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Bistatic RCS Calculations with the
Vector Parabolic Equation Method

Andrew A. Zaporozhets and Mireille F. Levigenior Member, IEEE

Abstract—The vector parabolic equation (PE) method provides or so to several tens or even hundreds of wavelengths can be
accurate solutions for electromagnetic scattering from three- calculated on a desktop computer.

dimensional (3-D) objects ranging from a size comparable to the 1 pE framework is presented in Section Il and the vector

wavelength of the incident wave to several tens of wavelengths. APE f lation is i in Section Il Imol tation topi
paraxial version of Maxwell's equations is solved with a marching ormuiation Is given in section il implementation topics

solution that 0n|y requires limited Computing resources, even for are considered in Section V. Section V outlines near-field/far-
large scatterers. By decoupling the PE paraxial direction from field transformations in the PE framework. Finally, a number
the direction of incidence, the bistatic radar cross section (RCS) of examples are presented in Section VI.

can be computed at all scattering angles. A sparse-matrix formu-

lation is used to implement electromagnetic boundary conditions,

ensuring that polarization effects are treated fully. Computing Il. PARABOLIC EQUATION FRAMEWORK

costs are kept to a minimum through the use of a double-pass FOR SCATTERING APPLICATIONS

method so that calculations can be carried out on a desktop . .
computer for realistic targets and radar frequencies. The method !N @ll that follows, we assumexp(—iwt) time dependence
has been validated on simple canonical shapes and tested orPf the fields. Working with Cartesian coordinatés, v, ),

complex targets. we introduce the reduced function associated with a field
Index Terms—Electromagnetic scattering, parabolic equation components)
h ion. .
method, radar cross section w(z,y, 2) = exp(—ike)(z,y, 2). 1)
I. INTRODUCTION This definition ofw is linked to the choice of the-direction

) i as the paraxial direction. The reduced function is slowly
ARABOLIC equation (PE) techniques have been usgl ving in range for energy propagating close to the paraxial

for some time to solve long-range forward propagatiofection, which gives it convenient numerical properties.
problems for radar and sonar applications [1], [2]. MOrGe ghajl not recall the derivation of the outgoing parabolic
recgntly, they have been appllgd to scattering pro_blems and lﬁhation, which can be found in [2] for example. Basically,
particular, to radar cross section (RCS) calcqlauons [31, Mtie scalar wave equation is split into two parabolic terms, one
The approach of [3], [4] gave very encouraging results, by, oqenting energy propagating in the forward paraxial cone
could not provide the full bistatic scattering pattern of a targﬁhcreasinga:) and the other the backward propagating energy

because of intrinsic paraxial limitations. . (decreasingr). The outgoing parabolic equation faris
In a recent publication [5] on acoustic scattering, it was

shown that these paraxial limitations of the PE method can u —ik(1 - Q)u )

be lifted to a large extent by decoupling the paraxial direction Oz

from that of the incident wave and SOlVing for the Scatterqghere the pseudodiﬁerentia| Opera@ris defined by
field rather than the total field. In this paper, we develop
a paraxial framework for Maxwell’s equations in order to 1 92 1 02
treat polarization effects fully for electromagnetic scattering. Q= k2 9y? - k2 922
We then apply the rotating PE method of [5] to obtain

bistatic scattering results at all scattering angles. The resultinglhe great advantage of (2) is that it can be marched in range,
vector PE algorithms provide an efficient numerical techniqu@eétting the solution at range+ Az from that at ranger and
which is somehow intermediate between rigorous solutiofgitable boundary conditions on the scattering object and at
like the method of moments [6] or FDTD methods [7] anéhe outer boundaries of the integration domain, as shown in
facet-based approximations involving physical optics and tidg. 1. The main limitation is that the square-root operator can
physical theory of diffraction [8]. The field scattered by threeonly be defined in a paraxial cone, so that a single PE run can
dimensional (3-D) objects ranging in size from a waveleng@ly give a partial image of scattering phenomena. We shall

. . . _see below that it is possible to overcome this restriction by
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PE paraxial direction

Aident wave

Fig. 2. Rotation of the PE paraxial direction.

Fig. 1. Basic geometry for PE marching. The integration domain in the . . o
transverse plane is truncated with the perfectly matched layer (PML) meth@Kpansions of the square root and the exponential. This yields

the well-known standard parabolic equation (SPE)

as a sequence of reflecting facets [3]. Starting with the field set du _ K2 @ L @ 5)
to zero on a transverse plane beyond the scatterer, the solution Or  2k\9y2 022 )

is marched back adding the new facet sources at each step with, o spg is a narrow-angle approximation, which is very
appropriate boundary conditions. This technique provided Ve qrate at angles within 1%r so of the paraxial direction
encouraging results for both forward and backscatter. Its ma{?ﬁe positive direction of thes-axis). In geometrical optics

drawback is that it cannot be used to compute the scatten@b) terms this means that SPE support rays traveling within

fielq at 9G’.from the incident_ direction _singe this is in they 15 cone around the-axis. Because of the simplicity of
region forbidden to the paraxial approximation.

. L ; o . . the SPE, boundary conditions on the scatterer are relatively
A new |_ngre_zd|ent is necessary in orderto I|ft_ this restnctlor]easy to incorporate, which we found particularly useful for
The solution is to _solve for thecaFteredfleId directly rather 3-D electromagnetic applications where coding can become
than for the total field [5]. We write quite intricate.
Wt = ot 4o @ Wg should state here that the narrow-angle approxima-
tion is only accurate when energy scattered by the object
where ¥*, ¥, and¢* are the total, incident and scattered©0€s not undergo Iarge.changes in direc.t?on. This can break
fields, respectively. Outside the scattering objects, all thrd@wn for nonconvex objects [5] and cavities. A much more
satisfy the wave equation. We now consider the reducBgndamental difficulty is that for objects which are small
scattered field:* = ¢~*<y° and solve for the part of**® compared to the wavelength, creeping waves can travel all the
of «* which propagates in a paraxial cone centred on tH&Y around the scatterer. Secor_ld-time-around creeping waves
positive z-direction. This function will satisfy the outgoing €@nnot be captured by the rotating PE method. Some kind of
parabolic equation (2). With this procedure, the directiois an iterative technique, probably bas_ed.on a comb!nat|on of
arbitrary and need not be linked to that of the incident wavE2rward/backward PE runs and application of the wide-angle
With a single PE run, we can cover a sector centred onP% Schemes, which are accurate up tG 90 the paraxial
given scattering direction. By rotating the paraxial directiofliréction [9], would be required to model them accurately.
and repeating this process, we can reconstruct the scattet8§ performance of the rotating PE on small objects will be
field everywhere. Fig. 2 illustrates the decoupling of incidegtiScussed further in Section VI.
and paraxial directions which is central to the rotating PE
method. Since we solve the PE for the scattered field, one lll. V ECTOR PARABOLIC EQUATION
might wonder how the incident field is taken into account. We now turn to the problem of linking scalar wave equa-
The answer is given by the boundary conditions on thfyns to electromagnetic field components. We denote the
scatterer, which become nonhomogeneous as they must réttric and magnetic fields b = (E.,E,,E.) andH =
refer to the incident field. A slightly surprising consequenceq,, H,,, H.), respectively. For two-dimensional (2-D) prob-
of solving for the scattered field is that the initial field for theems when the fields are independent of the transverse coor-
marching algorithm should be zero: since integration starts @atey, the simplest option is to take is

a transverse plane before the scatterer, the scattered field there . o
{z/} =F,, for horizontal polarization

cannot have any forward propagating components. Indééd b= H, for vertical polarization.

is zero until the boundary of the scatterer is reached, at which

point the nonhomogeneous boundary conditions introduce théThe determination ofy suffices to solve the whole elec-

scattering sources into the marching solution. tromagnetic problem: by using the curl equations, all field
In the rest of this paper, we assume a homogeneous bagctimponents are determined and they automatically satisfy the

ground medium, taking constant equal to 1 as is customarglivergence-free conditions.

for RCS calculations. In this work, we use the simplest The situation is, of course, different in three dimensions.

approximation of (2), which is obtained with first order TayloSome additional effort is then required to get a solution
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satisfying Maxwell’s equations. First, we obtain a scalar wave
equation for each electromagnetic field component from the
curl equations. Second, these component scalar wave equatipns
are coupled through boundary conditions on the scattering
object and through the divergence-free condition in order
to obtain a well-determined system. In this work, we only &
examine the case of perfectly conducting scatterers. Theg
boundary conditions on the object can be written in terms qf %
the electric field only, so that we have a self-contained system
of equations to solve for the electric field. The magnetic field !
can be obtained through the _Curl equfat'qn if required. ForF%. 3. Scattering by perfectly conducting sphere of radias Showing
perfect conductor, the tangential electric field must be zero @@ amplitude of the vertical component of the scattered electric field as it
the object or, equivalently, the electric field must be parallgfopagates. The incident wave has vertical polarization.

to the normal. This gives the following system of equations:

noEy(P) — nyE,(P) =0 smaller grid spacing as the angle between the paraxial and
nmEj(P) _ njEm(P) -0 (6) incident directions increases. Typical range steps are 1/10th of
nyE;(P) _ n;Ey(P) -0 a wavelength or less. This situation is totally different from

that of long-range radiowave propagation PE codes, where
where P is a point on the surface of the scatterer anghnge steps are usually several order of magnitude larger than
i = (nz,ny,n:) is the outer normal to the surface & the wavelengths. However, the small range steps necessary
In terms of the PE reduced scattered field, these conditio$ scattering PE applications do not lead to major computing
become nonhomogeneous. For example the first equationdffficulties since for most RCS applications target dimensions
(6) is written as are less than a few hundred wavelengths.
s s _ ika i i For domain truncation in the transverse plane, we selected
natty(F) = nytis(P) = =<, By (P) = n, BL(P)) (7) the perfectly matched layer (PML) technique [10], which
where (E., E;, E') is the incident electric field. has recently been adapted for paraxial methods [11]. This is
The three equations in (6) are not independent, but formstiaightforward to implement with a narrow-angle PE code and
system of rank 2. Hence, we need another equation to ensuggy efficient computationally, as only a few grid-points are
unicity of the solution. This is provided by the divergence-freeecessary to absorb unwanted energy.

condition of Maxwell's equations In 2-D applications, finite-difference PE schemes can be
s written in terms of tridiagonal matrices that are straightforward

JE: OE; OFE: : .
z 4 4+ =2 =0 (8) to invert [3]. Because of the coupling of scalar components

9z 9y 9~ through nonseparable boundary conditions, this is no longer
where(E3, E3, E?) is the scattered electric field. It should béhe case for 3-D applications. Each step now requires the
noted here that in the 2-D case the fields are automaticalyersion of a sparse matrix. Computation times in three
divergence-free since we solve fét; or H:, which do not dimensions would be prohibitive if the sparse matrix solver
depend ony. This is no longer true in the 3-D case, wher&vas used in the whole transverse domain. Instead, we use
the divergence-free condition must be enforced explicitly. EA- double-pass method, where the field is first propagated
forcing the divergence-free condition on the object boundafgsuming the object is not present at the next range [5]. For
ensures a well-determined system of equations, and we sHig first pass the equations are separable and the scheme can
in the Appendix that the PE solution is then divergence-frd¥ factored into tridiagonal matrices, which can be inverted
everywhere. The parabolic equation formulation avoids tigdficiently with Gauss pivot methods. In the second pass, the
need for direct estimation of the range derivatives in tHéeld is recalculated taking the object into account, using the
divergence-free condition, yielding an expression involvin@fst pass results as boundary values for a small transverse
points in the transverse plane only. We can rewrite (8) as region enclosing the scatterer. A sparse matrix formulation
) 5 5 s s s implementing the electromagnetic boundary conditions is used
i (0w o“u ) ou; s . . o
- <_2w + _;) +iku’ 4+ —2 4+ —==0. (9) forthissecond pass, ensuring that polarization effects are fully
2k \ 9y Iz dy 9z taken into account.
Integration starts just before the scatterer and is normally
stopped just beyond the scatterer since far-field results can
The finite-difference scheme used to solve the coupléden be obtained through Fourier transforms as explained in
system of parabolic equations has been described in [B]e next section. Fig. 3 shows the vertical component of the
Scattering objects are discretized on a rectangular grid, keepgugittered electric field as it propagates along a metallic sphere
track of the normal along the surface of the scatterer. The go@iradius 5\, where the incident field is a vertically polarized
spacing is fixed in the transver$g-z) plane, but adaptive in plane wave of wavelength. We should emphasize here that
range. Since the nonhomogeneous boundary conditions conthim near-field calculated by the narrow-angle PE method only
an exponential term iz on the right-hand side [see (7) forcontains energy propagating at small angles from the paraxial
example], accurate representation of phase variations requiieection and, hence, is not an accurate representation of the

IV. IMPLEMENTATION ASPECTS
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actual near field. This does not affect the quality of the far-field

results, as discussed in Section VI. z
Typical integration times for a single rotating PE run on a

133-MHz Pentium are of the order of a few minutes for 3-D

simulations of forward scatter. Timings increase with the angle

between paraxial and incident directions, and can reach several

Observation plane

hours for backscatter calculations. If bistatic RCS results are ' >
required at scattering angles encompassing several narrow- "¢ Wwave 10 wavelengths X
angle sectors, an appropriate number of runs is carried out
and the scattering pattern is constructed by using the relevant
results in each sector. Fig. 4. Geometry for scattering by circular cylinder.
V. FAR-FIELD FORMULAS field amplitude
The field at larger distances can be derived from near-
. . . . . 1.44 vector PE
field computations by solving the PE in closed form in N e scalar PE
vacuum. Expressions for the 2-D case can be found in [3]. 1.2,
In three dimensions, the paraxial far-field formula involves an
exponential convolution kernel 1
1 °o 0.8
P (z,y,2) = — o / / Z/)8(37073/72/)
T J—co 08l
— 1
x |tk (z = zo) —
d(y’, Z’) d(y’, Z’) 0.44
ikd(y',z")
c
ey dY 10 0.2 -
iy ) " (10 N S
0 . =
vy 1\2 /\2 12 0 5 10 5
where d(y/,2') = /(zo —2')2 + (y — y')? + (2 — /2. For 2, wavelengths

brevity’s sake, we omit the proof of (10), which involves plane

wave decomposition techniques. By letting the observatigqy. 5. Near-field results for perfectly conducting circular cylinder for ver-
point tend to infinity in a given direction, we get the bistatidically polarized incident field. The dotted line (scalar PE result) is almost
RCS. The total bistatic RCS in directidfi, ¢) is defined as 'dentical to the solid line (vector PE resul).

2 |ES(.’L"y’Z)|2

! (11) bistatic RCS by summing the, y, and = components of the

RCS.
These expressions show that the bistatic RCS is obtained

wherez = rcosf, y = rsinfcosp, 2 = rsinfsin . _as the Fourier transform of the field in any transverse plane
In many examples, receiver polarization has to be taken ”]BO

account. The quantity of interest is then the bistatic RCS | cated beyond the object. With the very small integration do-

direction (8, ) assuming receiver polarization along vector ains used here, it is not worth using fast Fourier transforms.
ZLHONY, ¢ 9 P 9 P Instead, we compute the integrals directly with a standard
which is given by Si

impson scheme.

) =1 47y .
o0 0) = i A ey )

E’(z 2) -t 2
O—bft(97¢) = lim 4W7’2M

- 12
R N T (12)

VI. EXAMPLES
We start with a simple validation of the vector PE formula-
on on a 2-D example. A vertically polarized plane wave of
wavelength A is incident on a perfectly conducting circular

If the incident field is a plane wave with unit amplitude, th?i
RCS in direction(#, ) along polarizatiort derived from (10)

is given by cylinder of radius 3, as shown in Fig. 4. We can either
2 .2 oo poo solve for the magnetic fieldd, with the scalar PE or the
k* cos® 0 o ey o y .
ot(0,¢) = — (E*(z0,%,2") - t) electric field components,,, E. with the vector PE. Fig. 5
o0 Mo y shows forward scatter results in a transverse plane located
. o—iksin6(y’ cos -+ sin ) dy d7| . 10X beyond the cylinder. For this 2-D test, we used a standard

narrow-angle code for the scalar PE and a single-pass full

(13) matrix inversion code for the vector PE. The,, E. scalar
PE results have been calculated by numerical differentiation
This formula can of course be used to calculate cross aotlH,. The scalar and vector PE results are almost identical.
copolarized cross sections by using the appropriate transmif@r comparison, we also show analytical results computed
and receiver polarization’s. It is also used to compute the tofabm a Hankel and cosine functions expansion [12]. These
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Fig. 6. Bistatic RCS of circular cylinder of radius\3rom single PE run.
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Fig. 7. Bistatic RCS of circular cylinder of radius\5rom seven rotated Fig. 8. Total bistatic RCS for perfectly conducting sphere of radius 10
vector PE runs. . :
from single forward scatter vector PE run. (a) Horizontal plane pattern. (b)
Vertical plane pattern.

differ substantially from the PE results. The reason for this
is that the near-field narrow-angle PE results do not represent .
large angle diffraction accurately; in particular, interferenc® 0-1 m (frequency 3 GHz). Agreement with the theory
between the fields diffracted from the top and bottom d¢f Very good, particularly for the horizontal plane pattern,
the cylinder is incorrectly modeled. Fig. 6 shows the bistatihere oscillations are less marked. The error increases toward
RCS results obtained from the three methods for angles ¢ 1arger angles, as the accuracy of the narrow-angle PE
to 45, assuming a wavelength of 1 m. Here, agreement d9Proximation decreases. It should be noted here that this
very good for scattering angles up to°26r so, showing that Case would be quite stressful for a full wave method like the
the imperfect near-field results contain the correct small andlethods of moments in view of the large size of the object. The
propagation components. In order to obtain the full bistatRE execution time was under 10 min on a 133-MHz Pentium
RCS pattern, the paraxial direction has to be rotated f 3gachine.
steps. Fig. 7 shows the combined RCS pattern obtained witH=i9. 9 shows the full bistatic scattering pattern for a sphere
the vector PE together with the analytical solution. Agreemef radius 5. Again, both the vector PE and the theoretical
is excellent over the whole angular range. In all figures in thigsults are shown. For each plane, the full pattern required
paper, the angle is measured from the direction of the incid&@ven PE runs covering angular sectors of 8ach. Since
wave. the larger scattering angles require finer grids, computation
We now look at scattering by perfectly conducting sphereénes increase as the paraxial direction moves toward’.180
The vector PE solution is compared to the theoretical solutidie longest execution time was 2 h. The complete execution
given by Mie expansions [12]. Fig. 8 shows forward scattdime was about 6 h per plane pattern. Agreement with the
results for a single PE run for a sphere of radiug 1@r both theoretical results is excellent for this case, which would be
horizontal and vertical plane patterns, assuming a wavelengttimputer-intensive for method of moment codes.
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! Fig. 10. Total bistatic RCS for perfectly conducting sphere of radius)0.25
from seven rotated vector PE runs. (a) Horizontal plane pattern. (b) Vertical
plane pattern.

180° cancels for reasons of symmetry. Parametric simulations show
b) that results are reasonably accurate down to a radius of one
wavelength.

fiom seven rotated vector PE.rine. () Horizontal piane patiern. () Verica, NEXt, We consider the NASA almond (shown in Fig. 1),
plane pattern. which is one of the most well-known test cases for scatter-
ing algorithms [13]. Because of the very flat shape of the
. Imond and because published results are for the monostatic
When the size of the sca_ttergr becomes comparable to ﬂ?fse (backscatter) only, this is a very stressful test for the
wavelength\, the PE approximation becomes less accurate, 8Bt method. For comparison purposes, computations were
it neglects the effects of creeping waves which can propag@igde with a backscatter physical optics (PO) code. For the
all around the object. This is illustrated in Fig. 10, whiclhackscatter case, the PO formulation simplifies to a scalar
shows bistatic scattering results for a sphere of radius)0.25ntegral which is very fast to compute. The main drawback
The PE method breaks down except for forward scatter ajgdthat polarization effects are completely ignored by the PO

90° side scatter in the vertical plane, where the creeping waapproximation in the backscatter case.
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Fig. 11. Monostatic VV RCS of the NASA almond at 9.92 GHz as a function
of azimuth angle. Almond length 9.936 in (25.237 cm).

180°

Fig. 13. Bistatic RCS in the horizontal plane for the 12-m-long idealized
missile at 300 MHz.

RCS, dB /A2

10 08 06 04 02

Fig. 12. Scattering by a 12-m-long idealized missile at 300 MHz. Amplitude
of vertical (z) component of scattered electric field for the forward PE run.
The incident wave has vertical polarization.

Fig. 11 shows the monostatic RCS of the NASA almond
computed as a function of azimuthal angle for the case of
vertical (VV) polarization. The frequency of the incident wave
is 9.92 GHz and the almond length is 9.936 in (25.237 cm).
The measured data was extracted from graphs published in
[13]. The almond is measured with its broad side flat at zero
elevation angle with © azimuth corresponding to incidence
on the tip. Although both the PE and PO results roughbjg. 14. Bistatic RCS in the vertical plane for the 12-m-long idealized
follow the measured data, they are not very accurate. A¥ssile at 300 MHz.
expected, the error decreases with azimuthal angle. When the
almond is viewed from the side (90azimuth), the models a 2-m-diameter cylinder with hemispherical caps and attached
behave reasonably well, but the error increases substantidiths (Fig. 12). It should be noted here that the PE method
as incidence moves toward the tip of the almond where tdees not require a decomposition of the target into canonically
creeping wave dominates. From this example, we can conclist@ped elements and can deal directly with an arbitrary shaped
that the accuracy of the PE and PO methods are comparablget. Fig. 12 shows the amplitude of the vertical component
for the backscatter RCS calculations, although the PE is fair the scattered field computed for a vertically polarized
more accurate for the forward scatter and the bistatic RQ&ong thez-axis) incident wave propagated along thexis
modeling. at a frequency of 300 MHz. The forward scattered field is

Finally, we use the vector PE with an idealized representshown just beyond the missile. Figs. 13 and 14 show bistatic
tion of a missile. The object is 12 m long and was made froRCS results in horizontal and vertical planes, the angles are

180°
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measured from the direction of the incident wave. We udenction is zero everywhere, sp must be zero outside the
the current marching technique (CMT) [14], [15] to validatecatterer as announced.

the PE results. CMT is based on the magnetic field integralTo prove the energy conservation results, we compute the
equation, which is solved with an efficient backward/forwarderivative of the energy function

iterative solver. The missile object was divided into 13618 o _

triangles and we use the simplest pulse basis functions and I'(z) = // <f%_%> dy dz

delta functions as testing functions. The PE and CMT results A’y Oz

are in good agreement. The vertical plane PE curve (Fig. 14) 1 -
has larger errors compare to the horizontal plane data (Fig. 13). + lim = // |f? dy dz (A.3)
We believe that the main reason for the larger error in the =0 h

Q=)

vertical plane data is that the missile is quite thin (two )
wavelengths in diameter). wheredQ2(z, h) is the increase in the transverse section of the
scatterer between rangesandz + i. Becausef vanishes on
VII. CONCLUSIONS the boundary of the scatterer, the limit on the RHS is zero. We

The combination of the vector PE formulation with théﬂow use the SPE to substitute for the range derivatives getting

rotated PE method provides a powerful tool for electro- , g o%f  9*f

magnetic scattering calculations. The main limitation is that Fle) ~ 2k // <f<3—.7;2 * 322>

the paraxial framework cannot handle creeping waves accu- Q)

rately for objects with electrically small features. The bistatic —(O*f O%f

RCS is computed from near-field results using appropriate - f<a—y2 + W)) dy dz. (A.4)

near-field/far-field transformations. The full bistatic scattering ) o ) ] ) .
pattern of a target can be reconstructed from a small numt¥@te that the minus sign in the integrand in (A.4) is obtained
of narrow-angle vector PE runs. Both reflection and diffractiopcause of the pure imaginary factor in the SPE formulation.
effects are automatically modeled, and polarization effects aréPPlying Green’s reciprocal theorem, we obtain

fully taken into account. The examples given here demonstrate i af

that the method can be applied to objects of a variety of sizes  I'(z) = ok < .
and shapes. The work presented here is limited to perfectly 0%2(x) "

conducting objects embedded in a homogeneous backgroupHere 7 is the outer normal along the boundaif(z) of

Extension to the finite impedance case should be straightfpx(x)_ Again, we use the fact thgt vanishes on the boundary
ward. Generalization to backgrounds with weak variations ef the scatterer and, hence, 8f(x) to conclude thaf’(z) =

the refractive index, for example involving tropospheric ductg, -
should be possible by coupling the vector PE with a long-range
PE model [16].

_Of
f%) ds (A.5)
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