to
estimate the refractivity profile. However, such measurements
combined with the prior refractivity parameter distribution
can be used to significantly reduce the uncertainty in the
profile. Fig. 2 shows the performance when incoherent signals
at the four frequencies are used. Comparison of the standard
deviations of the modified refractivity profile estimation for
both coherent and incoherent signals versus that achieved
using only the prior statistics is given in Fig. 3. In both
coherent and incoherent cases, one can observe that a signif-
icant improvement in modified refractivity profile accuracy is
obtained from the MAP estimate that uses field measurements.

The proposed technique for estimating the propagation loss
can be applied at any frequency, regardless of the frequencies
used to estimate the refractivity profile. In this model, the
refractivity profile is estimated using coherent measurements
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Fig. 5. Normalized STD of the propagation loss-prior statistics only.

Fig. 6. Normalized STD of the propagation loss with estimation of the profile by four coherent frequencies.

at discrete frequencies 100, 119, 141, and 168 MHz, while the
estimated refractivity profile is used to estimate the propaga-
tion loss at 327 MHz. The propagation loss was computed at
a different frequency than those used to estimate refractivity
to provide an indication of how useful the technique might
be in applications where measurements cannot be collected

at the frequency where propagation assessment is required.
Fig. 4 shows the propagation loss for the mean profile as a
function of range and height. The variance of the propagation
loss estimates may be achieved using Monte-Carlo evaluation
of a numerical propagation model for modified refractivity
profiles distributed with covariance predicted by the bound of
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(12). For this purpose, 100 realization of the electromagnetic
field with independent randomization of the vectoraccording
to its prior statistics. As previously assumed, the vectoris
Gaussian. The normalized standard deviation (STD) of the
propagation loss based on the prior information only versus
prior information plus field measurements were evaluated and
presented in Figs. 5 and 6, respectively. The normalized STD
is defined as

where is the STD of the propagation loss, and is
the mean of the propagation loss. Comparison of Figs. 5 and 6
indicate that microwave remote sensing can very significantly
improve the accuracy of propagation loss predictions. Fig. 5
shows that the NSTD around 100 km in low heights is about
0 dB, i.e., standard deviation of the propagation loss using no
measurements is close to its mean. Fig. 6 shows that the STD
of the estimated propagation loss in the same region can be
reduced to 4 dB, i.e., an accuracy of 40% around the mean.

VI. CONCLUSIONS

In this paper, the problem of tropospheric refractivity mea-
surements using remote microwave sensing technique has been
addressed. It is shown that unlike the CRLB, the hybrid CRLB
is in general not tight even asymptotically. Thus the MAP
estimator is proposed for this problem and its performance
has been analyzed and evaluated. Performance evaluation
of the MAP estimator indicates that while prior statistics
on refractivity alone yield poor predictions, the fusion of
these statistics with a few propagation loss measurements can
potentially predict propagation losses at different frequencies
and spatial locations to within 10–60% of their true values at
ranges out to 130 km in the UHF band.

ACKNOWLEDGMENT

The authors would like to thank T. Rogers for providing
us with the VOCAR data as well as several useful discus-
sions. In addition, they would like to thank O. Ẅust for his
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