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An Application of Convergence
Acceleration Methods

George Fikioris

Abstract—It is pointed out that certain convergence accel-
eration methods can be applied to sequences of driving-point
conductances obtained by solving Halĺen’s equation numerically.
Five easily applied methods are considered and all seem to
greatly improve convergence. Reasons for having confidence in
the resulting extrapolations are discussed.

Index Terms—Dipole antennas, extrapolation, integral equa-
tions.

I. INTRODUCTION

W HEN solving an electromagnetics problem numeri-
cally, an important parameter is the number of basis

functions (or grid cells). In practice, this parameter is fre-
quently chosen based on the number of points per wavelength
or other sucha priori measures. For small problems, it is
often feasible to make the parameter larger until the numerical
solution is considered to have converged to a satisfactory
final value. This process can yield greater accuracy; still, the
associated “convergence” can be slow. For a relatively simple
antenna problem, the present paper investigates the speed up
of this process by contemporary extrapolation schemes.

Extrapolation generally means the estimation of a function
at a point which is larger (or smaller) than all points at which
the value of the function is known. Here, we are interested in
estimations of the limit of a convergent sequence and,
in particular, extrapolation schemes referred to asconvergence
acceleration methods(CAM’s): Given a convergent sequence

with unknown limit , we seek a new sequence
which converges fasterto than . More precisely [1], we
require that the transformed sequence : (a) converges; (b)
converges to the same limitas does; (c) that

(1)

A particular CAM is defined by a transformation rule, which
can be linear or nonlinear. A well-known CAM [1] is the
nonlinear Shanks transformation , usu-
ally implemented by means of thealgorithm. For ,

is Aitken’s method. The subject of CAM’s has
many aspects. To start, for a given CAM one finds classes of
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sequences for which (a)–(c) apply. A thorough discussion is
provided in the comprehensive book [1] from which we have
borrowed many special terms (some are initalics).

In numerical analysis, CAM’s are used in numerical integra-
tion [1], [2], where is a sequence of numerically obtained
estimates of an integral, with related to the number of
integrand evaluations. For example, can be formed by
linearly combining and so that the leading terms in
the large- expansions of the errors and are
knocked out—this is the central idea in Romberg integration.
Extrapolation here exploits the availability of asymptotic error
estimates.

In electromagnetics, the idea of extrapolation is very com-
mon. Electromagnetic fields, for example, are frequently ex-
trapolated to larger (or smaller) frequencies or spatial dis-
tances. In such cases, extrapolation schemes are often de-
veloped by utilizing the underlying physics. In his study of
electromagnetic observations [3], Maxwell himself used what
we now call the Shanks transformation .
More recently, CAM’s have found extensive application in
the calculation of certain Green’s functions (see [4] and the
references therein), and Sommerfeld integral tails [5]. In both
these applications, the sequence elementsare partial sums

of infinite series. The later application, as well as
CAM’s in general, is discussed extensively in the recent
review article [5]. There, choosing a CAM is facilitated by an
investigation of the asymptotic behavior of the Sommerfeld
integrand.

The specific purpose of this paper is to point out that
certain CAM’s, similar to those described in [5], can be
applied to numerical solutions of the integral equation (2)
below for the current on a thin, tubular, cylindrical
dipole, center-driven by a delta-function generator. Our
sequence elements are numerically obtained values
of the driving-point conductance (the
susceptance is infinite). These sequence elements result [6] by
applying Galerkin’s method with pulse functions (GMPF) to
(2); the index corresponds to the number of pulses. The
sequences thus obtained are monotone and, apparently,
belong to theclass of logarithmic sequences. These are often
considered more challenging to accelerate. On the other hand,
our sequences “look” very simple; simpler, for example, than
those considered in [5], which oscillate.

As far as the author is aware, virtually nothing is known
about convergence rates when GMPF is applied to (2). Indeed,
some mathematical questions relevant to the integral equation
(2) are very complicated, and have only been addressed
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recently [7]. Therefore, no precise beforehand information
is incorporated in our extrapolation schemes. However, we
provide other reasons for having confidence in our meth-
ods. Although we do not attempt to come up withoptimum
methods, we indicate that certain popular CAM’s, which are
effective in other applications, are not well suited for the
present problem.

II. EXTRAPOLATION TECHNIQUES

With , Hallén’s well-known integral equation
under consideration is

(2)

(3)

where and are the dipole’s length and radius,
is the free-space wavenumber, and . For
pulse basis functions, each of width ,
formulas [6] for the approximate value of driving-point
conductance , are listed in the Appendix.
There are two alternative schemes (A.4a), (A.4b) for obtaining
approximations to the constant and the corresponding

’s will be denoted by and . Both schemes result
from ; additionally, the square-root behavior of
near is incorporated in the second scheme, which is
more precise. In what follows, we apply CAM’s to and

separately.

Representative plots of and
are shown in Fig. 1. As expected, both sequences appear to
converge to the same limit, and always appears to have
a larger speed of convergence; but, even for , the
values and differ by 11%. (This becomes 3% when

is increased to 149). Each sequence somewhat resembles a
“test” sequence of the form

(4)

which is a logarithmic sequence. Because there is a great
number [1] of available CAM’s, we use this rough similarity
to narrow our search.

When applied to , Aitken’s method yields a se-
quence . We can show analytically that

as so that converges at the
same rateas . Thus, the method (as well theiterated

method) does not seem adequate and we verified this by
application to the actual ’s. In other words, we have
a contractive sequence transformationbut no convergence
acceleration. The well-known Richardson extrapolation [2]
would require knowledge of so it is also not suitable.

Typically, transformed sequences are highly susceptible to
noise in the original sequences [such as the noise arising
from the numerical integration (A.2)] and to roundoff. This
is especially true for “higher order” CAM’s, which require
many difference operations. In simple applications, however,
we can usually detect such effectsa posteriori.

The CAM’s listed below resulted from examining [1] (and
some of the references therein) in light of the aforemen-
tioned considerations. Most of these CAM’s are “first-order”
implementations of more general ones. The usual symbols

and for difference
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operations are used

(5)

(6)

(7)

(8)

(9)

In each equation above we have chosen the indexin
according to the following helpful convention: coincides
with the index of the most advanced term of necessary
for the computation of . Other choices for are possible
and result in unimportant modifications. Apart from index
changes and changes in algebraic form, (5)–(7) are first-order
implementations of Wynn’s [8] -algorithm (5), Brezinski’s
[9] -algorithm (6), and what is usually called Levin’s [10]

-transform (7). The CAM (6) is also called the Lubkin
-transformation. The CAM (8) is in [1, Theorem 3.7].

Finally, (9) results by applying the method to subsequences
of ; in these, an original number in

GMPF is successively doubled. For the test sequence
of (4), it is easy to see analytically that (9) is superior to the
normal method. Note also that (9) utilizes terms of
with small indexes.

When applied to and , the CAM (5) gives
the results seen in Fig. 1. The leftmost point in the solid
line representing [or corresponds to (or

and, in accordance with (5), was computed from the
first three terms , , (or , , ; the
rightmost point corresponds to (or , respectively).
In Fig. 1, the transformed sequences are smooth and seem
free of noise/roundoff errors. The convergence appears to be
accelerated substantially. Already when , the values

, differ only by 10% and this rapidly decreases to 0.1%
when . The CAM’s (6)–(9) also give very good results
and numerical values which agree with those given by (5). For
the specific parameters of Fig. 1, (5) seems to provide accurate
answers somewhat faster than (6)–(9). A detailed comparison
between (5)–(9), however, is beyond the scope of this paper.

Because we obtain the same answers by applying many
CAM’s to two independent sequences, we believe that our
numerical results are correct and that all our CAM’s are
appropriate. We can also apply these CAM’s to numeri-
cally obtained sequences approximating the imaginary part of

, where is small and
fixed; such quantities [6] can be used to compute a driving-
point susceptance. Finally, we expect these CAM’s to be
applicable to variousscalarsequences arising from other inte-
gral/integrodifferential equations for the current distributions
on wire antennas, including especially wire antennas of more
complicated shapes.

APPENDIX

The value is obtained by applying
GMPF to (2), as detailed in [6]: the approximate current

at the driving point is found by first

solving

(A.1)

where

(A.2)

if

if
(A.3)

for and and then estimating from one of the
alternative equations

or (A.4a)

(A.4b)

The choice corresponds to the
driving-point conductance .
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