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Bistatic RCS Calculations with the
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Abstract—The vector parabolic equation (PE) method provides
accurate solutions for electromagnetic scattering from three-
dimensional (3-D) objects ranging from a size comparable to the
wavelength of the incident wave to several tens of wavelengths. A
paraxial version of Maxwell’s equations is solved with a marching
solution that only requires limited computing resources, even for
large scatterers. By decoupling the PE paraxial direction from
the direction of incidence, the bistatic radar cross section (RCS)
can be computed at all scattering angles. A sparse-matrix formu-
lation is used to implement electromagnetic boundary conditions,
ensuring that polarization effects are treated fully. Computing
costs are kept to a minimum through the use of a double-pass
method so that calculations can be carried out on a desktop
computer for realistic targets and radar frequencies. The method
has been validated on simple canonical shapes and tested on
complex targets.

Index Terms—Electromagnetic scattering, parabolic equation
method, radar cross section.

I. INTRODUCTION

PARABOLIC equation (PE) techniques have been used
for some time to solve long-range forward propagation

problems for radar and sonar applications [1], [2]. More
recently, they have been applied to scattering problems and, in
particular, to radar cross section (RCS) calculations [3], [4].
The approach of [3], [4] gave very encouraging results, but
could not provide the full bistatic scattering pattern of a target
because of intrinsic paraxial limitations.

In a recent publication [5] on acoustic scattering, it was
shown that these paraxial limitations of the PE method can
be lifted to a large extent by decoupling the paraxial direction
from that of the incident wave and solving for the scattered
field rather than the total field. In this paper, we develop
a paraxial framework for Maxwell’s equations in order to
treat polarization effects fully for electromagnetic scattering.
We then apply the rotating PE method of [5] to obtain
bistatic scattering results at all scattering angles. The resulting
vector PE algorithms provide an efficient numerical technique,
which is somehow intermediate between rigorous solutions
like the method of moments [6] or FDTD methods [7] and
facet-based approximations involving physical optics and the
physical theory of diffraction [8]. The field scattered by three-
dimensional (3-D) objects ranging in size from a wavelength
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or so to several tens or even hundreds of wavelengths can be
calculated on a desktop computer.

The PE framework is presented in Section II and the vector
PE formulation is given in Section III. Implementation topics
are considered in Section IV. Section V outlines near-field/far-
field transformations in the PE framework. Finally, a number
of examples are presented in Section VI.

II. PARABOLIC EQUATION FRAMEWORK

FOR SCATTERING APPLICATIONS

In all that follows, we assume time dependence
of the fields. Working with Cartesian coordinates ,
we introduce the reduced function associated with a field
component

(1)

This definition of is linked to the choice of the-direction
as the paraxial direction. The reduced function is slowly
varying in range for energy propagating close to the paraxial
direction, which gives it convenient numerical properties.
We shall not recall the derivation of the outgoing parabolic
equation, which can be found in [2] for example. Basically,
the scalar wave equation is split into two parabolic terms, one
representing energy propagating in the forward paraxial cone
(increasing ) and the other the backward propagating energy
(decreasing ). The outgoing parabolic equation foris

(2)

where the pseudodifferential operatoris defined by

(3)

The great advantage of (2) is that it can be marched in range,
getting the solution at range from that at range and
suitable boundary conditions on the scattering object and at
the outer boundaries of the integration domain, as shown in
Fig. 1. The main limitation is that the square-root operator can
only be defined in a paraxial cone, so that a single PE run can
only give a partial image of scattering phenomena. We shall
see below that it is possible to overcome this restriction by
carrying out several “rotated” PE runs to cover all scattering
angles of interest.

PE techniques are not restricted to forward scatter. The first
approach in building up a more complete picture consists in
computing the backscattered field by treating scattering objects
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Fig. 1. Basic geometry for PE marching. The integration domain in the
transverse plane is truncated with the perfectly matched layer (PML) method.

as a sequence of reflecting facets [3]. Starting with the field set
to zero on a transverse plane beyond the scatterer, the solution
is marched back adding the new facet sources at each step with
appropriate boundary conditions. This technique provided very
encouraging results for both forward and backscatter. Its major
drawback is that it cannot be used to compute the scattered
field at 90 from the incident direction since this is in the
region forbidden to the paraxial approximation.

A new ingredient is necessary in order to lift this restriction.
The solution is to solve for thescatteredfield directly rather
than for the total field [5]. We write

(4)

where , , and are the total, incident and scattered
fields, respectively. Outside the scattering objects, all three
satisfy the wave equation. We now consider the reduced
scattered field and solve for the part of
of which propagates in a paraxial cone centred on the
positive -direction. This function will satisfy the outgoing
parabolic equation (2). With this procedure, the directionis
arbitrary and need not be linked to that of the incident wave.
With a single PE run, we can cover a sector centred on a
given scattering direction. By rotating the paraxial direction
and repeating this process, we can reconstruct the scattered
field everywhere. Fig. 2 illustrates the decoupling of incident
and paraxial directions which is central to the rotating PE
method. Since we solve the PE for the scattered field, one
might wonder how the incident field is taken into account.
The answer is given by the boundary conditions on the
scatterer, which become nonhomogeneous as they must now
refer to the incident field. A slightly surprising consequence
of solving for the scattered field is that the initial field for the
marching algorithm should be zero: since integration starts on
a transverse plane before the scatterer, the scattered field there
cannot have any forward propagating components. Indeed
is zero until the boundary of the scatterer is reached, at which
point the nonhomogeneous boundary conditions introduce the
scattering sources into the marching solution.

In the rest of this paper, we assume a homogeneous back-
ground medium, taking constant equal to 1 as is customary
for RCS calculations. In this work, we use the simplest
approximation of (2), which is obtained with first order Taylor

Fig. 2. Rotation of the PE paraxial direction.

expansions of the square root and the exponential. This yields
the well-known standard parabolic equation (SPE)

(5)

The SPE is a narrow-angle approximation, which is very
accurate at angles within 15or so of the paraxial direction
(the positive direction of the -axis). In geometrical optics
(GO) terms this means that SPE support rays traveling within
a 15 cone around the -axis. Because of the simplicity of
the SPE, boundary conditions on the scatterer are relatively
easy to incorporate, which we found particularly useful for
3-D electromagnetic applications where coding can become
quite intricate.

We should state here that the narrow-angle approxima-
tion is only accurate when energy scattered by the object
does not undergo large changes in direction. This can break
down for nonconvex objects [5] and cavities. A much more
fundamental difficulty is that for objects which are small
compared to the wavelength, creeping waves can travel all the
way around the scatterer. Second-time-around creeping waves
cannot be captured by the rotating PE method. Some kind of
an iterative technique, probably based on a combination of
forward/backward PE runs and application of the wide-angle
PE schemes, which are accurate up to 90of the paraxial
direction [9], would be required to model them accurately.
The performance of the rotating PE on small objects will be
discussed further in Section VI.

III. V ECTOR PARABOLIC EQUATION

We now turn to the problem of linking scalar wave equa-
tions to electromagnetic field components. We denote the
electric and magnetic fields by and

, respectively. For two-dimensional (2-D) prob-
lems when the fields are independent of the transverse coor-
dinate , the simplest option is to take is

for horizontal polarization
for vertical polarization.

The determination of suffices to solve the whole elec-
tromagnetic problem: by using the curl equations, all field
components are determined and they automatically satisfy the
divergence-free conditions.

The situation is, of course, different in three dimensions.
Some additional effort is then required to get a solution
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satisfying Maxwell’s equations. First, we obtain a scalar wave
equation for each electromagnetic field component from the
curl equations. Second, these component scalar wave equations
are coupled through boundary conditions on the scattering
object and through the divergence-free condition in order
to obtain a well-determined system. In this work, we only
examine the case of perfectly conducting scatterers. Then
boundary conditions on the object can be written in terms of
the electric field only, so that we have a self-contained system
of equations to solve for the electric field. The magnetic field
can be obtained through the curl equation if required. For a
perfect conductor, the tangential electric field must be zero on
the object or, equivalently, the electric field must be parallel
to the normal. This gives the following system of equations:

(6)

where is a point on the surface of the scatterer and
is the outer normal to the surface at.

In terms of the PE reduced scattered field, these conditions
become nonhomogeneous. For example the first equation of
(6) is written as

(7)

where is the incident electric field.
The three equations in (6) are not independent, but form a

system of rank 2. Hence, we need another equation to ensure
unicity of the solution. This is provided by the divergence-free
condition of Maxwell’s equations

(8)

where is the scattered electric field. It should be
noted here that in the 2-D case the fields are automatically
divergence-free since we solve for or , which do not
depend on . This is no longer true in the 3-D case, where
the divergence-free condition must be enforced explicitly. En-
forcing the divergence-free condition on the object boundary
ensures a well-determined system of equations, and we show
in the Appendix that the PE solution is then divergence-free
everywhere. The parabolic equation formulation avoids the
need for direct estimation of the range derivatives in the
divergence-free condition, yielding an expression involving
points in the transverse plane only. We can rewrite (8) as

(9)

IV. I MPLEMENTATION ASPECTS

The finite-difference scheme used to solve the coupled
system of parabolic equations has been described in [5].
Scattering objects are discretized on a rectangular grid, keeping
track of the normal along the surface of the scatterer. The grid
spacing is fixed in the transverse- plane, but adaptive in
range. Since the nonhomogeneous boundary conditions contain
an exponential term in on the right-hand side [see (7) for
example], accurate representation of phase variations require

Fig. 3. Scattering by perfectly conducting sphere of radius 5�, showing
the amplitude of the vertical component of the scattered electric field as it
propagates. The incident wave has vertical polarization.

smaller grid spacing as the angle between the paraxial and
incident directions increases. Typical range steps are 1/10th of
a wavelength or less. This situation is totally different from
that of long-range radiowave propagation PE codes, where
range steps are usually several order of magnitude larger than
the wavelengths. However, the small range steps necessary
for scattering PE applications do not lead to major computing
difficulties since for most RCS applications target dimensions
are less than a few hundred wavelengths.

For domain truncation in the transverse plane, we selected
the perfectly matched layer (PML) technique [10], which
has recently been adapted for paraxial methods [11]. This is
straightforward to implement with a narrow-angle PE code and
very efficient computationally, as only a few grid-points are
necessary to absorb unwanted energy.

In 2-D applications, finite-difference PE schemes can be
written in terms of tridiagonal matrices that are straightforward
to invert [3]. Because of the coupling of scalar components
through nonseparable boundary conditions, this is no longer
the case for 3-D applications. Each step now requires the
inversion of a sparse matrix. Computation times in three
dimensions would be prohibitive if the sparse matrix solver
was used in the whole transverse domain. Instead, we use
a double-pass method, where the field is first propagated
assuming the object is not present at the next range [5]. For
this first pass the equations are separable and the scheme can
be factored into tridiagonal matrices, which can be inverted
efficiently with Gauss pivot methods. In the second pass, the
field is recalculated taking the object into account, using the
first pass results as boundary values for a small transverse
region enclosing the scatterer. A sparse matrix formulation
implementing the electromagnetic boundary conditions is used
for this second pass, ensuring that polarization effects are fully
taken into account.

Integration starts just before the scatterer and is normally
stopped just beyond the scatterer since far-field results can
then be obtained through Fourier transforms as explained in
the next section. Fig. 3 shows the vertical component of the
scattered electric field as it propagates along a metallic sphere
of radius 5 , where the incident field is a vertically polarized
plane wave of wavelength. We should emphasize here that
the near-field calculated by the narrow-angle PE method only
contains energy propagating at small angles from the paraxial
direction and, hence, is not an accurate representation of the
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actual near field. This does not affect the quality of the far-field
results, as discussed in Section VI.

Typical integration times for a single rotating PE run on a
133-MHz Pentium are of the order of a few minutes for 3-D
simulations of forward scatter. Timings increase with the angle
between paraxial and incident directions, and can reach several
hours for backscatter calculations. If bistatic RCS results are
required at scattering angles encompassing several narrow-
angle sectors, an appropriate number of runs is carried out
and the scattering pattern is constructed by using the relevant
results in each sector.

V. FAR-FIELD FORMULAS

The field at larger distances can be derived from near-
field computations by solving the PE in closed form in
vacuum. Expressions for the 2-D case can be found in [3].
In three dimensions, the paraxial far-field formula involves an
exponential convolution kernel

(10)

where . For
brevity’s sake, we omit the proof of (10), which involves plane
wave decomposition techniques. By letting the observation
point tend to infinity in a given direction, we get the bistatic
RCS. The total bistatic RCS in direction is defined as

(11)

where , , .
In many examples, receiver polarization has to be taken into

account. The quantity of interest is then the bistatic RCS in
direction assuming receiver polarization along vector,
which is given by

(12)

If the incident field is a plane wave with unit amplitude, the
RCS in direction along polarization derived from (10)
is given by

(13)

This formula can of course be used to calculate cross and
copolarized cross sections by using the appropriate transmitter
and receiver polarization’s. It is also used to compute the total

Fig. 4. Geometry for scattering by circular cylinder.

Fig. 5. Near-field results for perfectly conducting circular cylinder for ver-
tically polarized incident field. The dotted line (scalar PE result) is almost
identical to the solid line (vector PE result).

bistatic RCS by summing the and components of the
RCS.

These expressions show that the bistatic RCS is obtained
as the Fourier transform of the field in any transverse plane
located beyond the object. With the very small integration do-
mains used here, it is not worth using fast Fourier transforms.
Instead, we compute the integrals directly with a standard
Simpson scheme.

VI. EXAMPLES

We start with a simple validation of the vector PE formula-
tion on a 2-D example. A vertically polarized plane wave of
wavelength is incident on a perfectly conducting circular
cylinder of radius 5, as shown in Fig. 4. We can either
solve for the magnetic field with the scalar PE or the
electric field components with the vector PE. Fig. 5
shows forward scatter results in a transverse plane located
10 beyond the cylinder. For this 2-D test, we used a standard
narrow-angle code for the scalar PE and a single-pass full
matrix inversion code for the vector PE. The scalar
PE results have been calculated by numerical differentiation
of . The scalar and vector PE results are almost identical.
For comparison, we also show analytical results computed
from a Hankel and cosine functions expansion [12]. These
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Fig. 6. Bistatic RCS of circular cylinder of radius 5� from single PE run.

Fig. 7. Bistatic RCS of circular cylinder of radius 5� from seven rotated
vector PE runs.

differ substantially from the PE results. The reason for this
is that the near-field narrow-angle PE results do not represent
large angle diffraction accurately; in particular, interference
between the fields diffracted from the top and bottom of
the cylinder is incorrectly modeled. Fig. 6 shows the bistatic
RCS results obtained from the three methods for angles up
to 45 , assuming a wavelength of 1 m. Here, agreement is
very good for scattering angles up to 25or so, showing that
the imperfect near-field results contain the correct small angle
propagation components. In order to obtain the full bistatic
RCS pattern, the paraxial direction has to be rotated in 30
steps. Fig. 7 shows the combined RCS pattern obtained with
the vector PE together with the analytical solution. Agreement
is excellent over the whole angular range. In all figures in this
paper, the angle is measured from the direction of the incident
wave.

We now look at scattering by perfectly conducting spheres.
The vector PE solution is compared to the theoretical solution
given by Mie expansions [12]. Fig. 8 shows forward scatter
results for a single PE run for a sphere of radius 10for both
horizontal and vertical plane patterns, assuming a wavelength

(a)

(b)

Fig. 8. Total bistatic RCS for perfectly conducting sphere of radius 10�

from single forward scatter vector PE run. (a) Horizontal plane pattern. (b)
Vertical plane pattern.

of 0.1 m (frequency 3 GHz). Agreement with the theory
is very good, particularly for the horizontal plane pattern,
where oscillations are less marked. The error increases toward
the larger angles, as the accuracy of the narrow-angle PE
approximation decreases. It should be noted here that this
case would be quite stressful for a full wave method like the
methods of moments in view of the large size of the object. The
PE execution time was under 10 min on a 133-MHz Pentium
machine.

Fig. 9 shows the full bistatic scattering pattern for a sphere
of radius 5 . Again, both the vector PE and the theoretical
results are shown. For each plane, the full pattern required
seven PE runs covering angular sectors of 30each. Since
the larger scattering angles require finer grids, computation
times increase as the paraxial direction moves toward 180.
The longest execution time was 2 h. The complete execution
time was about 6 h per plane pattern. Agreement with the
theoretical results is excellent for this case, which would be
computer-intensive for method of moment codes.
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(a)

(b)

Fig. 9. Total bistatic RCS for a perfectly conducting sphere of radius 5�

from seven rotated vector PE runs. (a) Horizontal plane pattern. (b) Vertical
plane pattern.

When the size of the scatterer becomes comparable to the
wavelength , the PE approximation becomes less accurate, as
it neglects the effects of creeping waves which can propagate
all around the object. This is illustrated in Fig. 10, which
shows bistatic scattering results for a sphere of radius 0.25
The PE method breaks down except for forward scatter and
90 side scatter in the vertical plane, where the creeping wave

(a)

(b)

Fig. 10. Total bistatic RCS for perfectly conducting sphere of radius 0.25�

from seven rotated vector PE runs. (a) Horizontal plane pattern. (b) Vertical
plane pattern.

cancels for reasons of symmetry. Parametric simulations show
that results are reasonably accurate down to a radius of one
wavelength.

Next, we consider the NASA almond (shown in Fig. 1),
which is one of the most well-known test cases for scatter-
ing algorithms [13]. Because of the very flat shape of the
almond and because published results are for the monostatic
case (backscatter) only, this is a very stressful test for the
PE method. For comparison purposes, computations were
made with a backscatter physical optics (PO) code. For the
backscatter case, the PO formulation simplifies to a scalar
integral which is very fast to compute. The main drawback
is that polarization effects are completely ignored by the PO
approximation in the backscatter case.



1694 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 47, NO. 11, NOVEMBER 1999

Fig. 11. Monostatic VV RCS of the NASA almond at 9.92 GHz as a function
of azimuth angle. Almond length 9.936 in (25.237 cm).

Fig. 12. Scattering by a 12-m-long idealized missile at 300 MHz. Amplitude
of vertical (z) component of scattered electric field for the forward PE run.
The incident wave has vertical polarization.

Fig. 11 shows the monostatic RCS of the NASA almond
computed as a function of azimuthal angle for the case of
vertical (VV) polarization. The frequency of the incident wave
is 9.92 GHz and the almond length is 9.936 in (25.237 cm).
The measured data was extracted from graphs published in
[13]. The almond is measured with its broad side flat at zero
elevation angle with 0 azimuth corresponding to incidence
on the tip. Although both the PE and PO results roughly
follow the measured data, they are not very accurate. As
expected, the error decreases with azimuthal angle. When the
almond is viewed from the side (90azimuth), the models
behave reasonably well, but the error increases substantially
as incidence moves toward the tip of the almond where the
creeping wave dominates. From this example, we can conclude
that the accuracy of the PE and PO methods are comparable
for the backscatter RCS calculations, although the PE is far
more accurate for the forward scatter and the bistatic RCS
modeling.

Finally, we use the vector PE with an idealized representa-
tion of a missile. The object is 12 m long and was made from

Fig. 13. Bistatic RCS in the horizontal plane for the 12-m-long idealized
missile at 300 MHz.

Fig. 14. Bistatic RCS in the vertical plane for the 12-m-long idealized
missile at 300 MHz.

a 2-m-diameter cylinder with hemispherical caps and attached
fins (Fig. 12). It should be noted here that the PE method
does not require a decomposition of the target into canonically
shaped elements and can deal directly with an arbitrary shaped
target. Fig. 12 shows the amplitude of the vertical component
of the scattered field computed for a vertically polarized
(along the -axis) incident wave propagated along the-axis
at a frequency of 300 MHz. The forward scattered field is
shown just beyond the missile. Figs. 13 and 14 show bistatic
RCS results in horizontal and vertical planes, the angles are



ZAPOROZHETS AND LEVY: BISTATIC RCS CALCULATIONS WITH VECTOR PARABOLIC EQUATION METHOD 1695

measured from the direction of the incident wave. We use
the current marching technique (CMT) [14], [15] to validate
the PE results. CMT is based on the magnetic field integral
equation, which is solved with an efficient backward/forward
iterative solver. The missile object was divided into 13618
triangles and we use the simplest pulse basis functions and
delta functions as testing functions. The PE and CMT results
are in good agreement. The vertical plane PE curve (Fig. 14)
has larger errors compare to the horizontal plane data (Fig. 13).
We believe that the main reason for the larger error in the
vertical plane data is that the missile is quite thin (two
wavelengths in diameter).

VII. CONCLUSIONS

The combination of the vector PE formulation with the
rotated PE method provides a powerful tool for electro-
magnetic scattering calculations. The main limitation is that
the paraxial framework cannot handle creeping waves accu-
rately for objects with electrically small features. The bistatic
RCS is computed from near-field results using appropriate
near-field/far-field transformations. The full bistatic scattering
pattern of a target can be reconstructed from a small number
of narrow-angle vector PE runs. Both reflection and diffraction
effects are automatically modeled, and polarization effects are
fully taken into account. The examples given here demonstrate
that the method can be applied to objects of a variety of sizes
and shapes. The work presented here is limited to perfectly
conducting objects embedded in a homogeneous background.
Extension to the finite impedance case should be straightfor-
ward. Generalization to backgrounds with weak variations of
the refractive index, for example involving tropospheric ducts,
should be possible by coupling the vector PE with a long-range
PE model [16].

APPENDIX

We want to prove that if the vector PE solution satisfies
the divergence-free condition on the scatterer, then it does so
everywhere in the domain outside the scatterer. In order to do
this, we consider the function

(A.1)

It satisfies the SPE (5) and is zero on the initial transverse
plane and on the boundary of the scatterer. To show that it
is zero everywhere outside the scatterer, we prove an energy
conservation result.

Let be a solution of (5) such that and its partial deriva-
tives up to order 2 are square integrable in each transverse
plane and is zero on . Then the energy function

(A.2)

where is the intersection of the transverse plane at range
with the domain outside the scatterer does not depend on.
Since is zero on the initial transverse plane, its initial

energy is zero. From the energy conservation result its energy

function is zero everywhere, so must be zero outside the
scatterer as announced.

To prove the energy conservation results, we compute the
derivative of the energy function

(A.3)

where is the increase in the transverse section of the
scatterer between rangesand . Because vanishes on
the boundary of the scatterer, the limit on the RHS is zero. We
now use the SPE to substitute for the range derivatives getting

(A.4)

Note that the minus sign in the integrand in (A.4) is obtained
because of the pure imaginary factor in the SPE formulation.

Applying Green’s reciprocal theorem, we obtain

(A.5)

where is the outer normal along the boundary of
. Again, we use the fact that vanishes on the boundary

of the scatterer and, hence, on to conclude that
.
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