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On a Class of Predefined Wavelet Packet Bases
for Efficient Representation of
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Abstract—A general wavelet packet tree is proposed to de- magnetics community. Baharav and Leviatan found a wavelet
sign predefined wavelet packet (PWP) bases for the efficient packet basis to compress moment matrix based on the physical
representation of electrodynamic integral equations. The wavelet optics current [6]. Golik investigated wavelet packet basis

packet decomposition tree is constructed by zooming in along the . ” .
spectral oscillatory frequency of the free-space Green’s function. selection through the decomposition of the excitation vector

Numerical results show that for typical two-dimensional (2-D) ©Of the moment equation [8]. We have applied the adaptive
scatterers the number of above-threshold elements in the PWP- wavelet packet transform (AWPT) method to find the op-
based moment matrix is on the order ofO(N'-*) and tends to  timal wavelet packet basis by choosing the sparsity of the
grow at arate of O(NN-log V) for large-scale problems. Therefore, yansformed moment matrix as the cost function [9], [10]. By
the complexity of solving the moment equations can be reduced . . . .
accordingly. Furthermore, it is shown that the elements of the adaptively searching for the optimal wavelet paCke_t basis for
moment matrix based on the PWP bases can be computed directly €ach scatterer, we found that the nonzero elements in the trans-
at approximately the same complexity as the fast wavelet trans- formed moment matrix grow at a rate 8f'-*. Consequently,
form approach. Consequently, with on-the-fly thresholding of the - the computational complexity of solving the resulting equation
g’fattr:'é‘ Sl\?vrgigg’e Z‘?n%ﬂ;n)t rgﬁ%rt?&r{;’r?tgg”gfcku'r?“tr;ﬁtgoéma“on via an iterative solver is significantly reduced. One drawback
’ of the AWPT algorithm is that additional computation cost is

Index Terms—Boundary integral methods, wavelet transforms. needed to find the best wavelet basis. In addition, the original
moment matrix must be generated first before the best basis
search and transformation can be carried out. This introduces

) _anO(N?%) memory requirement to store the original moment
R ECENTLY there has been much research interest in 8y rix elements and makes the numerical implementation very

Plying wavelet basis to sparsify the method-of-momeni5e oy intensive. In this paper, we set out to find a class of
matrix to reduce the complexity of solving electromagnetiggicient wavelet packet bases that is scatterer-independent to
integral equations [1]-{10]. For integral equations with SMOotlyinate the scatterer-dependent search procedure for the best

kernel functions such as those found in electrostatics, tBSsis. Furthermore, we set out to overcome AW memory

nonzero elements of the transformed matrix can be sparsifiggeneck without increasing the computation complexity of
to the order ofO(N -log V) using the conventional wavelet

N ) the procedure.
transform [11]. However, when it is applied to electrodynamic aq \ve have observed in [10], the optimal wavelet packet

integraQI equations, the transformed matrices still have abcb‘gcomposition trees for different scatterers tend to grow near
O(ﬁN ) (0<p<1) nonzero elements [5], [10]. The con-ne pranch that corresponds to the free-space wave nukgber
ventional wavelet basis has consta@tproperty and, thus, 504 are relatively insensitive to the physical structure of the

is well suited for representing smooth signals in which theauerers. This observation is consistent with the oscillatory
component with the longest spatial extent has the 1owegly,re of the Green's kemel and motives us to propose a
spectral frequency. As we have reported in [7], [9], [10], Sincass of wavelet packet decomposition trees that is applicable
the Green’s function in electromagnetic integral equations ¢, noment matrix sparsification of arbitrary scatterers. The
oscillatory at the spectral f_requenw, a more efficient WaY proposed tree grows along the spectral frequehgyather
to represent moment matrix IS to choose’ a Wav_elet bas'sti:%n along the lowest frequency as in the conventional wavelet
reflect the oscillatory nature of the Green’s function. transform. This implies that the basis functions with the
The application of wavelet packet basis for moment matrjy,gest spatial extent in the basis set are oscillatory at the

sparsification has recently been introduced into the eleCt%’ectral frequencyo. Since this kind of wavelet packet basis

is predetermined based on our knowledge of the Green’s
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problems. For larger size problenfsv > 1000), the PWP-
based systems are even sparser. With the PWP basis in place
we next devise an implementation to calculate the momen
matrix elements directly from the PWP basis functions. B
exploiting the finite support property of the PWP bases,
it is possible to implement such calculations at a similar
computational complexity level as the fast transformation
method. By thresholding the elements on-the-fly, we can
achieve the goal of overcoming tt#€* bottleneck in memory.

This paper is organized as follows. In Section I, we intro-
duce the wavelet packet basis concept and detail the design
of the PWP basis for efficient moment matrix representation.
In Section Ill, we discuss the implementation methods for the @) (b)
calculation of moment matrix elements from the PWP basj . .

. . . ig. 1. (a) Conventional wavelet decomposition tree. (b) Wavelet packet

functions. In Section IV, we present numerical results basggcomposition tree.
on several typical two-dimensional (2-D) scatterers. Some
conclusions are given in Section V.

from an initial functiony () with the finest spatial resolution

by using recursive two-channel filtering and down-sampling
in (1). It can be shown that the decomposed functions at
~ Wavelet packet basis consists of a set of multiscale fungie outermost branches of the tree satisfy orthogonality and
tions derived from the shift and dilation of a basic wavelet, ., jeteness for any decomposition trees and, thus, constitute

function. The wavelet packet basis space is generated fr My avelet packet basis set [10], [14]. Our goal is to generate

the decomposition of both the scaling function space and the il let ket t d th di let
corresponding basic wavelet function space. Note that the cGhZPecial wavelet packet free an € corresponding wavele

ventional wavelet basis space can be considered as a spdidsket basis, to efficiently represent the moment matrix. In
case of the wavelet packet space when the decomposition tek€sProposed wavelet packet tree, the two-channel decompo-
place only in the scaling function space [13]-[15]. Let usition zooms in along the oscillatory spectral frequerigy
assume tha#(x) is the wavelet packet basis function with thérhe wavelet packet basis corresponding to this type of tree
finest spatial resolution available for signal analysis. Using tlierms our PWP basis. Fig. 1(a) and (b) shows, respectively,
“two-scale equations” we can express the wavelet packet bagieé conventional wavelet decomposition tree and the PWP

Il. WAVELET PACKET BAsIS AND PWP Basis DESIGN

functions in the next scale as [15] decomposition tree folV = 32. Note that the former always
zooms in along the low-frequency branch while the latter
Po(n) = Z P(k)h(2n — k) zooms in along a preselected frequency. We shall describe
k each tree by a data sequence that follows the depth indexes on
Pi(n) = B(k)g(2n — k) (1) the outermost branches of the tree from the lowest frequency
k

to the highest one [14]. Therefore, the conventional wavelet

where {h(k)} and {¢g(k)} are the impulse responses of twobas'S in Fig. 1(a) can be represented {3y5,4,3,2, 1} and

quadrature filtersH (low-pass) andG (high-pass), respec- the PWP bas_ls in Fig. l(b)_ b{3,4,5,5,2,1}. . )
tively. The functions in the next scale become coarser in The zoom-in frequency in the PWP decomposition tree is
spatial resolution and finer in spectral resolution throudierived from the oscillation frequency of the Green’s function
filtering and down sampling in (1). The same procedure cdn = 27/A and the spatial discretization interval in the
be applied recursively to the outputs of (1) into subsequemioment equations. If a standard spatial discretization interval
scales. Conversely, the decomposition results in (1) can &fe A/10 is assumed, the highest spectral frequency in the
used to reconstruct the original sequence by using another paiment matrix data i$0%,. This corresponds to a normalized
of quadrature filterd” and@. This reconstruction or synthesiSfrequenCy of2r. Since the wavelet packet decomposition
procedure can be expressed as tree ranges from O tar, the oscillatory frequency, should
correspond to a normalized frequency of5. Hence, the
P(a) = ple—2k)s(k) + Y al@—2k)¥1(k) (2) PWP basis design criterion is to try to find a wavelet packet
k k decomposition tree such that the center frequency of its deepest

where{p(k)} and{q(k)} are the impulse responses@flow- braljch IS'||aS close :;s pors15|ble7rt¢)5 in the spe.c'tral domgm.
pass) and) (high-pass), respectively. The functions become Fig. 2 illustrates how the PWP decomposition tree is con-

finer in spatial resolution and coarser in spectral resoluti§fucted forlV = 16. Every node in the tree is labeled with a
through filtering and up-sampling in (2). number that denotes the layer of the node and the sequential

A complete and orthogonal wavelet packet basis can bgmber of this node within the layer. Noting the two-channel
generated from a frequency decomposition tree which stagescomposition filtering, we can derive the center frequencies
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function by a PWP synthesis tree with an input data sequence
[0,0,---,0,1,0,---,0,0], in which theith datum is “1” and

all others are zeros. The PWP synthesis trees are the same as
the decomposition trees shown in Fig. 3, except that the input
data are fed from the right-hand side and the processing is
that of convolution and up-sampling using quadrature filters
P and(@ as described in (2). For moment equations of size of
N, the general procedure to calculate the PWP basis functions
is as follows.

1) Construct the PWP wavelet packet decomposition tree
with log, IV layers. The two-channel decomposition
always zooms in along the spectral frequetigy

2) Construct the PWP synthesis tree by inverting the de-
composition tree with a pair of synthesis filtefsand
Q.

Fig. 2. Design of the PWP decomposition tree with= 16. 3) Input the data sequence with a single “1" and the rest
“0” to the synthesis tree and use (2) to reconstruct the
PWP basis function corresponding to the “1” in the input
sequence.

4) Find all other PWP basis functions by changing the

Node0.0: f.=w/2  Node3.0: f.=m/16 position of “1” in the input sequence in Step 2.

Nodel.0: f.=wn/4  Node3.l: f.=3r/16 Fig. 4 shows the PWP basis functions with a problem size of

Nodel.l: f.=3rn/4 Node4.0: f.=57/32. 128. They are calculated from the Daubechies wavelet filters

Node2.0: f.=x/8 Noded.l: f.=7r/32 with order 16 using the procedure described above. The total

Node2.1: f. = 3r/8 number of PWP basis functions should be the same as the

e problem size. However, only one basis for each scale is shown,
since bases within the same scale differ only by spatial shifts.

In this case, Node 4'1r Is the ’?Ode in the tree \.N'th a cen@hte that the basis in Fig. 4(c) has the longest spatial extent
frequency closest tar/5. Following the same logic, we can g oscillates at a spectral frequency closestito

synthesize the PWP basis for problems of arbitrary size. For

of the functions corresponding to the nodes as follows:

instance
[ll. CALCULATION OF MOMENT MATRIX
N =4 PWP Basis={2,2,1} REPRESENTED WITHPWP Basis
N =8 PWP Basis= {3,3,2,1} The moment equation with the PWP basis as expansion and
N =16 PWP Basis= {3,4,4,2,1} testing functions is defined as follows:
N =32 PWP Basis= {3,4,5,5,2,1} o
N =64 PWP Basis= {3,4,6,6,5,2,1} ' Z-J=FE (3)
N =128 PWP Basis= {3,4,7,7,6,5,2,1} o }
N =256 PWP Basis= {3,4,7,8,8,6,5,2,1} where Z,J, and E are the moment matrix, induced current

vector, and incident excitation vector under the PWP basis,
respectively. We need to compu# and E first and findJ
) - by solving (3).

The corresponding PWP  decomposition trees fur = One method to compute the moment matéxunder the
4,8,16,32,64, and 128 are shown in Fig. 3. wavelet packet basis is to first generate the moment matrix
With the PWP basis decomposition tree in place, the actugli, the standard subsectional basis and then transtrm
PWP basis functions can theoretically be obtained by feedilg Z. The transformation can be efficiently implemented

the tree with the scaling function as the input signal [16]. Thgjth the filtering and down-sampling via a two-channel filter
output functions at the outermost nodes in the tree are then fagk structure similar to (1). In this case, the input data

PWP basis functions. However, in actual implementation thg the filter bank is the original moment matriZ in the

determination of the scaling function is not straightforwarci;pace domain, which can be considered as the sampled signal
We instead make the observation that the outputs of t@gth the finest spatial resolution. The transformation is carried
PWP decomposition tree are equivalent to the projections @it according to the PWP decomposition designed in the
the input function on the orthogonal PWP basis functiongst section. The final output is the transformed moment
If a PWP basis function is used as the input to the PWRatrix in the PWP basis. The reader is referred to [10] for
decomposition tree, the output from the branch correspondiagletailed description on its implementation. The computation
to that basis function is exactly one while all other outputsomplexity of the fast transformation method N2 -log N)

are zeros. Hence, we can reconstruct thie PWP basis for a full decomposition basis, and is ab@t/v?) for a single-
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N=4 N=8
N=16 N=32
N=64 N=128

Fig. 3. PWP decomposition trees fdY = 4,8,16,32,64, and 128.

frequency zoom-in basis like the PWP basis. The total memahe moment matrixZ directly as
required to implement the transform method scale®&s?)

since the dense moment matrix in the space domain must Z(m,n) = Z Z pora (R)E (e, D) 1 (1) 4)
first be computed. This presents a key drawback for solving koot
large-scale problems. where K (k, 1) is the discretized Green’s kernel in the electro-

Another way to find the moment matrix in the PWP basisagnetic integral equation. For 2-D combined field integral
is to calculate each element of the matrix from the PWP basgiquations (CFIE), the kernel functidii(k,!) can be approx-
functions directly. Since the resulting matrix is expected tonated as (5) [17], shown at the bottom of the next page,
contain a small number of nonnegligible elements, only thoséhereé is the discretization interval of the pulse basigs,and
significant elements need to be stored. Therefore, this approaghare the position vector, and the outward pointing normal
presents a way to overcome tié€? bottleneck in memory. of the sampling point: on the scatterer boundary. is the
Assuming that data sequencgs,,(k)} and{z,({)} are two combination parameter of the CFI& s Euler’s constant, and
of the PWP basis functions, we can compute the eIementHf,Q) is Hankel function of the second kind of ordgr The
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/\/\/\/\/\/V\/\/\/\/\/\ Fig. 5. Geometries of the test targets. (a) A circular cylinder. (b) A duct.

© with a complexity proportional to the number of nonzero
elements in the PWP moment matk Finally, the original
induced current/ can be restored frond by using the inverse
wavelet packet transform with the quadrature filtétand @
based on the same PWP basis.

(d)
IV. NUMERICAL RESULTS

\/\/\/\/\/\/\/\/\/\/\/\/\/ Two 2-D scatterers, a circular cylinder, and a duct (shown

in Fig. 5) are used to test the effectiveness of the PWP basis in
©) sparsifying the method of moment matrix. The combined field
integral equation (CFIE) is used to formulate the problem in

W\/\/\/\/\/\/\/\/\/\MN terms of the induced surface currents on the scatterers under

TM polarized incidence. The PWP basis functions are derived

® from the Daubechies filter of order 16 (with seven vanishing
moments) using the algorithm described in Section Il. The
perimeters of the scatterers in Fig. 5 are changed fr2@\ to
‘/\f\/\/‘ 819.2), while the spatial discretization interval is kept fixed

at 0.1\. Thus, the sizeN of the electromagnetic problems
@) varies from 128 to 8192. With the moment matgxin PWP
basis, an absolute threshold levels applied to all entries
of Z to make it sparse. Experimentation shows that if we
choose a fixed threshold = 1.5 for the duct scatterer and
/\/v e = 0.5 for the circular cylinder scatterer, the calculated
induced current has an root-mean square (rms) error of around
(h) 3%, which is close to the results obtained using adaptive
Fig. 4. The PWP basis functions with = 128. The functions (a)—(h) thresholds based on moment matrix norms [10] Fig. 6(a)
correspond to the nodes in the PWP decomposition treeMfor= 128 in ~ and (b) show the thresheld PWP moment matrices/Noe
Fig. 3 from the lowest node to the highest node. 512 for the circular cylinder and the duct, respectively. The
lower right corners of the matrices represent the strength

impedance matrix elemelﬁ(m,n) can then be interpreted asof electromagnetic interactions between PWP bases of high

the projection of the 2-D kernel functioh (k, 1) onto i, (k) spectra_l frgquency and small spatial extent, resembling those
and i (1) shown in Fig. 4(g) and (h). As we move closer to the upper left

L - . .. corners of the matrices, the elements represent the interactions
Once Z is computed, the remaining procedure is straighj- P

) i o - etween PWP bases with longer spatial extent. The bases
forward. We first obtain the excitation vectstin (3) from the i the longest spatial extent have spectral frequency close

original excitation vector by two-channel decomposition witky, £, resembling that shown in Fig. 4(c). Fig. 7(a) shows
the quadrature filter&/ andG based on the PWP basis. Thenhe induced currents on the boundary of the duct scatterer
the induced currenf can be solved by using an iterative solvecalculated from the thresheld PWP moment matrix for=

Wit [ 2 <e”’k06
l1—j—1n
T 4e

)} tp/2 (k=1

K (k1) = L
M)Hf”um—rm (k£1)

wped | o (2) . ®)
T |:H0 (k0|rk — I‘1|) + pko <7‘Lk .

ri — 1y
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Fig. 6. The PWP-based moment matrices with= 512 for (a) the circular _20 ) . L
0

R 100 200 300
cylinder and (b) the duct. Observation Angle {deg)

(b)
. o ) . .
512. The _excnatlon IS anE’_" poIanze_d plane wave incident Fig. 7. (&) Induced current distribution and (b) RCS solved using the PWP
from 45 into the duct. Fig. 7(b) displays the radar crosgasis with the direct calculation and basis transform methods for the duct with
section (RCS) curves calculated from the induced currents 8= 512. The incident wave i€ -polarized at45° from the duct opening.

the duct. The PWP moment matrices are calculated using bgﬂ? exact solutions using regular pulse basis are also plotted for reference.
the fast transform method and the direct calculation method
described in Section lll. For reference, the current and RG&e for the circular cylinder and the duct, respectively. Also
calculated from the standard moment equation with pulse baglstted in dashed lines are th@(~N?) and O(N - log N)
and point matching are also plotted in the same figures. Tberves for reference. We find the nonzero elements grow at
induced currents computed by solving the PWP-based systamate of aboutV!? for N less than 1024, but the growth
with threshold result in about a 3.2% rms error when comparegte appears to approacly - log V) as the problem size gets
against the reference result. The two different methods larger. This observation applies to both the smooth cylinder
compute the PWP moment matrix gave nearly the same resudtisd the more complex duct shape. We have also tried different
with only a 0.25% rms difference between the two inducechoices of wavelet filters and different threshold levels. Results
currents. The RCS curves in Fig. 7(b) show that the PWdhow that while these choices change the absolute sparsity of
results are nearly indistinguishable from the reference resiWP moment matrices, they do not significantly affect the
Similar induced current and RCS results are obtained for theowth rate of the above-threshold elements in these matrices.
circular cylinder. Therefore, the computation cost for solving the PWP-based
Once the accuracy of the PWP scheme is established, mement equations should approa€fN - log N) for large-
next examine how the sparsity of the PWP matrix scales wiicale problems using an iterative solver.
problem size. Fig. 8(a) and (b) shows the number of nonzeroNext, we compare the fast transform method and the direct
elements in the thresheld PWP moment matrix versus problealculation method described in Section Il to generate the
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The Number of Non-zero Elements
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Fig. 9. The CPU run time to fill a PWP moment matrix using the direct
calculation method. The time grows approximately at a rat&éflog V)2
versus problem size.

constructing the PWP moment matrix is abOtV?(log N )?)
operations. This is only a slight increase in comparison to
the complexity of the fast transform method. Fig. 9 shows the
actual CPU running time to construct the PWP moment matrix
using the direct calculation method. In our direct calculation
implementation, a look-up table for the Hankel function is
precomputed to speed up the calculation of (4). We observe
that the central processing unit (CPU) run time grows at a
rate that is quite close to the estimatdt (log NV)? curve.
Therefore, we can overcome t& memory bottleneck while
preserving the time complexity of the fast transform method

Problem Size

(b)

Fig. 8. The number of nonzero elements in the PWP-based matrices versus
problem sizeN for (a) the circular cylinder and (b) the duct. Thé? and
(N -log N) curves are plotted in dash line in both figures for reference.

by using the direct calculation method.

V. CONCLUSIONS

We have proposed a general class of PWP basis for the
efficient representation of moment matrices arising in elec-
PWP-based moment matrix. We have already shown tHe@magnetic integral equations. The PWP basis is constructed
these two methods produce almost identical results. The méf@m a wavelet packet decomposition tree that zooms in
advantage of using the direct calculation method is that @Nng the spectral oscillatory frequency of the free-space
can overcome theV? bottleneck in memory. In the imp|e_Green’s function. This is in contrast to the low frequency
mentation, each calculated moment matrix entry through (@§°M-in employed in the conventional wavelet basis. We find
is compared with the thresholel If it is greater than the thal‘t thbe moment mal;rlx reﬁresr?nltgd lby the Ff’WP bal'lys_ has
threshold, its value is kept; otherwise, it is replaced Witﬂnyla OUt[O:(NI ) a 9"e't retfl 0 et(;ments t())r smfa 'S'Ze
zero. Because we only need to store those nonzero elem Pé) ems. "or farge-size problems, the number of anove-
. . . reshold elements approach@$/N - log V). Consequently,
in memory, the total memory requirement for the solution q

. S e complexity of solving the moment equation can be reduced
the integral equation is about the order of the number of t%%cordingly when an iterative solver is employed. Compared

above-threshold elements in the PWP moment matrix, i.e., ' the AWPT method we reported earlier, the PWP basis

the order of(V - log V). _ _ _eliminates the need for the costly best basis search, yet its
Finally, we estimate the computational complexity of usingerformance is even better than that of the best basis found

the direct calculation method. Since the PWP basis functiopgm the AWPT algorithm. This is because the AWPT basis

have finite support in space, the complexity of the calculatiqund is only a locally optimum basis due to computational

in (4) is proportional to the product of the lengths of the tweost constraints, and the best basis search algorithm becomes

PWP basis functions. Numerical results show that the averages optimal as the problem size increases.

length of all PWP basis functions is approximately on the We have also implemented an algorithm to directly cal-

order oflog N. The average complexity for computing eacleulate the moment matrix elements from the PWP basis

matrix element is thuglog V)? and the total complexity of functions. Since the elements with amplitude below a threshold



DENG AND LING: PREDEFINED WAVELET PACKET BASES FOR EM INTEGRAL EQUATIONS

can be eliminated on-the-fly without storage in memory, theg7]

maximum memory requirement is on the order &3 to
(N -log N) to solve moment equations. This overcomesiite

memory bottleneck in the basis transform method where the
original space-domain moment matrix must be stored. In thE)]
direct calculation method, the finite support of the PWP basi

functions is utilized and the computational cost of computin&o]

the moment matrix scales approximately @&N?(log IV)?).

This is not a significant increase from that required by the fast

basis transform method.

While there remains aiv? computation time bottleneck in
the formation of the PWP matrix, we note that the matrix2]
generation is a one-time cost, and yet the cost of solving
the resulting matrix equation is amplified by the number qf3;
iterations and the number of right-hand sides. Furthermore,
we did not take advantage of the vanishing moment proper%
of the wavelet packet basis function in this work. It migh
be possible to apply the fast-element evaluation techniqlié€l
proposed in [11] to estimate the element amplitude of t &)
PWP moment matrix. If we can accurately predict the position
of the elements that are smaller than a predefined threshdld]
the computation complexity of the direct calculation method
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