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An Application of Convergence
Acceleration Methods

George Fikioris

Abstract—It is pointed out that certain convergence accel- sequences for which (a)-(c) apply. A thorough discussion is

eration methods can be applied to sequences of driving-point provided in the comprehensive book [1] from which we have

conductances obtained by solving Haﬁns equation numerically. borrowed many special terms (some artatics).
Five easily applied methods are considered and all seem to | ical Ivsis CAM’ di icali
greatly improve convergence. Reasons for having confidence in " UMerical analysis, s are used In numerical integra-

the resulting extrapolations are discussed. tion [1], [2], where(sx) is a sequence of numerically obtained
Index Terms—Dipole antennas, extrapolation, integral equa- _es“mates of an "_“eQr&i’ with ¥ related to the number of
tions. integrand evaluations. For exampley can be formed by

linearly combiningsy andsx_; so that the leading terms in
the largeN expansions of the errorss— sy ands—sy_; are
knocked out—this is the central idea in Romberg integration.
HEN solving an electromagnetics problem numeriExtrapolation here exploits the availability of asymptotic error
cally, an important parameter is the number of basestimates.
functions (or grid cells). In practice, this parameter is fre- In electromagnetics, the idea of extrapolation is very com-
guently chosen based on the number of points per wavelengibn. Electromagnetic fields, for example, are frequently ex-
or other sucha priori measures. For small problems, it igrapolated to larger (or smaller) frequencies or spatial dis-
often feasible to make the parameter larger until the numerigahces. In such cases, extrapolation schemes are often de-
solution is considered to have converged to a satisfactagloped by utilizing the underlying physics. In his study of
final value. This process can yield greater accuracy; still, tegectromagnetic observations [3], Maxwell himself used what
associated “convergence” can be slow. For a relatively simgles now call the Shanks transformatien(sy) (kE = 2).
antenna problem, the present paper investigates the speeq/@pe recently, CAM’s have found extensive application in
of this process by contemporary extrapolation schemes. the calculation of certain Green’s functions (see [4] and the
Extrapolation generally means the estimation of a functiq@ferences therein), and Sommerfeld integral tails [5]. In both
at a point which is larger (or smaller) than all points at whicthese applications, the sequence elemertsre partial sums
the value of the function is known. Here, we are interested YW a; of infinite series. The later application, as well as
estimations of the limit of a convergent sequen¢ex) and, caAM’s in general, is discussed extensively in the recent
in particular, extrapolation schemes referred ta@svergence rayiew article [5]. There, choosing a CAM is facilitated by an

acceleration method€CAM's): Given a convergent sequenceyestigation of the asymptotic behavior of the Sommerfeld
(sn) with unknown limit s, we seek a new sequencey) integrand.

which converges fasteto s than(sy). More precisely [1], We  The specific purpose of this paper is to point out that
require that the transformed sequerite): (a) converges; (b) certain CAM's, similar to those described in [5], can be

converges to the same limitas (sy) does; (c) that applied to numerical solutions of the integral equation (2)
. tn—s below for the current/(z) on a thin, tubular, cylindrical
Alﬂ%o SN — 8 =0. (1) dipole, center-driven by a deIta—funcFion generatér Our
) ) ] ) _ sequence elements; = Gy are numerically obtained values
A particular CAM is defined by a transformation rule, whichyt ihe driving-point conductance = G = Re{I(0)/V} (the
can be linear or nonlinear. A well-known CAM [1] is theg gceptance is infinite). These sequence elements result [6] by
nonlinear Shanks transformatien(sy) (k = 1,2,---), USU- aonving Galerkin's method with pulse functions (GMPF) to
ally implemented by2means of thealgorithm. Fork = 1, 5y the index N corresponds to the number of pulses. The
ci{sy) is Aitken's A m]fathod._The(:subject O]':_ %AMIS hassequencesGN) thus obtained are monotone and, apparently,
many aspects. To start, for a given CAM one finds ¢ assest%long to theclass of logarithmic sequenceBhese are often
Manuscript received December 18, 1998; revised May 19, 1999. This wagnsidered more challenging to accelerate. On the other hand,
was done while the author was with the Air Force Research Laboratogyyr sequences “look” very simple; simpler, for example, than
Sensors Directorate, Hanscom AFB, MA 01731-3010 and was suppor . . . .
by AFOSR under Project 2304INO1. Some of this work’s final stages we se considered in [5]'.WhICh OSCI!Iate' . .
supported by the Greek Secretariat of Research and Technology. As far as the author is aware, virtually nothing is known
The author is with the Institute of Communication and Computer Systemghout convergence rates when GMPF is applied to (2). Indeed
Department of Electrical and Computer Engineering, National TechnicglOme mathematical questions relevant to the intearal e uatior;
University of Athens, GR 157-73 Zografou, Athens, Greece. q g q
Publisher Item Identifier S 0018-926X(99)09975-5. (2) are very complicated, and have only been addressed

I. INTRODUCTION
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Fig. 1. G%; (dots-top) ande)V (dots-bottom) forh/X = 0.25, a/A = 0.006, and N = 10,11,---,50; and corresponding sequence elemefifs
(bottom solid line) andTR, (top solid line) resulting from the application of the CAM (5). Wheén = 50 [i.e.,, N = 48 in (5)], 7%, = 8.3208
mS, and TP, = 8.3309 mS.

recently [7]. Therefore, no precise beforehand information Representative plots @#3, and G¥, (N = 10,11,---,50)

is incorporated in our extrapolation schemes. However, vaee shown in Fig. 1. As expected, both sequences appear to
provide other reasons for having confidence in our methenverge to the same limit, arfd%,) always appears to have
ods. Although we do not attempt to come up wihtimum a largerspeed of convergencdut, even for¥ = 50, the
methods, we indicate that certain popular CAM’s, which anealuesG% and G%, differ by 11%. (This becomes 3% when
effective in other applications, are not well suited for théV is increased to 149). Each sequence somewhat resembles a
present problem. “test” sequence of the form

;= —#
Il. EXTRAPOLATION TECHNIQUES SN SN, n>0 (4)

With I(+£h) = 0, Hallen’s well-known integral equation which is a logarithmic sequence. Because there is a great

under consideration is number [1] of available CAM’s, we use this rough similarity
h to narrow our search.
Kex(z — 2)I(2) d7 When applied to{Sy), Aitken’s A% method yields a se-
—h ) quence (Px). We can show analytically thaPy — S ~
— _~ Vsin8|z| + Cos Bz, lZl<h (2) V/(e+1N"#asN — oo so that(Py) converges at the
2Go same rateas(Sy ). Thus, theA? method (as well théterated

. R iBR(z, A? method) does not seem adequate and we verified this by
Kex(z) = (877) /_7T PHED Rz, ¢) dg application to the actualGGy)’s. In other words, we have
R(z,¢) = [¢* + 4a? sin2(¢/2)]1/2 3) a contrac_tive sequence transformatidmt no convergence
acceleration. The well-known Richardson extrapolation [2]
where2h anda are the dipole’s length and radiys,= 2x/A would require knowledge of. so it is also not suitable.
is the free-space wavenumber, afad= 376.73 ). For2N +1 Typically, transformed sequences are highly susceptible to
pulse basis functions, each of widty = 24/(2N + 1), noise in the original sequences [such as the noise arising
formulas [6] for the approximate valu@, of driving-point from the numerical integration (A.2)] and to roundoff. This
conductances = Re{I(0)/V}, are listed in the Appendix. is especially true for “higher order” CAM’s, which require
There are two alternative schemes (A.4a), (A.4b) for obtainimgany difference operations. In simple applications, however,
approximationsCy to the constant” and the corresponding we can usually detect such effe@sosteriori
Gy’s will be denoted byGa, and G¥,. Both schemes result The CAM's listed below resulted from examining [1] (and
from I(h) = 0; additionally, the square-root behavior bfz) some of the references therein) in light of the aforemen-
nearz = h is incorporated in the second scheme, which t®ned considerations. Most of these CAM'’s are “first-order”
more precise. In what follows, we apply CAM'’s {6:%,) and implementations of more general ones. The usual symbols
(G%) separately. Asy = snyy1—sy andA?sy = Asyy1—Asy for difference
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operations are used solving
Tnio = Gni1 — 2AGNAGN ;1 /A*Gy (5) N
TN+3 = GN-l—l + AGN+1A(1/AGN+1)/A2(1/AGN) (6) Z Al—nI](\}) _ Bl(l)

Tni1=AGN/fN)/AL/fN); INn=NAGy 1 (7) =N
Tnyo = Gy — N(AGN)?/[(N +1)AGN41 — NAGYN] (8) N - -
Tun = Gan — (Gan — Gan)?/(Gan — 2Gan + Gn). (9) Z Ar-ndy ) =B, I=0,%1,---,xN (Al

n=—N

In each equation above we have chosen the indaér 7}

according to the following helpful conventiork coincides
with the index of the most advanced term(6f ) necessary
for the computation off}.. Other choices fork are possible 20
and result in unimportant modifications. Apart from index A :/ (20 — 2)[K (7 +120) + K(z — l2)] dz, (A.2)
changes and changes in algebraic form, (5)—(7) are first-order 0

where

implementations of Wynn's [8p-algorithm (5), Brezinskis B — 2 qu 0 cos(Bzl),

[9] ©-algorithm (6), and what is usually called Levin's [10] p )

u-transform (7). The CAM (6) is also called the Lubkin gshf P ifl=0
W-transformation. The CAM (8) is in [1, Theorem 3.7]. M _ ] G/ 47 (A.3)
Finally, (9) results by applying thA2 method to subsequences ! i sin ﬁﬂ sin(Bzll]), f1#0
(Gn,Gan,---) of (Gy); in these, an original numbe¥ in Cof? 2

GMPF is successively doubled. For the test sequérsce)

of (4), it is easy to see analytically that (9) is superior to ther ) and I} and then estimating” from one of the
normal A? method. Note also that (9) utilizes terms (@) alternative equations

with small indexes.

When applied to(G%) and (GX,), the CAM (5) gives on O
N SN . = —Ivn/IN N, O
the results seen in Fig. 1. The leftmost point in the solid N NN {1)1“71\‘ W (A.4a)
line representing(7%) [or (T%)] corresponds tdl%, (or On=qC%= _[\/311\;,1\’ _IJ\;,N—l]/ b
TP) and, in accordance with (5), was computed from the [\/311(\)]\ —Ij(\,y)]\,_l]. (A.4b)

first three termsG2,, G, G%, (or G%,, G%,, G%,); the

rightmost point corresponds t@%, (or 1%, respectively). The choice Cy = C% (Cy = C%) corresponds to the
In Fig. 1, the transformed sequences are smooth and S&giing-point conductances, (G%)
free of noise/roundoff errors. The convergence appears to be
accelerated substantially. Already whéh = 12, the values
T3, T% differ only by 10% and this rapidly decreases to 0.1%
whenN = 50. The CAM'’s (6)—(9) also give very good results [1] C. Brezinski and M. Redivo Zagli€xtrapolation Methods: Theory and
and numerical values which agree with those given by (5). Fo[tr24 Practice New York: Elsevier, 1991.

ip . . P. J. Davis and P. Rabinowitilethods of Numerical Integratior2nd
the specific parameters of Fig. 1, (5) seems to provide accura€ o4 oyjando. FL: Academic. 1984.

answers somewhat faster than (6)—(9). A detailed comparisd8i J. C. Maxwell, A Treatise on Electricity and Magnetisrrd ed. Ox-

between (5)—(9), however, is beyond the scope of this paper. ‘;gﬁ;ng'are”don' 1891. (New York: Dover, 1954, vol. 2, ch. XVI,
Because we obtain the same answers by applying mamy N. Kinayman and M. I. Aksun, “Comparative study of acceleration

CAM's to two independent sequences, we believe that our techniques for integrals and series in electromagnetic probleResiio

: ) Sci, vol. 30, no. 6, pp. 1713-1722, Nov./Dec. 1995.
numerical results are correct and that all our CAM's ar 5] K. A. Michalski, “Extrapolation methods for Sommerfeld integral tails,”

appropriate. We can also apply these CAM’'s to numeri- ~ |EEE Trans. Antennas Propagatcol. 46, pp. 14051418, Oct. 1998.

cally obtained sequences approximating the imaginary part ¢! ﬁ ”F,ikif’”s a”‘z,T- TEI\E/\I/EUT On thAe ?Pp"cati;” of ”Limzfica' E?‘ethhodds to
_ . —1 . allen’s equation, rans. Antennas Propagato be published.
F(z) = I(#)/V —idPagy " In Bz, wherefz, is small and [7] B. P.Rynne, “The well-posedness of the integral equations for thin wire

fixed; such quantities [6] can be used to compute a driving- antennas,IMA J. Appl. Math, vol. 49, pp. 35-44, 1992, _
point susceptance. Finally, we expect these CAM's to béB] P. Wynn, “On a procrustean technique f(_)r tr]e numerl_cal tran_sformatlon
. . .. . of slowly convergent sequences and seri€sgc. Cambridge Phil. Sog.
applicable to variouscalarsequences arising from other inte- o, 52, pp. 663-671, 1956. -
gral/integrodifferential equations for the current distributiong9] C. Brezinski, “Aclération de suited convergence logarithmiqueC.
; ; ; ; ; R. Acad. Sci. Parisvol. 273 A, pp. 727-730, 1971.
on WII’Q antennas, mCIUdlng espeC|aIIy wire antennas of mo[rl%] D. Levin, “Development of nonlinear transformations for improving
complicated shapes. convergence of sequencedtit. J. Comput. Math.vol. 3, sec. B, pp.
371-388, 1973.
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APPENDIX

The valueGy = Re{lno/V} is obtained by applying

GMPF to (2), as detailed in [6]: the approximate current L ) . .
(1) (2) . L. . George Fikioris, photograph and biography not available at the time of
Ino = Iy + CnIy) at the driving point is found by first pypiication.



