IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 47, NO. 11, NOVEMBER 1999 1697

Obligue Scattering by a Pair of
Conducting Half Planes: TM Case

Jong-Won Yu and Noh-Hoon Myung

Abstract—An exact series solution for the oblique scattering
by a pair of infinitely long parallel edges of perfectly conducting Source
half planes is formulated for a TM plane wave using the mode- /
matching technique (MMT). The scattered and guided fields are /
represented in terms of an infinite series of radial waveguide
modes. By applying the appropriate boundary conditions, the

coefficients of the scattered field are obtained. The diffraction ~ Q

coefficient of double edges is subsequently derived from the
scattered field. Halt Plane 1 £ % Half Plane 2

Observ. Point

\

Index Terms— Electromagnetic diffraction, mode-matching
technique. @)

I. INTRODUCTION PlaneWave -

LECTROMAGNETIC diffraction by perfectly conduct- & .~

ing double-edge structures has been a subject of intensive ; il
research. An asymptotic solution to the high-frequency diffrac-Regien1 /
tion by a single edge may be obtained by employing the
geometrical theory of diffraction (GTD) [1] and its uniform
extension (UTD) [2]. Since they are ray-based theories, they
cannot treat double-edge geometries accurately when the sec-
ond wedge is illuminated by a transition region field, where
the diffracted field shows rapid spatial variation in the vicinity
of the edge. During the past decade, a variety of approaches .
have been taken to overcome these limitations. ()

Tiberio and Kouyoumjian [3], [4] employed an extended. . . .

spectral theory of diffraction (ESTD) to investigate the diffrac%ﬁébl,ﬁcaﬁa%gg;ttgp?ﬁebg,o%g;'_r of perfectly conducting halt planes. (&)
tion by the edges within the transition region of singly dif-

fracted fields. Their solution, however, is restricted to thﬁ) the wedge axis. Hence, the scattering behavior is not well
case where either the source or receiver is on the Saffifyerstood when the plane of incidence is at an arbitrary angle

plane with the two edges. Michaeli [5], [6] examined the fargis, respect to the wedge axis (three-dimensional oblique

field scattering by a pair of parallel edges using the analySj§eigence case). Ivrissimtzis and Marhefka [8], [9] developed

WhiCh i? based on thg physical theory of diﬂ‘raction. (PTD)a near-zone solution for the doubly diffracted field from a pair
It is valid when the width of the double wedge gap is smalj¢ coplanar skewed edges.

compared to the source and observer distance. Schneider ang ;g paper, a simple series solution for the oblique

Luebbers [7] also developed a uniform double-edge diffractiQ attering by a pair of parallel edges of perfectly conducting

coefficient by applying ESTD, which correctly compensatgs,¢ pjanes (shown in Fig. 1) is investigated. The diffraction

for the discontinuities of the single-edge diffracted field. The{( aficient of the double edges is subsequently derived and

expression involves a double integral over an infinite domaigy. - 1ated from the scattered field.

which can be represented in terms of a convergent series of

Bessel functions close to the shadow boundaries. However, it I

cannot be tabulated easily. ] ]
Most of the previous work deals with scattering from a Consider al’M. plane wave at) = ¢; and§ = 6, illu-

double wedge when the plane of the incidence is perpendicyfinating a pair of infinitely long parallel edges of conducting
half planes, as shown in Fig. 1. Throughout the papergttie
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The authors are with the Department of Electrical Engineering, Korggrcle of radiusa is set up to connect the parallel edges of two
Advanced Institute of Science and Technology (KAIST), Taejon, 305-7Q1 . . .
Korea. alf planes, as shown in Fig. 1(b). The center of the fictitious

Publisher Item Identifier S 0018-926X(99)09947-0. circle is the origin of coordinate, which is also the intersecting

. THEORETICAL FORMULATION

0018-926X/99$10.001 1999 IEEE



1698 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 47, NO. 11, NOVEMBER 1999

20 I T T T T T T T

present method J—
B single diffraction [11] (GTD) - - 7]
16 single + multiple [L1](GTD) -~ - - !

Far Field Diffraction Pattern
=)

6 7 .
ks =0.0+— 7
4 ] Ve T ks=0.57"7.-
,,,,,,,,,,, o ks=1.0 N
2 S -1 ks =157
****** GTD [{]¢00_7
0 | ] 1 1 I i ] ! A
0 10 20 30 40 50 60 70 80 90 o
¢t (degrees) 7]
Fig. 2. Far-field diffraction pattern for a slit ofa = 8 versus¢; when }
¢; = 90°.
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point of extended lines of two side edges, as shown in the s (degrees)
figure. The two half planes are Io_cated in a radial direction wqgg. 3. Normalized backscattered field o2
respect to the center of the cylinder and sgas 0 and¢;. ¢, = 270° andg; = 90°.

As shown in Fig. 1(b), Regions I, 1l, and Il denote the region

of cylinder upper, inside, and lower sectors, respectively.

The total electric field in Region(lo > a,0 < ¢ <¢1) which 1 determine the unknown coefficients,, B,, and C,, it
satisfies the boundary conditidfk., = 0 on the wedge and js necessary to match the tangenfizland H-fields atp = a.
the radiation condition, is given by First, the tangentiaE-field continuity atp = a yields

JE! versus ¢s when

El(p,d) = F(0;) Y _{sp3" Ju(rp) + BpHP (p)} sin i

p=1 Z Andn(ra)e™?
D
where )
47 =Uy Z {Spj“JM(Iia) + BPH£LQ)(HQ)} sin b
Sp = —/— sin /M/)i by
P !
u:%, p=12,3--- +UIIZ C,H® (ka)sinv(p — ¢1) @)
1
' q=1
F(ez) = sin eicjkoz cos 8;
Kk =k,sinf; where Urpy = 1 for 0<¢< $1(¢p <p<2m) and zero

elsewhere. In (4), applying the orthogonality condition of

and J,(---) and H(---) are the Bessel function, the firstexponential function with respect tp from zero to2r gives
kind of uth order, and the Hankel function, the second kind

of uth order, respectively. The first term in (1) is the total oo

field around an infinite wedge formed by the intersection of 2rAyJi(ka) = > {s,j"Ju(ra) + B,HP (ka)} F_y,
the two planes and the second term is a perturbation effect by p=1

the two edges.

In Regions ll(p < a) and lll (p > a, ¢1 < ¢ < 27), the total + C HP (ka)G (5)
g
electric field may be represented as a summation of radial q=1
waveguide modes, i.e.,
oo where
Ef(p.¢) =F(6:) Y Anda(rp)e™ (2)
T “
oo F_ o —jk i d
EM (p,¢) = F(6;) Z CqH,(,Q)(Iip) sinv(dp—é1) () kp /0 € sin pg dg
=1 27 )
! G_pp = / eIk siny(p — ¢1) do.
respectively, wherer = gn/(2m — 1), =1,2,3 - -. &1
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Fig. 4. Diffraction coefficien{ D4, ) versuse¢s as a function ofs for a slit
at grazing incidence; = 175°.

Next, the tangentiaH-field continuity atp = a also gives

Z ApJ! (ka)ed™?

f: {55} (ra) + ByH (ra)} sin o

_ p:10<</><</>1 ®)
Z CqH,(,Q), (ra)sinv(p — ¢1)
|7 <<

Applying orthogonality conditions of the sine function to (6)

with respect top from zero to¢, and from¢; to 27 yields
the following:

oo

, 2 .
B,H® (m):E > AJi(ka)Fu — spi* T (ka) (7)
k=—oc

2

! (e
m Z Aka(na)G,,k

k=—o0

O HP (ra) = (8)

where

6
Fuk:/ &% sin g dep
0

2r
G = / R sinv(¢ — ¢y) d.

In order to determine the coefficient,,, (7) and (8) are
substituted into (5). By applying the Wronskian formula

T HP (@) = T () HP (@) = -2

e

F—ku

the following can be obtained:

o

> Apdn(ra) [% -

N=—0o
K o0
J j :
m2Ka

r=1

J! (ka)
Jn(ka)
spgt

H? (ra)

(9)
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Fig. 5. Normalized scattered field pattern for the two half planes of
¢1 = 270°,¢; = 225° and2s = 1A in the case of four different oblique
incidence §; = 30°, 45°, 60°, and90°).

where 6y, is the Kronecker's delta and

1 (X FupF gy HP (ra)
p=1 1 HH (ﬁa)

GGy HY(ra)
. @1
+q§=:1 27— B () (10)

Equation (9) can then be solved numerically to obtaip.
The infinite series involved in the solution is convergent and
this makes it possible to truncate it after a certain number of
terms. Once4,, is determined,B, and C, can subsequently
be calculated from (7) and (8).

To obtain the scattered field for A, plane wave, the
asymptotic expansion of the Hankel function for a large argu-
ment is employed together with the well-known approximation
for the field diffracted by a sharp wedge [11]. The scattered
field may be expressed as

£ e~ iketm/9) [ gin(r /n)
E—Q V2wkpsin b, n
1
' [cos@r/n) —cos((¢ — i)/n)

_ ! }
cos(m/n) — cos((¢d + ¢;)/n)
+25 > "By sinm/)}

p=1

(11)

wheren = ¢ /7. In (11), the first term is the field by a
sharp wedge £ /E’) formed by extending the semi-infinite
half planes and the second term represents a perturbation
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Fig. 6. Normalized backscattered fieldBf / EX versuss for different gaps
between two conducting half planes ¢f = 270° in the case of oblique
incidence(8; = 45°).

term (EZ/E?) for the double edges. Furthermore, the fielg

of perturbation term may be related with incident fi#ld as
follows:
e~ dkp

E]; = EZDde(kavd)ovd)vd)i) \/ﬁ

(12)
where

iw/4 2

2
= 3" j*Bysinpg (13)
p=1

wk sinb;

Dde(ka7 (/)07 (/)7 (/)Z) =

and Dy, is a diffraction coefficient of the double edges.

I1l. NUMERICAL RESULTS

In order to check the accuracy of present method developddl

in this paper, a slit¢; = 180°) is chosen for calculations as
a special case of the double edges structure. Fig. 2 shows
far-field diffraction pattern of a slit wittka = 8.0 versusg,

at ¢; = 90°, 8, = 30°, and90°. The anglep; ranges between

0° and 90, corresponding to the region behind the slit. The

number of modes used in computaionsis- p = ¢ = 15. As

shown in the figure, the result obtained by the present methdd

agrees well with GTD solutions [10] fa, < 50°. It is noted

that the GTD diffracted field shows singular behaviors aroundf!
¢+ = 90°. Fig. 3 shows the normalized backscattered fieldg)

of E2/E! versusg, for different gaps between two parallel
edges of conducting half planes ¢f = 270° and8; = 90°.
It is noted that the numerical data férs = 0 case agrees

well with the 90 sharp wedge backscattered field patterrill]
An increase inks causes a large variation in the patterrhz]

level at 90° < ¢, < 180° and a small variation ap, < 90°
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except for a step ofr radians atp, = 90° and 180°, which

is originated by the singular behavior of the asymptotic result
for the sharp wedge. Magnitude of the diffraction coefficient
Dy, versusg, is shown in Fig. 4 as a function afat grazing
incidence of¢; = 175° and@; = 90°. As s increases, pattern
level also increases and has maximum value aretng 20°

as shown in the figure. Fig. 5 shows a normalized field pattern
for the two half planes ofp; = 270°, ¢; = 225°, and

2s = 1 in the case of four different oblique incidence angles
of 6, = 30°, 45°, 60°, and90°. As 8, decreases, the level of
total field pattern increases, as shown in the figure. Normalized
backscattered field o2 /E® versus¢, is shown in Fig. 6

for different gaps between two parallel edges of conducting
half planes of¢; = 270° in the case of oblique incidence
6; = 45°.

IV. CONCLUSION

The behavior of TM wave scattering by a pair of infinitely
long parallel edges of conducting half planes is examined
in this paper. The radial mode-matching technique is used
to obtain the scattered field in a series form. This new
formulation analyzes scattering from a pair of half-planes ge-
ometry for oblique (skew) as well as perpendicular incidences.
he diffraction coefficient for double edges is derived and
formulated from the scattered field and presented in series
form. The accuracy of the present method is checked with
existing solutions of a planar slit and right-angle sharp wedge
slit, which are special cases of the general geometry of a pair
of conducting half planes.
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