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Isophoric Arrays—Massively Thinned
Phased Arrays with Well-Controlled Sidelobes

David G. LeeperSenior Member, IEEE

Abstract—Traditional filled phased arrays have an element In digital-beam-forming arrays, the reduced element count
placed in every location of a uniform lattice with half-wavelength  offers reduced computational complexity.

spacing between the lattice pointsMassively thinnedarrays have For a given element couptthinning offers narrowed

fewer than half the elements of their filled counterparts. Such b idth b King | ibl
drastic thinning is normally accompanied by loss of sidelobe eamwidth by making larger apertures possible.

control. This paper describes a class of massively thinned linear ~ Historically, massive thinning has been accompanied by
and planar arrays that show well-behaved sidelobes in spite of dramatic loss of sidelobe control. The 1960’s and 1970’s
the thinning. The term isophoricis derived from Greek roots to  ggw the development of a number of thinning algorithms

denote uniform weight In isophoric arrays, element placement y. attempted to retain some control over sidelobes through
based ondifference sets forces uniformly weighted spatial cov-

erage. This constraint forces the array power pattern to pass detérministic placement of the elements. Success was so
through V' uniformly spaced, equal, and constant values that are €lusive that some researchers conjectureand-try random

less than 1K times the main beam peak, wherd” is the aperture  placementto be as effective as any deterministic placement
size in half-wavelengths andK™ is the number of elements in algorithm could ever be [1]-[3]. In the 1980’s and 1990's,

the array. The net result is reduced peak sidelobes, especially : : : ;
when compared to cut-and-try random-placement approaches. dynamic programmingand genetic search algorithméiave

An isophoric array will exhibit this sidelobe control even when the  fared b?tter [4]-{8] although Some_of the _methOdS are not
array has been thinned to the extent thatk is approximately the —appropriate for very large or very highly thinned arrays and
square root of V. Where more than one beam must be generated the improvements that some of the methods offer are difficult
at a time, isophoric array designs may be used to advantage eveny, predicta priori.

within a traditional filled array. By “interweaving” two isophoric . . . .
subarrays within a filled array and by appropriate cyclic shifting Rather than using a search algorithm, the approach in this

of the element assignments over time, two independent antenna Paper attacks the sidelobe control problem directly by applying
power patterns can be generated, each with a sidelobe region that the properties oflifference setsa topic from combinatorial

is approximately a constant value of 1/(2) relative to the main  mathematics, to the placement of antenna elements within
beam, where X is the number of elements in the subarray. a regular lattice. These deterministic placements create an
Index Terms—Array antennas, sidelobe control, sparse array isophoric array with attendant uniformity of spatial cover-

antennas, sub-Nyquist sampling. age. The uniformity consistently produces, with no searching
required, a reduction in peak sidelobe level (PSL) when
I. INTRODUCTION AND SUMMARY compared to random element placement.

filed phased h | More specifically, in any linear array of apertuté half-
T RADITIONAL filled phased arrays have an elemen. elengths, the Nyquist sampling theorem shows that the
placed in every location of a uniform lattice with half-array power pattern can be completely specified fram

wavelength spacing between the lattice poirkéassively uniformly spaced samples of the pattern. In an isophoric arra
thinnedarrays have fewer than half the elements of their filleﬁj1 y sp P P ' P Y

L “the even-numbered samples will necessarily be “locked” to a
counterparts. Such drastic thinning is normally accompam((-‘:ge stant value less thari X times the main-beam peak, where
by loss of sidelobe control. This paper describes a class t?s the number of elements in the thinned array. While the
massively thinned linear and planar arrays that show we dd-numbered samples are not so constrained, the net effect
behaved sidelobes in spite of massive thinning. Isopho Ic i

. o PO produce patterns with much lower PSL’s than are typical
arrays derive their sidelobe control from a determlnlst\%ith cut-and-try random placement

placement of elements that achieves a uniform We'ght'nglsophoric designs apply to linear or planar arrays, whether

of spatial coverage. The terrpophonms based on the GreekIarge or small. While this paper focuses on arrays with 50%
roots that denoteiniform weight O ) . .
. . . - . __thinning, isophoric arrays include arrays thinned to the extent
For a givenaperture sizemassive thinning offers reductions : ;
. : . that the number of elements is approximately the square root
in element count, cost, weight, power consumption, and hee,} : L
N o O of the number of elements in their filled counterparts.
dissipation, albeit with an attendant reduction in antenna gain.
Some proposed modern arrays use tens, hundreds, or even
thousands of elements combined with digital beam forming
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by simple cyclic shifting of the element assignments oveovered elsewhere [10], [11]. For later reference in this paper,
time, it is possible to produce power patterns for which thi@e results for linear and planar arrays are listed b&low
entire sidelobe region is approximately a constant valu%;lﬁf

relative to the main beam, whefe is the number of elements n
in the original filled array. In other words, the “peaks” in the V-1 sin |:7TV-TO <u - —)}
. . . . n V.’L’O
sidelobe region virtually vanish. flu) = Z f<V )
Sections IV of this paper introduce notation and cover n= 0/ v sin [on <u — L)}
basic concepts of difference sets and their application to Vo
phased-array design. Sections V and VI contain the main (4a)

results for linear arrays. Section VII introduces the concept of .
. . . . 2V 1 sin |2aVxo| v —
spatial hopping. Section VIII extends the linear array resultjg N " n 2V xg
7w =2 1\ v
n=0

to planar arrays. ’
P 4 2V tan |7zl u — i
2V$0

Il. NOTATION (4b)
This section introduces some definitions and notation
needed in later sections. Note that while it take2V samples to specify the power
The array factor for a linear array of identical isotropic pattern ff*(u), it takes onlylV samples to specify the array
radiators is defined as factor f(u). The reason is that the samples ¢fu) are
Vo1 complex, while those offf*(«) are real. Having both a real
Flu) = Z 0, I 20U @ and imaginary part, each sample ffu) contains twice the

information of ff*(u) sample. Thus, botli(x) and ff*(w) are
completely specified b2V numbers. The sampling theorem
wherea,, = 1 if an element exists at distancez, wave- shows that at leastV’ numbers are required to specify either
lengths from the origin and,,, = 0, otherwiseu = sin(#) is  f(u) or ff*(x). Conversely, both have, at mogfy” degrees
the commonly used direction parameter [9] wittmeasured of freedom in that one can arbitrarily specify oy’ sample
off of a normal to the array, and the lattice h&spossible points in the power pattern. In particular, control over the
element locations numbered 0 ¥ — 1, uniformly spaced at power pattern is equivalent to and limited to control of the
intervals of xo wavelengths. 2V sample points.

The corresponding array factor for a planar array on aThe corresponding forms for planar arrays are
uniform z, i lattice with xg, 1o wavelength spacing is

m=0

Vo1 V-1 Vool V-l

flu,v) = Z Z ammej%(mwou-i—nyoy) ) flu,v) = Z Z f<Vlg:0’ﬁ>

m=0 n=0

m
wherea,, , = 1 if an element exists at locatiofinzo, nyo) sin | mVowo <” - Vm$0>:|
wavelengths relative to the origin ang, , = 0, otherwise, ’ T m
u = sin(f) cos(¢) and v = sin(f) sin(¢p) are the com- Ve sin | 7xg <U_ Vx())}
monly used direction parameters [9] and the array lattice has - N
V = V.V, possible element locations numbered (0, 0) to sin 7rVyy0< S )}

(Ve = 1,V, — 1). The anglef is measured off of a normal . L Vyto (5a)
to the array plane and is measured off of the-axis of the V, sin | 7y <v _n )}
array plane. L Vyyo
To simplify both expressions, steering angles have, without 2V, -1 2V, -1
loss of generality, been set to zero. As usual, applying an  ff*(u,v) = Z Z ff*< n ,L>
appropriate linear phase variation across the elements will m=0 n=0 2Vao 2Vyyo
allow the main beam to be steered. _' m
Array power patterns for linear and planar arrays are rep- sin | 27Vzzo <“ - 2me0>:|
resented as : T m
2V, tan |wzo <u— X )}
17(w) = f(u) - f* () = | () . N
ff(u,v) = flu,v) - f*(u,v) = | flu,v)|% (3) sin |27V, 0 <v ~ 57 )}
S S vdo (5b)
Since the array fact(_)r_ and power pattern gegiodic as 2V, tan |7y <U _n )}
well as bandlimited, a finite number of samples, taken from a L 2V,

single period, are sufficient to regenerate the entire factor or
pattern over alk. The denvgtlons of the sampling theorem 1The form for f(u) is valid for V an odd integer. Whei is even, the
for f(u) and ff*(u) are straightforward but lengthy and aresine function in the denominator must be replaced by a tangent function.
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|LLUSTRATION OF THE DIFFERENC—[I-EAsz‘IITI;:DRJOPERTY FORDIFFERENCE SET D» Given a(V, K’ A) difference SetD' the set
i F (d-d)) mod V D' ={do+s,di +s,da+5,- - ,dp_1 +s}=D+s (9)
0 1 (0-3)mod 7=4 . .
5 5 O med7=3 where eac_h element is take_n modul(),_ will also be a
(V, K, A) difference set. In this casd)’ is called acyclic
S (0-6ymod 71 shiftof D. If D, andD, are two difference sets with the same
! 0 (3-0) mod 7=3 parameter$V, K, A) and D, = tD, +s for any integerg and
1 2 (3-5)mod 7=5 s with ¢ prime toV (that is,t andV" have no common factors),
1 3 (3-6)mod 7=4 thenD, andD, are callecequivalentifference sets. Note that
2 0 (5-0)mod 7=5 in the examples (7)D; + D> = D;. For this reasonD; and
5 1 G mod 7=2 D, arecomplementanyif D is a(V, K, A) difference set, then
5 3 G mod7=6 its complementD* will be a difference set with parameters
T o GO medT=e (V,V—K,V—_2K+A). o
For any particular(V, K, A) satisfying (8) there may be
S (6-3)mod 7-3 no difference sets, one difference set (disregarding equivalent
312 (6-3)mod 7=1 sets), or several nonequivalent difference sets. Proofs of exis-

tence and nonexistence are of great concern to theoreticians.
For now, it is sufficient to note that the sets are abundant,
that tables of the sets exist, and that construction algorithms
Difference setsand their associatethlock designsare a [12]-[14] can be used to create them. In particular, construc-
branch of combinatorial theory [12]. This section contains tipn algorithms exist for sets with /V ~ £, 1, 1, whereK/V
brief introduction to the theory and properties of differencis defined herein as thidinning factor It is also possible to
sets. constructvery highly thinnedSingerdifference sets for which
By definition, a(V, K, A) difference sétis a set ofk unique K is approximately the square root bf.
integers

D={dodi, - .dg_1}, Witho <d;<(V —1) IV. DIFFERENCE SETS,
) : - = AUTOCORRELATIONS AND LINEAR ARRAYS

Ill. DIFFERENCE SETS

such that for any integet < o < (V —1) From a difference seD, we may construct a sequence or

d; —d, = a (modV), i# (6) “array” of ones and zeros

has exactlyA solution pairs(d;, d;) from the set{ D}, where Ay ={a;} i=01,---,V -1
“mod V" means the difference is to be taken mod#o

Examples of difference sets are where a; = 1if jis in D anda; = 0 if j is not
in D. For example, setD; above gives rise tody =
Dy ={1,2,4}; V=7K=3A=1 {1101 000001 000}. If we create arinfinite array of ones and
D2:{0737576}; V:77K:47A:2 Zeros
D3 =1{0,1,3,9}; V=13, K=4A=1
D, =1{1,4,5,6,7,9,11,16,17}; V =19,K =9, A =4 Ar={-+,a-2,a-1,a0,a1,0a2,- -}
Ds=10,1,2,3,---,(N-1))y V=NK=NA= 1277) by periodically repeatingly, we may define an autocorrela-
tion for A; given by
The last difference seDj; is considered “trivial” in the Vo1
theory of difference sets. As will be seen later, this set will Cr(r) = Z A Crp v (10)
correspond to a traditional “filled” phased array. fogr

only two of the parameters are independent. Since there ar { follows that if and only if A is formed from a difference

While three parameters are used to describe a difference se%
set [15], then

K (K —1) possible difference&d; — d;) with ¢ not equal toj

and since each of th@” — 1) possible unique differences is Cr(r) = K, if r(modV)=0 (11)
to appear exacthA times, it follows that )= A, otherwise.
KK-1)=AV-1). (8) In other words, the autocorrelation functiontigso-valued

Ultimately, it is this property that makes the difference set an
effective prescription for the design of thinned arrays.

As shown in the next section, by tying the one’s and
zero's to element locations in a lattice, a periodically repeat-
ing element placement sequence dictated by difference sets
2In the literature on difference sets, the parameter notation used is univg@cessamy has an array power pattern with all sidelobe peaks
sally (v, k, ). In this paper, the correpsonding notatior{¥§ K&, A) in order ined b identical fixed | | that is | h
to avoid confusion with planar array direction parametesind the familiar constr.alne to e_at an identical fixe eYe .t 'at IS less t gn
wavelength parameter. 1/K times the main lobe peak. When the infinite sequence is

As an example, consider the above Bgt= {0, 3, 5,6} for
whichV =7 K =4,A = 2. As shown in Table |, each of the
V' — 1 = 6 possible unique differences appears exagthe 2
times and sincel = 4, (8) is also satisfied.
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truncated to a single period, these same fixed levels remainThis normalized power pattern has a “main-lobe” impulse

tying down half the sample points of the power pattermith an area of 1 ati = 0, +1/xo, +2/x0, ---, and identical
The PSL of the resulting pattern is then determined by thfsidelobe” impulses with are@ located atu = +1/Vz,
remaining sample points. +2/Vxg, ---
A finite-length isophoric array will have element location
V. LINEAR ISOPHORIC ARRAYS function

From any sequence of one’s and zero’s we can construct a vl
corresponding linear phased array by starting with an empty Ap(z) = Z an6(x — nio). (17
lattice of element locations spacédvavelength apart, placing n=0

an element at each location where the sequence has a “1,” andr(z) is therefore a single “truncated” cycle of the infinite
skipping each location where the sequence has a “0.” Frdemgth array in (12). Letff;(«) and ff}.(«) be array power
such a construction we can form an array element locatipatterns for the infinite and finite arrays, respectively. Then a

function basic property of the Fourier transform permits us to write
oo . . 1 oo n
Ar@) = 3 andle =) 02 =R Y (=) @
for an infinite length array, wheré(z) is the usual Dirac ~ This expression shows thgf;(u) and ff7(v) are "tied
delta function, andz, is the interelement spacing. Typically,together” atu = 0, +1/(V'zo), £2/(Vzo), - - -. It is sometimes
zo = % wavelength. said thatff7.(«) forms an “envelope” for thef;(u) impulse

While an infinite length array is of no practical interestirain. Therefore, the power patterff7.(«) for an isophoric
a study of its properties will lead to the central result foRrray must necessarily pass through the fixed points prescribed
isophoric arrays. As with any array, the power pattern for thizy (14).
array will be the Fourier transform of the autocorrelation func- It follows that for an isophoric array
tion of the location function. From (11), the autocorrelation 1, forn =0,£V,+2V,. ..

function of isophoric arrayd;(x) is given by Jip(n/Vieo) = {P, for all othern. (19)
i Fig. 1 shows the normalized power pattern for a particular
Cr(x) = (K — A) Z §(x —nVwo) isophoric linear array of 32 elements on a 63-slot lattice with
Oo"=_°° uniform zg = %-wavelength spacing. The regularly spaced,

LA Z §(x — nzo). (13) dotted points located at = 2/63,4/63,6/63,--- are the

sample points referred to in (18). At each of these “even-
. o . ) numbered” sample pointgf*(u«) = 10 log;,(p) =~ —18.06
This sum representg an infinite train of impulsescat 0, dB, illustrating the effects predicted by (18) and (19).

20, £2x0, - - -. All the impulses have area except for those  Note that in Fig. 1, the peak at= 2 is simply a repetition

atx = 0, £Vxo, £2Vxo, --- which have are@K —A)+A = of the main beam. From (1), it is straightforward to show that

n=—o0

K. ) S . any array in which the elements are constrained to be located
We recall that the Fourier transform of an infinite train of; e fixed points of a uniform lattice will necessarily have a
unity-area impulses at = 0, +zo, £2zo, --- is itself an  yoer pattern that is periodic in with period uy = 1/
infinite train of impulses inu, each Wl_th _areal/a:o located o5 well as being symmetric about any integer multiple of
atw = 0, +1/xo, £2/xo, ---. From this it follows that the , _ 1/(2x0), wherez is the spacing between adjacent lattice
Fourier transform of autocorrelatiofi; () is points measured in wavelengths.
. 1 °° n For comparison, Fig. 2 shows a power pattern foardom
ffi(w) =K - A) Voo > 5<“ - V—xo) array® of 32 elements on the same aperture. Note that: 1) there
n=Tee is no regularity evident in the dotted points and 2) the PSL
LA 1 i 6<u _ Q) (14) for this particular array is approximately 6 dB higher than that
zo I ya for the isophoric array.

) o . More generally, as shown in the Appendix, the expected
Using (8) we can eliminate\ and create a normalizedpg| of the isophoric array will be lower than that of a

m I,
7 (u) by writing corresponding random array by
7 (w) fi (W) Z o w— " Isophoric PSL reduction (linear array)
4 K2 Va?o oo Va?o
. = ~ 3410 log(1 — K/V)~! dB.A (20)
+ (1 - p) — Z 0 <u - —> (15) 3In this paper, the termandom arrayrefers to an array in which an element
To "o o may appeaanywherewith an aperture with equal likelihood. Kttice array
is an array in which elements may only appear at uniformly spaced points
where in the aperture. A random lattice array is an array in which the elements are
1 K—1 located at randomly chosen lattice points.
( ) . .
p=—|1- (16) 4 In this paper, “log” means logarithm to base 10, and “In” means log to
K (V - 1) basee.
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Fig. 1. Isophoric linear-array power pattern. number of element32; aperture size= 62 half-wavelengths.
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Fig. 2. Random linear array power pattern. Number of element32, aperture= 62 half-wavelengths.

As shown in Section VI, the 3-dB portion of the PSL reduc- Ex TABLE Il
. L X . PERIMENTAL RESULTS OBTAINED FOR THE REDUCTION
tion comes from constraining the locations to those determined IN PEAK SIDELOBE LEVEL OFFERED BY |SOPHORICARRAYS
by difference sets. The remainder of the improvement comes WHEN COMPARED TO EQUIVALENT RANDOM ARRAYS
from simply constraining the elements locations to the points Thinning | Random | Isophoric | PSL Reduction
of a fixed lattice. Note that this latter improvement becomes vV | K K/V | PSL(dB) | PSL (dB) (dB)
vanishingly small with increased thinning; that is, &YV  Amay1 63| 32| ~172 7.8 0.8 7.0
approaches zero. However, the 3-dB improvement remam;gyz s11| 2561 ~1/2 91 22 6.9
even for highly thinned arrays. 3 s 2 am 20 31 20

The theory of the random array [2], [16]-[18] shows that sa | a0| 57| -1 57 5o 37

ff*(u) =10 10g(1/K) dB (21) Array 5 9507 98 ~.01 9.7 6.6 3.1

is the average power in the sidelobe region of a random array. . o _
Both figures show a reference line at this average level fdle experimentally observed reductions in isophoric-array PSL

these arrays, namely at15.05 dB. versus random-array PSL compare favorably with predicted
Reference [10] contains additional experimental compafalues from (20).

isons and between random and isophoric array PSL’s. Result©f course, PSL’s for the random array may be reduced

are summarized in Table Il. In Table Il, PSL values are ihy cut-and-try variations in element placement. However,

decibels abovel /K, the average (normalized) power levethe random array theory shows that the PSL has a standard

in the random array sidelobe region. As seen in the tabligviation of aboutl dB about its expected value. Therefore
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Fig. 3. Expected power pattern of isophoric array with= 63 and K = 32.

it would take a great many random array evaluations beforel) Note that as with any power pattern, egffi(«) is the

one could expect an array to have a PSL as low as a typical Fourier transform of the autocorrelation of the element

isophoric array. location function of the array built from a cyclic shit
of the underlying difference set.

2) By substituting the Fourier transform expression for each
ff¥(w) in (22) and interchanging the order of summation
and integration, the average Fourier transform ofthe

Isophoric array PSL’s in the preceding section could be power patterns becomes the Fourier transform of the

VI. EXPECTED POWER PATTERN
OF A LINEAR ISOPHORIC ARRAY

reduced still further by trying variousyclic shifts of the average of thd’” autocorrelations.
difference set that was used to generate the initial array. A3) As shown in the Appendix, fundamental properties of
cyclic shift of a difference se{D} simply adds an integer difference force the average autocorrelation to be

s to each member of D} and then reduces each result
modulo V. Clearly, there ard” unique such shifts possible Cr(rzo)

for s = 0,1,---V — 1. This is a relatively small number to k6(0) 7=0

apply in a “cut-and-try” attempt gt Iowering _PSL. = (V-7 k(k — 1) §(z — Tao), for0< |r| <V
More importantly, as shown in this section, the average v(v —1

power pattern of an isophoric array, taken overilicyclic 0 7|z V.

shifts of the underlying difference set, is exactly the same as (24)

! ! — ! i
the average power pattern of aﬂ./K./(V K)! possible 4) The (normalized) Fourier transform afg(rxg)) is
arrays that one could create by placidg elements on a Ffi(u), as given by (23)
lattice with V' slots. As shown in Section VII, this has some E\%) g y '
interesting implications for modern arrays which form multiple Note tlhat for a moderately large, (say, greater than 30),
simultaneous beams. K/V < 5 andu not close to zero (that is, the sidelobe region),

The expected (average) power pattern of a linear isophopﬂ? contribution to be maQ(_a by the second term in (23) is quite
array is defined as small. Under these conditions

rryom S (K1)
i ~r=g 1= g (25)
That is, the power pattern is approximately a constant!

whereff*(u) is the power pattern generated by an array who%g' 8 shows for the(V, K, A) = (63,32,16) family of

nderlving differen th nderaon lic shiftsof ophoric linear arrays. As seen, the sidelobe pattern is so
Enitg ying erence set nas undergone a cyclic s % smooth that it is almost meaningless to speak of a PSL.

As shown below In the special caséX = V, the array is filled and the
' expression reduces to the well-known power pattern of a filled
array. The filled array is in fact a special case of an isophoric
array, corresponding to the “trivial” difference sbBt (7).
As shown in the Appendix, (23) also represents the grand
The derivation of this result is straightforward but lengthyaverage power pattern of dli!/K!/(V — K)! possible place-
To conserve space, we simply outline the steps as follows.ments of K elements on & -slot lattice. One way of viewing

V-1
B () = i) = 5 S [l (22)
s=0

.2

_— sin” 7uV xg
*w)=p+(1—p) ———.
ffe(w) =p+(1-p) V2 sin nug
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the V cyclic shifts of an isophoric array is that they represent The result will be two independent arrays, each of whose
a small set of arrays whose average power pattern is the sgowver patterns is given by (23) and illustrated for the example
as the average pattern of the much larger set of all possibleatiove in Fig. 3. This pattern retains the original beamwidth
K elements on & -slot lattice. In the example used thus far(angular privacy) of the full aperture-filled array and has an
the 63 cyclic shifts of Array 1 have an average power patteitieal (nearly flat) sidelobe region. Each of the two arrays
identical to that of the 9.16& 10'” possible placements of 32would, however, suffer a 6-dB loss in absolute gain when
elements on a 63-slot lattice. compared to the original filled array.

Note also that while the average sidelobe power of aln some applications, it may be advantageous to trade abso-
random array id /K, the average power of a randdattice Ilute gain for reduced power consumption or increased speed of
array is(1/K)[1 — (K — 1)/(V — 1)] = (1/K)(1 — K/V). computation by temporarily operating a filled array as a single
Thus, simply constraining the element placements to lattibepped subarray. In other applications, where two subbeams
positions reduces sidelobe levels to some extent, althouglist be formed simultaneously, splitting a filled array into two
the improvement becomes vanishingly small with increaséutiependent subarrays may be computationally simpler and
thinning. As stated in Section V, further constraining th&aster than generating two beams with digital beamforming
element placements to be those dictated by a difference @@BF) computations. Finally, in applications where more than
produce another 3 dB of expected PSL reduction. This 3-d&#0 beams are needed, splitting the computation into two
reduction is independent of how much the array has bemmependent antennas may be computationally faster than that
thinned. for one array of twice the size. This is particularly true for

antennas with hundreds or thousands of elements.

VIl. COMPLEMENTARY |SOPHORIC VI
ARRAYS WITH “SPATIAL HOPPING

E XTENSIONS TO PLANAR ARRAYS

. . - . . Isophoric arrays, both static and spatially hopped, can be
While the sidelobe characteristics fff;(u) would make it 5041 a5 well as linear. The principals are the same. We

a desirable power pattern for many purposes, no single st ¥ek a deterministic placement &f elements in a rectangular

array placement can produce it. However, using simple digifglyice such that the element location function has a two-level

beam forming (DBF) techniques, it is possible to Operatzfutocorrelation function in two dimensions.

a filled array as two independent complementary iSOphoriCye element location function for a planar array is defined
arrays, each of which has the “ideaff;(u) pattern. The

b
technique, herein called “spatial hopping,” is as follows. y v
. . . . V,—1 Vy—
1) Begin with a filled array withV slots andK = V N
) ele?nents. y AT(-Tv y) = z_:o z_:o arn,n‘s(x — Mo,y — nyO) (26)

2) Choose a difference setDp with parameters _ _ _
(V,Kp,Ap). For example, the (63, 32, 16) differencévhere the array has dimension§V,, 6(z — g,y — h) is

set that generates the pattern in Fig. 1 is interpreted as a unit impulse at locatien, y) = (g,k), and
the coefficients form &/.-by-V,, matrix of ones and zeros
DP ={0,5,6,10,12,15,16,17,18, 20, 24, 25, 26, that designate the presence or absence of an array element at
99,32, 34,35, 37, 38, 39, 41, 42, 45, 46, (mo, nyo)- .
Analogous to (10), we form a two-dimensional autocorre-
48,50, 52,53, 54,55, 56, 57} lation for an infinitely repeated versiaf;(x,y) of Ar(z,y)

3) At time ¢ = 0, designate isophoric arraylp to be the Vo1 Vi1
elements whose positions are listed/in. _ T %
4) From Dp, generate the complementary difference set Crip,q) = Z Z @monmtpntq- 27)

D¢, whose element positions are all of those that not in ) o

Dp. SetDg will have (V, Ko, Ag) = (V,V—Kp,V — We let the number of ones in the,, ,, coefficients equal

2Kp + Ap). Continuing the example above K and assume that we can discover a placement of ones and
zeros such that

m=0 n=0

DQ =1{1,2,3,4,7,8,9,11,13, 14, 19,21,22,23, K, if V, dividesp andV, dividesq
Crp,@) = A otherwise (28)
27,28, 30, 31, 33, 36,40, 43,44, 47, 49, , -
51, 58,59, 60, 61, 62}. That is,A;(z,y) has a two-level autocorrelation function. If

this can be done, then we know that all g/, sample points
5) At time ¢t = 0, designate isophoric arrayl¢ to be the in the sidelobe region off (u,v) (5) will necessarily have
elements whose positions are listedit,. magnitudeX . We also know that the even-numbered samples
6) At each sample time thereafter, spatially “hop” the arrdyom the sidelobe region off*(u, v) will have magnitudei 2.
element assignments by adding integéw each member The odd-numbered samples will be the ones that determine
of the underlying difference sets, reducing the resulie PSL.
modulo V. Integers can be one or any other integer Results from Monte Carlo simulations [10] show that com-
that shares no common factors with pared to a random (nonlattice) placement of elements on the
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TABLE I
ExampPLE OF How A 9x 7 PLANAR ARRAY CAN BE
CONSTRUCTED FROM A(63,32,16) DFFERENCE SET

al} a5
(etc) a, as
Qg et 4 )
Z
ay a, a, :‘
=
=
4y a Qg
a, ag a, W —_
2.0
a, a, a, Fig. 4. Expected power pattern of isophoric planar array with
V = V;Vy = 15 x 17 half-waves and/X = 128 elements. This

exact pattern is realizable with “spatial hopping.” Note pattern floor at
10 logp = —24 dB.

same aperture, a static (not spatially hopped) isophoric array
will have an expected improvement in PSL of With the approach above, we can create a static isophoric
Planar Array Isophoric PSL Reduction array with expected power pattern

~ 1.5+ 10 log,,(1 — K/V)' dB (29)

_ sin? ruV,xo

whereV = V,V,. This improvement is 1.5 dB smaller than it e, v) =p+(1—p)

was for linear arrays. (See Appendix for further discussion.)
As with linear arrays, if we can find a placement algorithm . )

with the property described by (28), then we can spatially V2 sin? Ty

hop the array element assignments as we did for linear arrays,

thereby guaranteeing a fixed low-sidelobe power pattern foras with linear arrays, once we move into the sidelobe region

f1*(u,v) as we did for ff*(u). One algorithm that works (that is,» andw not too close to 02, +4, - - ), the expected

V2 gin? rucn
V2 sin” muxg

.2
sin” mv Vo

(32)

[19] is as follows. normalized pattern is approximately the constanvherep is
Assume we have a linear sequencé/obnes and zeros given by (15). Fig. 4 shows for WE(% )-slot lattice, with
Ay = {a;}, i=01,---,V -1 128 elements.

Note that for the special casé = K, p becomes zero
dictated by a difference set as in (6). Then the assignmentand ff;(u, v) becomes the power pattern of the familiar filled
rectangular-lattice array. Note also that the beamwidth implied
by (32) is independent of the thinning factgr = K/V.
n=i(modV,), ¢=0,1,---,V =1 (30) Eyen a very highly thinned isophoric array will have the same
beamwidth as a filled array.

Again, as with linear arrays, if we begin with a filled lattice
Av,v, ={amn} and operate it as two independent interwoven isophoric arrays
m=0,1,2,---,V, — 1 n=0,1,2,---,V, -1 with spatially hopped element assignments, we can actually
31) achieve two independent patterns obeyififf.(«,v) on a
time-averaged basis.
that has the desired two-level autocorrelation function. In modern multibeam arrays with digital beam forming,
For example, the (63, 32, 16) difference set would be placedmputational complexity tends to grow as tkguare of
ina 9x 7 array as shown in Table Ill. As showds, is placed the number of elements. Some of the arrays contemplated
in the “southwest” corner of the array and each succeedifay space applications have thousands of elements, creating a
coefficient is placed in the slot to the “northeast,” continuinguge computation-speed challenge. For such cases, the results
from the other side whenever an edge is reached until thk this section show that the computation burden can be
entireV =V, V, = (9)(7) = 63 coefficients have been placedreduced by operating the array as two independent isophoric
The table shows the placement of the first 18 coefficients. Apatially hopped arrays. Each of the arrays will have the
antenna element will be placed in each location whegre- 1 narrow beamwidth (angular privacy) of the original filled array
and not placed where; = 0. Additional discussion may be and each will have the well-behaved sidelobe pattern implied
found in [19]. by (32) and shown (by example) in Fig. 4.

Qmn =a; Wherem =¢(modV,) and

will create a rectangular array of ones and zeros
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IX. CONCLUSIONS AND OPEN ISSUES terms is approximatel@p'/2 /z. The sidelobe regiorof f(u)

This paper has described a class of massively thinned lindaf€fined herein as that region«wfor which 2/?1/2/” exceeds
and planar phased arrays callebphoric arrays Isophoric the magnitude of the first term in brackets in (35). By simple

arrays have element locations that are constrained by dfebra, this implies

algorithm based odifference setsa topic from combinatorial ) ) 1 1 1

mathematics. These constraints produce arrays with PSL’s Sidelobe regioms Waopl? < “<$_OW'
demonstrably better than those obtainable with simple cut-

and-try placement techniques, as well as many previou5|yThiS is, effectively, the region where the influence of the
published algorithmic techniques. main beam sample becomes subordinate to the influence of

Isophoric designs may be useful even in traditional fille®cal samples off(u) (see [2]). For the arrays in Figs. 1 and
arrays when more than one beam must be formed. In particufr,this interval is approximately.12 < » < 1.83. In the
a technique calledspatial hoppingis introduced that can Sidelobe region, (35) becomes
produce two independent beam patterns from a single filled Vo1 S
array. While each of these beams will have 6 dB less gain than Fltmac2) %Kpl/Q Z (1) e Pn
the original filled array, each will retain the narrow beamwidth =V sin[w(m —n + %)/V]
of the original array and efach will ha\{e a power pattern with (sidelobe regioh (36)

a virtually perfect (“flat”) sidelobe region.

A detailed comparison of isophoric arrays with those de- The phasesp, are as yet unspecified. They will vary
rived from the most recent genetic algorithms and dynamiepending on the particular difference set chosen as well
programming is left as a future research issue. It may be the particular selected cyclic shift of the difference set.
profitable tocombinethe two approaches in some way suchvhile they are deterministic, for purposes of peak sidelobe
as by using isophoric arrays as the initial array in the seargbtimation they may be modeled as independent, identically
algorithms. distributed random variables, uniformly distributed over the

interval (—=, ). It follows that the even-numbered sample
APPENDIX points in ff*(x) may be modeled as the magnitude of the
fixed sample point$K p'/?) times the magnitude of a random

Derivation of (20): From examination of Fig. 1, it is evi- " bl d by th ion in (36
dent that the peak sidelobe (PSL) behavior of the isophoM@”a € represente vt € summgtlon n (. ). .
array is determined by the behavior of the odd-numbered'Note again that the most influential terms in the summation

sample points of the power patterff*(u) as it is defined ¢ wheren = m andn = m + 1. Note also that the
in (4b). argument of the sine function is quite small in the region of

greatest importance. Sineén(xz) is approximately equal to

for small z, the function may be replaced by its argument.
ally, under the assumptions g, the factor(—1)™" will

ve no influence on the distribution of the random variable

represented by the summation. It may therefore be dropped.

By definingu,, = m/Vzo andu.,, + 5 = (m+ 3)/Vq,
m=0,1,---,V — 1, and by using the sampling expansion of .
(4a), the array factor representation for these PSL-determiniﬁ
points may be written as

V-1 - 1 ni 1
sinfr(m —n + 3)] Combining these assumptions produces
f(urn—l—(l/Q)) = Z f(u’"l) V s %
= sinfr(m —n + 3)/V] v—1 b
0.V | (U yz)) ~Kp' > e
form=0,1,---,V — 1. (33) + 2 7r(m—n+%)
From (5) and (19), for an isophoric arraj(ug) = K, and (sidelobe regioh (37)

1/2,ibm _ . o
Flum) = Kpt%e®m form=1,2,--- .V —1 (34) where the symbok is to be read “is distributed as.” As a

dinal approximation, under the assumption thatis greater
than 50 andm can only assume values from the sidelobe
region, the dependence &handm becomes very weak. For
convenience, the summation above is assumed equivalent to
the complex random variable

That is, if and only if the array is isophoric, all of thes
points have identical fixed magnitudép'/? and some phase
angle ¢,,,. Applying (34) and a simple trigonometric identity
allows

(-1
{V sinfr(m + £)/V] 7= - ) 38
(_1)nl—n,p1/26jq5m n;m 71'(71 - 5) ( )

V-1
+ > — i .
= Vosinfn(m —n+3)/V] Finally, using this definition forZ and dividing ff*(0) by
(35) K2 to force ff*(0) = 1

fpyyoy) =K

For the cases of interest/ is moderately large (greater m’“ plZJ2. (39)
than 50) andK is approximatelyV/2 or less. Note that in
(35), the terms with the largest magnitude will be those for In words, (39) states that the squared magnitude of the even-
which n = m andn = m + 1. The magnitude of those twonumbered sample points ¢f*(«) in (4b) is distributed as the
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fixed squared magnitudeof the odd-numbered sample pointwill make d; = 0. Then for each such pair, the cyclic shifts
times a random multiplier $ = Soy80+ 1,8, +2,---,5,+(V —7 —1) will cause the
positiveinterelement spacing to appear a total ofV — 1)

— 2
Y =|Z| times. Since there ar& such pairs

where Z is given by (38).
It is straightforward to show that” has an expected value Cs(r)=(V —mA foro<r<V.

of one and a variance of 2/3. But since there are approximately

V' opportunities for the power pattern to attain a large PSL, Using (18) to eliminatex

the real interest in the expected value of the random variable

Yy, where K(K-1)

Cs(r)=(V - T)W’

foro<r<V. (44)
Yy ~ largest ofV samples oft.

Unfortunately, the cumulative distribution function & Since this derivation is identical for the symmetric case of

does not appear to exist in closed form. Accordingly, simuifegativeinterelement spacings v <7< 0, we also have
tions were used [10] to generate the approximation Cs(=7) = CUs(7). Furthermore, since there afé elements
in each of theV” cyclic shifts of D, Cs(0) = K'V. Combining

Yy = E[Yy] =~ 0.8488 + 1.128 log(V). these two observations with (43) and (44) yields (24).
) ) ] As indicated in Section VI, (24) and consequently (23) also
The expected PSL for an isophoric array is therefore apply to the set of all’!/K!/(V — K)! possible placements

PSL (Isophoric) of K elements on & -slot lattice. To show this, we let
1 K
~ 10 log {E <1 - V)} Cs(t) =N(V,K)Cg(r) where
1% V!
+ 10 log[0.8488 + 1.1281log V] dB 40 = R S —
og| ogV] (40) N(V,K) <K> KV~ &) (45)

relative to the peak of the main beam. The conditions for this

approximation to be valid are that > 50 and K < V/2.5 replacesV in (43). To begin, we consider that to obtain a
The theory of the random array [2] shows that the PStpacing ofr = (V' — 1), there must be an element at zero

for a random array is (41), shown at the bottom of thand an element g8 — 1). The remaining K — 2) elements

page. Numerical and graphical evaluation [10] of these twoay be located anywhere within the remainifig — 2) slots.

approximations yields Hence, there are

PSL (Random}- PSL (Isophoric) V-2
) 1 Cs(V -1 =
~ 3 +log(l— K/V)~" dB. (42) K-2

This is the result shown in (20). The improvement predict

; . ) ique element placements to yield a spacing ef (V' —1).
by this result is borne out in actual test cases, as showe&jnq b y b g of ( )

néﬂ’nilarly, to obtain a spacing of = (V — 2), there must

Table II. be an element at zero anjél — 2) or an element at one and
o (V —1). Thus

Derivation of (24)

To derive (24), we first note that i€x(7) is the average OV —2) — 2 V-2
autocorrelation across th€ cyclic shifts of the underlying s(V-2) = K —2.
difference set, then

Cs(r) = VCi(r) (43) It follows that forl < 7 < V

indicates the total number of interelement spacingshich Cs(r)=(V —1) <V - 2)
appear (collectively) in alb” cyclic shifts of the underlying K2
difference setD. We know that(d; — d;) mod V = 7 has (V-1 (v -2) (46)
exactly A solution pairs in the difference set for< = < V. (K —2)(V — K)I

For each such pair there is a cyclic shift= (V —d;) which
5 _ _ _ _ _ _ Noting the same symmetry as above for negative spacings
The log function argument in the first term is the variapl€5-5). Given

the conditions orf{ andV/, the approximation has used the simpléfV’ to and the fact thapE(O) = K, we can diVideOS(T) by
approximate K — 1)/(V — 1). N(V,K) and obtain (24).

PSL (Random) 10 log {%} + 10 log {1 —In(1—5YY) - ﬁ dB. (41)
n — 9
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Derivation of (29) [2]

Equation (29) for planar arrays may be derived in a manngg
parallel to that which led to the linear array (20), but starting
with the two-dimensional sampling expression given in (5){4]
This (lengthy) process produces the following analog to (37):

(5]
|f(u’p+l/27 Uq+1/2)|
V,—1 V,—1

LD

m=1 n=1

(6]

i

p—m+ Da—n+

1

2

il

@7 1M

As described in Section VIII, the PSL of the pattern will be (8]
determined by the odd-numbered samples of the array powgr
pattern. The behavior of these samples can be estimated in hrT

. X 0
same manner as for the linear array case, but the derlvatlo
is much more lengthy. The planar array equivalent to (471
above, turns out to be

[12]
00 00 . [13]
eI P
°" "’;OO n;oo 2 (m—3)(n—3) (48) 14
[15]

Analogous computations show tha{|Z|?] = 1 as in the
linear case. However, VAZ?|] = 8/9, which is larger than [16]
the value of 2/3 obtained for the linear case. This necessarjy,
implies an increased likelihood of a large PSL. Indeed, Monte
Carlo simulations produce the results in (8-4) showing that t
3-dB improvement offered by linear Isophoric arrays reduces
to 1.5 dB for planar arrays.

[19]
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