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Abstract—A general wavelet packet tree is proposed to de-
sign predefined wavelet packet (PWP) bases for the efficient
representation of electrodynamic integral equations. The wavelet
packet decomposition tree is constructed by zooming in along the
spectral oscillatory frequency of the free-space Green’s function.
Numerical results show that for typical two-dimensional (2-D)
scatterers the number of above-threshold elements in the PWP-
based moment matrix is on the order ofO(N1:3) and tends to
grow at a rate ofO(N �logN) for large-scale problems. Therefore,
the complexity of solving the moment equations can be reduced
accordingly. Furthermore, it is shown that the elements of the
moment matrix based on the PWP bases can be computed directly
at approximately the same complexity as the fast wavelet trans-
form approach. Consequently, with on-the-fly thresholding of the
matrix elements, theO(N2) memory bottleneck in the formation
of the PWP-based moment matrix can be circumvented.

Index Terms—Boundary integral methods, wavelet transforms.

I. INTRODUCTION

RECENTLY there has been much research interest in ap-
plying wavelet basis to sparsify the method-of-moments

matrix to reduce the complexity of solving electromagnetic
integral equations [1]–[10]. For integral equations with smooth
kernel functions such as those found in electrostatics, the
nonzero elements of the transformed matrix can be sparsified
to the order of using the conventional wavelet
transform [11]. However, when it is applied to electrodynamic
integral equations, the transformed matrices still have about

nonzero elements [5], [10]. The con-
ventional wavelet basis has constant property and, thus,
is well suited for representing smooth signals in which the
component with the longest spatial extent has the lowest
spectral frequency. As we have reported in [7], [9], [10], since
the Green’s function in electromagnetic integral equations is
oscillatory at the spectral frequency, a more efficient way
to represent moment matrix is to choose a wavelet basis to
reflect the oscillatory nature of the Green’s function.

The application of wavelet packet basis for moment matrix
sparsification has recently been introduced into the electro-
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magnetics community. Baharav and Leviatan found a wavelet
packet basis to compress moment matrix based on the physical
optics current [6]. Golik investigated wavelet packet basis
selection through the decomposition of the excitation vector
of the moment equation [8]. We have applied the adaptive
wavelet packet transform (AWPT) method to find the op-
timal wavelet packet basis by choosing the sparsity of the
transformed moment matrix as the cost function [9], [10]. By
adaptively searching for the optimal wavelet packet basis for
each scatterer, we found that the nonzero elements in the trans-
formed moment matrix grow at a rate of . Consequently,
the computational complexity of solving the resulting equation
via an iterative solver is significantly reduced. One drawback
of the AWPT algorithm is that additional computation cost is
needed to find the best wavelet basis. In addition, the original
moment matrix must be generated first before the best basis
search and transformation can be carried out. This introduces
an memory requirement to store the original moment
matrix elements and makes the numerical implementation very
memory-intensive. In this paper, we set out to find a class of
efficient wavelet packet bases that is scatterer-independent to
eliminate the scatterer-dependent search procedure for the best
basis. Furthermore, we set out to overcome thememory
bottleneck without increasing the computation complexity of
the procedure.

As we have observed in [10], the optimal wavelet packet
decomposition trees for different scatterers tend to grow near
the branch that corresponds to the free-space wave number
and are relatively insensitive to the physical structure of the
scatterers. This observation is consistent with the oscillatory
nature of the Green’s kernel and motives us to propose a
class of wavelet packet decomposition trees that is applicable
for moment matrix sparsification of arbitrary scatterers. The
proposed tree grows along the spectral frequencyrather
than along the lowest frequency as in the conventional wavelet
transform. This implies that the basis functions with the
longest spatial extent in the basis set are oscillatory at the
spectral frequency . Since this kind of wavelet packet basis
is predetermined based on our knowledge of the Green’s
kernel, we shall term it the predefined wavelet packet (PWP)
basis [12]. The PWP basis can be designed easily for a
given problem size without any extra computation cost to
search out the optimal basis. We find the new PWP bases
lead to moment systems that are as sparse as those obtained
with the adaptive wavelet packet transform for small-size
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problems. For larger size problems , the PWP-
based systems are even sparser. With the PWP basis in place,
we next devise an implementation to calculate the moment
matrix elements directly from the PWP basis functions. By
exploiting the finite support property of the PWP bases,
it is possible to implement such calculations at a similar
computational complexity level as the fast transformation
method. By thresholding the elements on-the-fly, we can
achieve the goal of overcoming the bottleneck in memory.

This paper is organized as follows. In Section II, we intro-
duce the wavelet packet basis concept and detail the design
of the PWP basis for efficient moment matrix representation.
In Section III, we discuss the implementation methods for the
calculation of moment matrix elements from the PWP basis
functions. In Section IV, we present numerical results based
on several typical two-dimensional (2-D) scatterers. Some
conclusions are given in Section V.

II. WAVELET PACKET BASIS AND PWP BASIS DESIGN

Wavelet packet basis consists of a set of multiscale func-
tions derived from the shift and dilation of a basic wavelet
function. The wavelet packet basis space is generated from
the decomposition of both the scaling function space and the
corresponding basic wavelet function space. Note that the con-
ventional wavelet basis space can be considered as a special
case of the wavelet packet space when the decomposition takes
place only in the scaling function space [13]–[15]. Let us
assume that is the wavelet packet basis function with the
finest spatial resolution available for signal analysis. Using the
“two-scale equations” we can express the wavelet packet basis
functions in the next scale as [15]

(1)

where and are the impulse responses of two
quadrature filters (low-pass) and (high-pass), respec-
tively. The functions in the next scale become coarser in
spatial resolution and finer in spectral resolution through
filtering and down sampling in (1). The same procedure can
be applied recursively to the outputs of (1) into subsequent
scales. Conversely, the decomposition results in (1) can be
used to reconstruct the original sequence by using another pair
of quadrature filters and . This reconstruction or synthesis
procedure can be expressed as

(2)

where and are the impulse responses of(low-
pass) and (high-pass), respectively. The functions become
finer in spatial resolution and coarser in spectral resolution
through filtering and up-sampling in (2).

A complete and orthogonal wavelet packet basis can be
generated from a frequency decomposition tree which starts

(a) (b)

Fig. 1. (a) Conventional wavelet decomposition tree. (b) Wavelet packet
decomposition tree.

from an initial function with the finest spatial resolution
by using recursive two-channel filtering and down-sampling
in (1). It can be shown that the decomposed functions at
the outermost branches of the tree satisfy orthogonality and
completeness for any decomposition trees and, thus, constitute
a wavelet packet basis set [10], [14]. Our goal is to generate
a special wavelet packet tree and the corresponding wavelet
packet basis, to efficiently represent the moment matrix. In
the proposed wavelet packet tree, the two-channel decompo-
sition zooms in along the oscillatory spectral frequency.
The wavelet packet basis corresponding to this type of tree
forms our PWP basis. Fig. 1(a) and (b) shows, respectively,
the conventional wavelet decomposition tree and the PWP
decomposition tree for . Note that the former always
zooms in along the low-frequency branch while the latter
zooms in along a preselected frequency. We shall describe
each tree by a data sequence that follows the depth indexes on
the outermost branches of the tree from the lowest frequency
to the highest one [14]. Therefore, the conventional wavelet
basis in Fig. 1(a) can be represented by and
the PWP basis in Fig. 1(b) by .

The zoom-in frequency in the PWP decomposition tree is
derived from the oscillation frequency of the Green’s function

and the spatial discretization interval in the
moment equations. If a standard spatial discretization interval
of is assumed, the highest spectral frequency in the
moment matrix data is . This corresponds to a normalized
frequency of . Since the wavelet packet decomposition
tree ranges from 0 to , the oscillatory frequency should
correspond to a normalized frequency of . Hence, the
PWP basis design criterion is to try to find a wavelet packet
decomposition tree such that the center frequency of its deepest
branch is as close as possible to in the spectral domain.

Fig. 2 illustrates how the PWP decomposition tree is con-
structed for . Every node in the tree is labeled with a
number that denotes the layer of the node and the sequential
number of this node within the layer. Noting the two-channel
decomposition filtering, we can derive the center frequencies
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Fig. 2. Design of the PWP decomposition tree withN = 16.

of the functions corresponding to the nodes as follows:

Node Node

Node Node

Node Node

Node Node

Node

In this case, Node 4.1 is the node in the tree with a center
frequency closest to . Following the same logic, we can
synthesize the PWP basis for problems of arbitrary size. For
instance

N PWP Basis

PWP Basis

PWP Basis

PWP Basis

PWP Basis

PWP Basis

PWP Basis

The corresponding PWP decomposition trees for
and are shown in Fig. 3.

With the PWP basis decomposition tree in place, the actual
PWP basis functions can theoretically be obtained by feeding
the tree with the scaling function as the input signal [16]. The
output functions at the outermost nodes in the tree are then the
PWP basis functions. However, in actual implementation the
determination of the scaling function is not straightforward.
We instead make the observation that the outputs of the
PWP decomposition tree are equivalent to the projections of
the input function on the orthogonal PWP basis functions.
If a PWP basis function is used as the input to the PWP
decomposition tree, the output from the branch corresponding
to that basis function is exactly one while all other outputs
are zeros. Hence, we can reconstruct theth PWP basis

function by a PWP synthesis tree with an input data sequence
, in which the th datum is “1” and

all others are zeros. The PWP synthesis trees are the same as
the decomposition trees shown in Fig. 3, except that the input
data are fed from the right-hand side and the processing is
that of convolution and up-sampling using quadrature filters

and as described in (2). For moment equations of size of
, the general procedure to calculate the PWP basis functions

is as follows.

1) Construct the PWP wavelet packet decomposition tree
with layers. The two-channel decomposition
always zooms in along the spectral frequency.

2) Construct the PWP synthesis tree by inverting the de-
composition tree with a pair of synthesis filtersand

.
3) Input the data sequence with a single “1” and the rest

“0” to the synthesis tree and use (2) to reconstruct the
PWP basis function corresponding to the “1” in the input
sequence.

4) Find all other PWP basis functions by changing the
position of “1” in the input sequence in Step 2.

Fig. 4 shows the PWP basis functions with a problem size of
128. They are calculated from the Daubechies wavelet filters
with order 16 using the procedure described above. The total
number of PWP basis functions should be the same as the
problem size. However, only one basis for each scale is shown,
since bases within the same scale differ only by spatial shifts.
Note that the basis in Fig. 4(c) has the longest spatial extent
and oscillates at a spectral frequency closest to.

III. CALCULATION OF MOMENT MATRIX

REPRESENTED WITHPWP BASIS

The moment equation with the PWP basis as expansion and
testing functions is defined as follows:

(3)

where and are the moment matrix, induced current
vector, and incident excitation vector under the PWP basis,
respectively. We need to compute and first and find
by solving (3).

One method to compute the moment matrixunder the
wavelet packet basis is to first generate the moment matrix

in the standard subsectional basis and then transform
into . The transformation can be efficiently implemented
with the filtering and down-sampling via a two-channel filter
bank structure similar to (1). In this case, the input data
to the filter bank is the original moment matrix in the
space domain, which can be considered as the sampled signal
with the finest spatial resolution. The transformation is carried
out according to the PWP decomposition designed in the
last section. The final output is the transformed moment
matrix in the PWP basis. The reader is referred to [10] for
a detailed description on its implementation. The computation
complexity of the fast transformation method is
for a full decomposition basis, and is about for a single-
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Fig. 3. PWP decomposition trees forN = 4; 8; 16; 32; 64; and 128.

frequency zoom-in basis like the PWP basis. The total memory
required to implement the transform method scales as
since the dense moment matrix in the space domain must
first be computed. This presents a key drawback for solving
large-scale problems.

Another way to find the moment matrix in the PWP basis
is to calculate each element of the matrix from the PWP basis
functions directly. Since the resulting matrix is expected to
contain a small number of nonnegligible elements, only those
significant elements need to be stored. Therefore, this approach
presents a way to overcome the bottleneck in memory.
Assuming that data sequences and are two
of the PWP basis functions, we can compute the element of

the moment matrix directly as

(4)

where is the discretized Green’s kernel in the electro-
magnetic integral equation. For 2-D combined field integral
equations (CFIE), the kernel function can be approx-
imated as (5) [17], shown at the bottom of the next page,
where is the discretization interval of the pulse basis,and

are the position vector, and the outward pointing normal
of the sampling point on the scatterer boundary. is the
combination parameter of the CFIE,is Euler’s constant, and

is Hankel function of the second kind of order. The
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Fig. 4. The PWP basis functions withN = 128. The functions (a)–(h)
correspond to the nodes in the PWP decomposition tree forN = 128 in
Fig. 3 from the lowest node to the highest node.

impedance matrix element can then be interpreted as
the projection of the 2-D kernel function onto
and .

Once is computed, the remaining procedure is straight-
forward. We first obtain the excitation vectorin (3) from the
original excitation vector by two-channel decomposition with
the quadrature filters and based on the PWP basis. Then
the induced current can be solved by using an iterative solver

(a) (b)

Fig. 5. Geometries of the test targets. (a) A circular cylinder. (b) A duct.

with a complexity proportional to the number of nonzero
elements in the PWP moment matrix. Finally, the original
induced current can be restored from by using the inverse
wavelet packet transform with the quadrature filtersand
based on the same PWP basis.

IV. NUMERICAL RESULTS

Two 2-D scatterers, a circular cylinder, and a duct (shown
in Fig. 5) are used to test the effectiveness of the PWP basis in
sparsifying the method of moment matrix. The combined field
integral equation (CFIE) is used to formulate the problem in
terms of the induced surface currents on the scatterers under
TM polarized incidence. The PWP basis functions are derived
from the Daubechies filter of order 16 (with seven vanishing
moments) using the algorithm described in Section II. The
perimeters of the scatterers in Fig. 5 are changed from to

, while the spatial discretization interval is kept fixed
at . Thus, the size of the electromagnetic problems
varies from 128 to 8192. With the moment matrixin PWP
basis, an absolute threshold levelis applied to all entries
of to make it sparse. Experimentation shows that if we
choose a fixed threshold for the duct scatterer and

for the circular cylinder scatterer, the calculated
induced current has an root-mean square (rms) error of around
3%, which is close to the results obtained using adaptive
thresholds based on moment matrix norms [10]. Fig. 6(a)
and (b) show the thresheld PWP moment matrices for

for the circular cylinder and the duct, respectively. The
lower right corners of the matrices represent the strength
of electromagnetic interactions between PWP bases of high
spectral frequency and small spatial extent, resembling those
shown in Fig. 4(g) and (h). As we move closer to the upper left
corners of the matrices, the elements represent the interactions
between PWP bases with longer spatial extent. The bases
with the longest spatial extent have spectral frequency close
to , resembling that shown in Fig. 4(c). Fig. 7(a) shows
the induced currents on the boundary of the duct scatterer
calculated from the thresheld PWP moment matrix for

(5)
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(a)

(b)

Fig. 6. The PWP-based moment matrices withN = 512 for (a) the circular
cylinder and (b) the duct.

. The excitation is an -polarized plane wave incident
from 45 into the duct. Fig. 7(b) displays the radar cross
section (RCS) curves calculated from the induced currents on
the duct. The PWP moment matrices are calculated using both
the fast transform method and the direct calculation method
described in Section III. For reference, the current and RCS
calculated from the standard moment equation with pulse basis
and point matching are also plotted in the same figures. The
induced currents computed by solving the PWP-based system
with threshold result in about a 3.2% rms error when compared
against the reference result. The two different methods to
compute the PWP moment matrix gave nearly the same results,
with only a 0.25% rms difference between the two induced
currents. The RCS curves in Fig. 7(b) show that the PWP
results are nearly indistinguishable from the reference result.
Similar induced current and RCS results are obtained for the
circular cylinder.

Once the accuracy of the PWP scheme is established, we
next examine how the sparsity of the PWP matrix scales with
problem size. Fig. 8(a) and (b) shows the number of nonzero
elements in the thresheld PWP moment matrix versus problem

(a)

(b)

Fig. 7. (a) Induced current distribution and (b) RCS solved using the PWP
basis with the direct calculation and basis transform methods for the duct with
N = 512. The incident wave isEZ -polarized at45� from the duct opening.
The exact solutions using regular pulse basis are also plotted for reference.

size for the circular cylinder and the duct, respectively. Also
plotted in dashed lines are the and
curves for reference. We find the nonzero elements grow at
a rate of about for less than 1024, but the growth
rate appears to approach as the problem size gets
larger. This observation applies to both the smooth cylinder
and the more complex duct shape. We have also tried different
choices of wavelet filters and different threshold levels. Results
show that while these choices change the absolute sparsity of
PWP moment matrices, they do not significantly affect the
growth rate of the above-threshold elements in these matrices.
Therefore, the computation cost for solving the PWP-based
moment equations should approach for large-
scale problems using an iterative solver.

Next, we compare the fast transform method and the direct
calculation method described in Section III to generate the
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(a)

(b)

Fig. 8. The number of nonzero elements in the PWP-based matrices versus
problem sizeN for (a) the circular cylinder and (b) the duct. TheN2 and
(N � logN) curves are plotted in dash line in both figures for reference.

PWP-based moment matrix. We have already shown that
these two methods produce almost identical results. The main
advantage of using the direct calculation method is that we
can overcome the bottleneck in memory. In the imple-
mentation, each calculated moment matrix entry through (4)
is compared with the threshold. If it is greater than the
threshold, its value is kept; otherwise, it is replaced with
zero. Because we only need to store those nonzero elements
in memory, the total memory requirement for the solution of
the integral equation is about the order of the number of the
above-threshold elements in the PWP moment matrix, i.e., on
the order of .

Finally, we estimate the computational complexity of using
the direct calculation method. Since the PWP basis functions
have finite support in space, the complexity of the calculation
in (4) is proportional to the product of the lengths of the two
PWP basis functions. Numerical results show that the average
length of all PWP basis functions is approximately on the
order of . The average complexity for computing each
matrix element is thus and the total complexity of

Fig. 9. The CPU run time to fill a PWP moment matrix using the direct
calculation method. The time grows approximately at a rate ofN

2(logN)2

versus problem size.

constructing the PWP moment matrix is about
operations. This is only a slight increase in comparison to
the complexity of the fast transform method. Fig. 9 shows the
actual CPU running time to construct the PWP moment matrix
using the direct calculation method. In our direct calculation
implementation, a look-up table for the Hankel function is
precomputed to speed up the calculation of (4). We observe
that the central processing unit (CPU) run time grows at a
rate that is quite close to the estimated curve.
Therefore, we can overcome the memory bottleneck while
preserving the time complexity of the fast transform method
by using the direct calculation method.

V. CONCLUSIONS

We have proposed a general class of PWP basis for the
efficient representation of moment matrices arising in elec-
tromagnetic integral equations. The PWP basis is constructed
from a wavelet packet decomposition tree that zooms in
along the spectral oscillatory frequency of the free-space
Green’s function. This is in contrast to the low frequency
zoom-in employed in the conventional wavelet basis. We find
that the moment matrix represented by the PWP basis has
only about above-threshold elements for small-size
problems. For large-size problems, the number of above-
threshold elements approaches . Consequently,
the complexity of solving the moment equation can be reduced
accordingly when an iterative solver is employed. Compared
to the AWPT method we reported earlier, the PWP basis
eliminates the need for the costly best basis search, yet its
performance is even better than that of the best basis found
from the AWPT algorithm. This is because the AWPT basis
found is only a locally optimum basis due to computational
cost constraints, and the best basis search algorithm becomes
less optimal as the problem size increases.

We have also implemented an algorithm to directly cal-
culate the moment matrix elements from the PWP basis
functions. Since the elements with amplitude below a threshold
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can be eliminated on-the-fly without storage in memory, the
maximum memory requirement is on the order of to

to solve moment equations. This overcomes the
memory bottleneck in the basis transform method where the
original space-domain moment matrix must be stored. In the
direct calculation method, the finite support of the PWP basis
functions is utilized and the computational cost of computing
the moment matrix scales approximately as .
This is not a significant increase from that required by the fast
basis transform method.

While there remains an computation time bottleneck in
the formation of the PWP matrix, we note that the matrix
generation is a one-time cost, and yet the cost of solving
the resulting matrix equation is amplified by the number of
iterations and the number of right-hand sides. Furthermore,
we did not take advantage of the vanishing moment property
of the wavelet packet basis function in this work. It might
be possible to apply the fast-element evaluation technique
proposed in [11] to estimate the element amplitude of the
PWP moment matrix. If we can accurately predict the position
of the elements that are smaller than a predefined threshold,
the computation complexity of the direct calculation method
could be further reduced. This is a challenging problem for
bases with large spatial extent and will need to be further
investigated.
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