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Abstract—This paper presents an aperture-coupled microma-
chined microstrip antenna operating at 94 GHz. The design
consists of two stacked silicon substrates: 1) the top substrate,
which carries the microstrip antenna, is micromachined to im-
prove the radiation performance of the antenna and 2) the bottom
substrate, which carries the microstrip feed line and the coupling
slot. The measured return loss is�18 dB at 94 GHz for a 10-dB
bandwidth of 10%. A maximum efficiency of 58� 5% has been
measured and the radiation patterns show a measured front-to-
back ratio of �10 dB at 94 GHz. The measured mutual coupling
is below�20 dB in both E- and H-plane directions due to the
integration of small 50-�m silicon beams between the antennas.
The micromachined microstrip antenna is an efficient solution
to the vertical integration of antenna arrays at millimeter-wave
frequencies.

Index Terms— Micromachining, microstrip antennas, milli-
meter-wave antennas.

I. INTRODUCTION

T HE microstrip antenna is a very good common element
in telecommunication and radar applications since it

provides a wide variety of designs, can be planar or con-
formal, and can be fed in many different methods [1], [2].
It is also compact and suitable for antenna array designs.
Microstrip antennas can be used in applications which requires
high-performance compact low-cost planar antennas such as
imaging arrays and collision-avoidance radars. The aperture-
coupled microstrip antenna [3], [4] is of great interest since
it allows for the electromagnetic separation of the radiating
element (the microstrip patch) and the feed network with
the use of the ground plane. At millimeter-wave frequencies,
many limitations have to be overcome in order to design high-
performance microstrip antennas on silicon or GaAs substrates.

The high dielectric constant of the substrates used (
for silicon) implies that surface waves are more eas-

ily triggered in the substrate. The power lost to surface
waves can be reduced by using thin substrates, typically

, where is the dielectric wavelength. At 94 GHz
for silicon, it corresponds to around 100-m-thick substrates.
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However, while it is possible to design good RF circuits on
thin high-dielectric constant substrates, the radiation efficiency
of microstrip antennas will be greatly reduced.

A recent solution is the use of micromachining fabrica-
tion techniques to artificially remove the substrate below
the antenna and, therefore, locally synthesize a low-dielectric
constant region around the antenna. This technique has been
successfully applied by drilling closely spaced holes [5] or a
cavity around and beneath the microstrip antenna [6]. Also,
a low-loss transition from microstrip to coplanar waveguide
(CPW) transmission line must be designed so as to integrate
the microstrip antenna in a configuration where the feed
network is CPW based.

II. A NTENNA DESIGN

Fig. 1 shows the perspective view and the cross section
of the aperture-coupled micromachined microstrip antenna.
The design of the antenna is summarized below (referring to
Fig. 2).

A. Antenna

A cavity is etched in the substrate below the microstrip
antenna. The synthesized effective dielectric constant is
characterized to determine the antenna dimensions for
a resonance at 94 GHz. The effective dielectric constant is the
quasistatic value seen underneath the microstrip patch antenna
and is in the range of 2.8–3.9, depending on the etching
depth. The antenna is analyzed using the cavity model and the
effective dielectric constant. There are no models describing
the effect of the cavity width and this will be the object of a
further study. We believe that the cavity around the antenna
can be designed to resonate close to the microstrip antenna
resonance and, therefore, resulting in an increase in bandwidth
[5].

The influence of the slot shape has been studied previously
by Pozar and Rathi [7], [8]. A -shaped slot (Fig. 2) is used,
which improves the coupling compared to a rectangular slot.
The -slot design results in a short slot and pushes the reso-
nant frequency of the slot above that of the microstrip antenna,
thereby improving the front-to-back ratio. The real part of the
aperture-coupled microstrip antenna input impedance is fixed
by the length of the slot and is designed to be 50.
The imaginary part of the aperture-fed microstrip antenna
input impedance is then compensated by the microstrip line
extension , which acts like a matching stub (Fig. 2). The
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Fig. 1. (a) Perspective view and (b) cross section of the aperture-coupled
micromachined microstrip antenna. All dimensions are in microns.

Fig. 2. Top view of the microstrip antenna design and of the
CPW-to-microstrip transition.

Fig. 3. Measured and simulated (IE3D) performance of the CPW-to-
microstrip transition.

(a) (b)

(c) (d)

Fig. 4. (a) Pictures of the microstrip antenna, (b) micromachined cavity, (c)
coupling-slot, and (d) feed line. The four pictures are not at the same scale.

simulation is done using a commercial analysis program IE3D
(Zeeland Software [9]).

B. CPW to Microstrip Line Transition

In order to integrate the microstrip antenna in an array where
the feed network is based on CPW lines, a simple low-loss, and
compact CPW to microstrip transition is designed, extending
the work of Houdardet al. [10] at -band frequencies. It
can be analyzed as a three-line microstrip coupler and more
details can be found in [11]. Fig. 2 shows the layout and,
Fig. 3 shows the measured and simulated performance of the
transition used at -band frequencies. The FGCPW feed-
line dimensions are m, m, and

m corresponding to a chatacteristic impedance
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Fig. 5. (a) Measured and simulated (IE3D) input impedance of the microstrip
antenna built on a full silicon substrate of 100�m thick and (b) on a
200-�m-thick silicon wafer in which a 150-�m-deep cavity has been etched.

of 50 . The microstrip line is m wide resulting in
a 50- characteristic impedance. The dimensions of the CPW-
to-microstrip transition are m, m, and

m. The coupling region is chosen to be m
long ( at 94 GHz). A back-to-back transition separated by
a 860 m long microstrip line results in 0.2 dB insertion loss
per transition with a bandwidth of 20%. The return loss is
better than 17 dB from 85 to 100 GHz.

III. I NPUT IMPEDANCE

Two aperture-coupled microstrip antennas are designed for
94-GHz operation. One is built on a full 100-m-thick silicon
wafer and the other on a 200-m-thick silicon wafer in which
a 150 m deep cavity has been etched using tetramethyl am-
monium hydroxide (TMAH) or potassium hydroxide (KOH)

Fig. 6. Radiometric measurement setup at 85–100 GHz.

wet-etching techniques [12]. Referring to Figs. 1 and 2, the
antenna and slot dimensions are, respectively,

m m and m
m m for the antenna integrated on a full silicon

wafer of 100 m thick and m m
and m m m for
the micromachined microstrip antenna. The bottom silicon
substrate is identical for both designs and is 100m thick
(feedline substrate). The microstrip line is m wide
resulting in a 50- characteristic impedance and the matching
stub is m long for the nonmicromachined antenna
and m long for the micromachined one. The
CPW feed line and the CPW-to-microstrip transition used
for coplanar-probe on-wafer measurements are the same for
the micromachined and the nonmicromachined antennas. The
dimensions of these are given in Section II-B. All metal layers
are 8000Å of evaporated gold, corresponding to around three
skin depths at 94 GHz. Fig. 4 shows the pictures of the
antenna, cavity, slot and feed line for the aperture-coupled
micromachined microstrip antenna.

The input impedance of the two antennas is measured
using -band picoprobes on a HP8510 network analyzer and
TRL calibration is used to move the reference plane from
the probe-tip to the plane shown in Fig. 2. The simulated
(IE3D) and measured input impedances of both microstrip
antennas are shown in Fig. 5. It is seen that there is a 2.5%
frequency shift between the measured and simulated response,
which could be attributed to small variations in the silicon
wafer thickness, and to the general inaccuracies of numerical
packages in high Q structures at millimeter-wave
frequencies (probably due to the simulation at the exact current
distribution in the slot feed). A return loss of35 dB at 92.5
GHz with a 10-dB bandwidth of 4% has been measured for
the antenna built on a full silicon wafer of 100m thick.
Also, a return loss of 12 dB at 95 GHz with a 10-dB
bandwidth of 3% and of 18 dB at 94 GHz with a 10-dB
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Fig. 7. (a) Measured radiation efficiency of a microstrip patch antenna built
on a full 100-�m silicon wafer and (b) of a micromachined microstrip antenna.

bandwidth of 10% has been obtained for the micromachined
microstrip antenna, respectively, for designs 1 and 2. Notice
that in this case, the simulation agrees very well with the
measurement due to the low Q nature of the
micromachined antenna. The only difference between designs
1 and 2 in Fig. 5(b) is the length of the input CPW feed
line, which is around 150 m. The important variation of
the antenna return loss for the two different designs can
be explained by the dependence of the CPW-to-microstrip
transition versus the length of the CPW feed line. This
dependence is attributed to a parasitic microstrip mode, which
is triggered by the transition discontinuity and propagating
along the coplanar ground planes of the conductor-backed
CPW feed line. The conversion mode at discontinuities in
conductor-backed CPW has been shown by Jackson in [13].
Various back-to-back CPW-to-microstrip transitions has been
designed and measured to fully characterize the parasitic
microstrip mode along the conductor-backed feed CPW line
and to cancel it. These experimental results are out of the scope
of this article and will be presented in another publication [14].

Fig. 8. Measured radiation patterns of the micromachined microstrip antenna
at 94 GHz.

Fig. 9. Layout of the 2� 2 antenna array to measure the mutual coupling.
All dimensions are in microns.

IV. RADIATION EFFICIENCY

The radiometric technique is an accurate method to measure
the radiation efficiency of planar antennas using standard
hot/cold load measurements. The microstrip antenna is con-
nected to a calibrated (low-noise) system of gainand noise
temperature . The RF chain is calibrated using a standard
WR-10 pyramidal horn which has a known radiation efficiency
of 97–98%. The horn is then replaced by the microstrip
antenna connected to the chain via a-band picoprobe. This
method is a double side-band (DSB) measurement since no RF
filter is used to separate the upper side-band from the lower
side-band before mixing down to the intermediate frequency
(IF). The measurement is, therefore, more accurate if a small
IF is chosen (see [5] for more details). A detailed view of the
RF chain is shown in Fig. 6. The conversion loss of the-
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Fig. 10. Measured mutual coupling comparison in the (a)E- and (b)
H-plane directions.

band balanced mixer is 8 dB over the 80–100 GHz bandwidth.
The IF is fixed at 200 MHz. The calibrated IF chain has a gain
of 86 dB and a noise temperature of 111 K. The total system
DSB noise temperature and gain are equal to around 1500 K
and 86 dB, respectively (Fig. 6).

Fig. 7 represents the measured radiation efficiency of differ-
ent designed microstrip antennas using the radiometric method.
The measured radiation efficiency improved from 275% for
the 100- m-thick silicon substrate to 58 5%
(design 2) for the micromachined antenna with .
Notice that design 1 resulted in 50% radiation efficiency due
to some power loss in the CPW-to-microstrip transition. The
dashed curves in Fig. 7 represent the measurement results
including the microprobe losses (1.0 dB), the feedline losses
(0.2 dB), and the mismatch loss to 50-load. The straight lines
represent the de-embedded radiation efficiency of microstrip
antenna designs around their resonant frequency.

V. RADIATION PATTERNS

To measure the radiation patterns of the micromachined
microstrip antenna, a bismuth bolometer is integrated into the
circuit. The RF short in the CPW line is provided by a thin-
film capacitor (300 m 200 m 1500 Å of evaporated
SiO). Two 100- bismuth bolometers (4 m 4 m and
1000 Å thick) are placed in parallel away from the RF
short (where is the guided wavelength in the CPW line)
and result in a 50- bolometer resistance.

The measured radiation patterns are shown in Fig. 8 and
are typical for microstrip antennas. It is seen that the cross-
polarization level is below 20 dB and the front-to-back ratio
is below 10 dB for both - and -plane directions. The
ripples in the -plane are due to the finite ground of the
microstrip antenna (3 3 ).

This microstrip-type antenna has an excellent a 10-dB band-
width (10%), good patterns, and high-efficiency performance
and is compatible with silicon or GaAs MMIC technology.

Two different 2 2 micromachined antenna arrays with
a spacing of have been built to measure the mutual
coupling between patches in the- and -plane directions.
The shape of the cavity etched underneath patches is the only
parameter modified between the two designs. In one case,
only one wide cavity underneath the four microstrip antennas
(Fig. 9) is used. In the other case, an individual cavity for
each patch separated by a 50-m-wide silicon beam is used.
The crosstalk in - and -plane directions is measured using

-band picoprobes on a HP8510 network analyzer. Fig. 10
shows that crossed silicon beams reduce the parasitic mutual
coupling in the two main plane directions to less than20 dB.
This coupling level is sufficiency low to design very efficient
antenna arrays in -band.
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