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Isophoric Arrays—Massively Thinned
Phased Arrays with Well-Controlled Sidelobes

David G. Leeper,Senior Member, IEEE

Abstract—Traditional filled phased arrays have an element
placed in every location of a uniform lattice with half-wavelength
spacing between the lattice points.Massively thinnedarrays have
fewer than half the elements of their filled counterparts. Such
drastic thinning is normally accompanied by loss of sidelobe
control. This paper describes a class of massively thinned linear
and planar arrays that show well-behaved sidelobes in spite of
the thinning. The term isophoric is derived from Greek roots to
denote uniform weight. In isophoric arrays, element placement
based ondifference sets forces uniformly weighted spatial cov-
erage. This constraint forces the array power pattern to pass
through V uniformly spaced, equal, and constant values that are
less than 1/K times the main beam peak, whereV is the aperture
size in half-wavelengths andK is the number of elements in
the array. The net result is reduced peak sidelobes, especially
when compared to cut-and-try random-placement approaches.
An isophoric array will exhibit this sidelobe control even when the
array has been thinned to the extent thatK is approximately the
square root of V . Where more than one beam must be generated
at a time, isophoric array designs may be used to advantage even
within a traditional filled array. By “interweaving” two isophoric
subarrays within a filled array and by appropriate cyclic shifting
of the element assignments over time, two independent antenna
power patterns can be generated, each with a sidelobe region that
is approximately a constant value of 1/(2K) relative to the main
beam, whereK is the number of elements in the subarray.

Index Terms—Array antennas, sidelobe control, sparse array
antennas, sub-Nyquist sampling.

I. INTRODUCTION AND SUMMARY

T RADITIONAL filled phased arrays have an element
placed in every location of a uniform lattice with half-

wavelength spacing between the lattice points.Massively
thinnedarrays have fewer than half the elements of their filled
counterparts. Such drastic thinning is normally accompanied
by loss of sidelobe control. This paper describes a class of
massively thinned linear and planar arrays that show well-
behaved sidelobes in spite of massive thinning. Isophoric
arrays derive their sidelobe control from a deterministic
placement of elements that achieves a uniform weighting
of spatial coverage. The termisophoric is based on the Greek
roots that denoteuniform weight.

For a givenaperture size, massive thinning offers reductions
in element count, cost, weight, power consumption, and heat
dissipation, albeit with an attendant reduction in antenna gain.

Manuscript received April 21, 1998; revised July 7, 1999. Parts of this work
were supported by AT&T Bell Laboratories Doctoral Support Program.

The author is with the Motorola Personal Networking Group, Scottsdale,
AZ 85257 USA.

Publisher Item Identifier S 0018-926X(99)09985-8.

In digital-beam-forming arrays, the reduced element count
offers reduced computational complexity.

For a given element count, thinning offers narrowed
beamwidth by making larger apertures possible.

Historically, massive thinning has been accompanied by
dramatic loss of sidelobe control. The 1960’s and 1970’s
saw the development of a number of thinning algorithms
that attempted to retain some control over sidelobes through
deterministic placement of the elements. Success was so
elusive that some researchers conjecturedcut-and-try random
placementto be as effective as any deterministic placement
algorithm could ever be [1]–[3]. In the 1980’s and 1990’s,
dynamic programmingand genetic search algorithmshave
fared better [4]–[8] although some of the methods are not
appropriate for very large or very highly thinned arrays and
the improvements that some of the methods offer are difficult
to predict a priori.

Rather than using a search algorithm, the approach in this
paper attacks the sidelobe control problem directly by applying
the properties ofdifference sets, a topic from combinatorial
mathematics, to the placement of antenna elements within
a regular lattice. These deterministic placements create an
isophoric array with attendant uniformity of spatial cover-
age. The uniformity consistently produces, with no searching
required, a reduction in peak sidelobe level (PSL) when
compared to random element placement.

More specifically, in any linear array of aperture half-
wavelengths, the Nyquist sampling theorem shows that the
array power pattern can be completely specified from
uniformly spaced samples of the pattern. In an isophoric array,
the even-numbered samples will necessarily be “locked” to a
constant value less than times the main-beam peak, where

is the number of elements in the thinned array. While the
odd-numbered samples are not so constrained, the net effect
is to produce patterns with much lower PSL’s than are typical
with cut-and-try random placement.

Isophoric designs apply to linear or planar arrays, whether
large or small. While this paper focuses on arrays with 50%
thinning, isophoric arrays include arrays thinned to the extent
that the number of elements is approximately the square root
of the number of elements in their filled counterparts.

Some proposed modern arrays use tens, hundreds, or even
thousands of elements combined with digital beam forming
(DBF) to produce multiple simultaneous beams. For these
arrays, this paper shows how a filled DBF-based array can
be operated as two “interwoven” isophoric arrays, thereby
reducing the computational complexity in each. In addition,
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by simple cyclic shifting of the element assignments over
time, it is possible to produce power patterns for which the
entire sidelobe region is approximately a constant value of
relative to the main beam, where is the number of elements
in the original filled array. In other words, the “peaks” in the
sidelobe region virtually vanish.

Sections II–IV of this paper introduce notation and cover
basic concepts of difference sets and their application to
phased-array design. Sections V and VI contain the main
results for linear arrays. Section VII introduces the concept of
spatial hopping. Section VIII extends the linear array results
to planar arrays.

II. NOTATION

This section introduces some definitions and notation
needed in later sections.

The array factor for a linear array of identical isotropic
radiators is defined as

(1)

where if an element exists at distance wave-
lengths from the origin and , otherwise is
the commonly used direction parameter [9] withmeasured
off of a normal to the array, and the lattice haspossible
element locations numbered 0 to , uniformly spaced at
intervals of wavelengths.

The corresponding array factor for a planar array on a
uniform lattice with wavelength spacing is

(2)

where if an element exists at location
wavelengths relative to the origin and , otherwise,

and are the com-
monly used direction parameters [9] and the array lattice has

possible element locations numbered (0, 0) to
. The angle is measured off of a normal

to the array plane and is measured off of the -axis of the
array plane.

To simplify both expressions, steering angles have, without
loss of generality, been set to zero. As usual, applying an
appropriate linear phase variation across the elements will
allow the main beam to be steered.

Array power patterns for linear and planar arrays are rep-
resented as

(3)

Since the array factor and power pattern areperiodic as
well as bandlimited, a finite number of samples, taken from a
single period, are sufficient to regenerate the entire factor or
pattern over all . The derivations of the sampling theorem
for and are straightforward but lengthy and are

covered elsewhere [10], [11]. For later reference in this paper,
the results for linear and planar arrays are listed below1

(4a)

(4b)

Note that while it takes samples to specify the power
pattern , it takes only samples to specify the array
factor . The reason is that the samples of are
complex, while those of are real. Having both a real
and imaginary part, each sample of contains twice the
information of sample. Thus, both and are
completely specified by numbers. The sampling theorem
shows that at least numbers are required to specify either

or . Conversely, both have, at most, degrees
of freedom in that one can arbitrarily specify only sample
points in the power pattern. In particular, control over the
power pattern is equivalent to and limited to control of the

sample points.
The corresponding forms for planar arrays are

(5a)

(5b)

1The form for f(u) is valid for V an odd integer. WhenV is even, the
sine function in the denominator must be replaced by a tangent function.
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TABLE I
ILLUSTRATION OF THE DIFFERENCESET PROPERTY FORDIFFERENCESET D2

III. D IFFERENCE SETS

Difference setsand their associatedblock designsare a
branch of combinatorial theory [12]. This section contains a
brief introduction to the theory and properties of difference
sets.

By definition, a difference set2 is a set of unique
integers

with

such that for any integer

mod (6)

has exactly solution pairs from the set , where
“mod ” means the difference is to be taken modulo.

Examples of difference sets are

(7)

The last difference set is considered “trivial” in the
theory of difference sets. As will be seen later, this set will
correspond to a traditional “filled” phased array.

While three parameters are used to describe a difference set,
only two of the parameters are independent. Since there are

possible differences with not equal to
and since each of the possible unique differences is
to appear exactly times, it follows that

(8)

As an example, consider the above set for
which . As shown in Table I, each of the

possible unique differences appears exactly
times and since , (8) is also satisfied.

2In the literature on difference sets, the parameter notation used is univer-
sally (v; k; �). In this paper, the correpsonding notation is(V;K;�) in order
to avoid confusion with planar array direction parameterv and the familiar
wavelength parameter�.

Given a difference set , the set

(9)

where each element is taken modulo, will also be a
difference set. In this case, is called acyclic

shift of . If and are two difference sets with the same
parameters and for any integers and

with prime to (that is, and have no common factors),
then and are calledequivalentdifference sets. Note that
in the examples (7), . For this reason, and

arecomplementary. If is a difference set, then
its complement will be a difference set with parameters

.
For any particular satisfying (8) there may be

no difference sets, one difference set (disregarding equivalent
sets), or several nonequivalent difference sets. Proofs of exis-
tence and nonexistence are of great concern to theoreticians.
For now, it is sufficient to note that the sets are abundant,
that tables of the sets exist, and that construction algorithms
[12]–[14] can be used to create them. In particular, construc-
tion algorithms exist for sets with , where
is defined herein as thethinning factor. It is also possible to
constructvery highly thinnedSingerdifference sets for which

is approximately the square root of.

IV. DIFFERENCE SETS,
AUTOCORRELATIONS, AND LINEAR ARRAYS

From a difference set , we may construct a sequence or
“array” of ones and zeros

where if is in and if is not
in . For example, set above gives rise to

. If we create aninfinite array of ones and
zeros

by periodically repeating , we may define an autocorrela-
tion for given by

(10)

It follows that if and only if is formed from a difference
set [15], then

if mod
otherwise.

(11)

In other words, the autocorrelation function istwo-valued.
Ultimately, it is this property that makes the difference set an
effective prescription for the design of thinned arrays.

As shown in the next section, by tying the one’s and
zero’s to element locations in a lattice, a periodically repeat-
ing element placement sequence dictated by difference sets
necessarily has an array power pattern with all sidelobe peaks
constrained to be at an identical fixed level that is less than

times the main lobe peak. When the infinite sequence is
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truncated to a single period, these same fixed levels remain,
tying down half the sample points of the power pattern.
The PSL of the resulting pattern is then determined by the
remaining sample points.

V. LINEAR ISOPHORICARRAYS

From any sequence of one’s and zero’s we can construct a
corresponding linear phased array by starting with an empty
lattice of element locations spaced-wavelength apart, placing
an element at each location where the sequence has a “1,” and
skipping each location where the sequence has a “0.” From
such a construction we can form an array element location
function

(12)

for an infinite length array, where is the usual Dirac
delta function, and is the interelement spacing. Typically,

wavelength.
While an infinite length array is of no practical interest,

a study of its properties will lead to the central result for
isophoric arrays. As with any array, the power pattern for this
array will be the Fourier transform of the autocorrelation func-
tion of the location function. From (11), the autocorrelation
function of isophoric array is given by

(13)

This sum represents an infinite train of impulses at ,
, , . All the impulses have area except for those

at , , , which have area
.
We recall that the Fourier transform of an infinite train of

unity-area impulses at , , , is itself an
infinite train of impulses in , each with area located
at , , , . From this it follows that the
Fourier transform of autocorrelation is

(14)

Using (8) we can eliminate and create a normalized
by writing

(15)

where

(16)

This normalized power pattern has a “main-lobe” impulse
with an area of 1 at , , , , and identical
“sidelobe” impulses with area located at ,

, .
A finite-length isophoric array will have element location

function

(17)

is therefore a single “truncated” cycle of the infinite
length array in (12). Let and be array power
patterns for the infinite and finite arrays, respectively. Then a
basic property of the Fourier transform permits us to write

(18)

This expression shows that and are “tied
together” at , , , . It is sometimes
said that forms an “envelope” for the impulse
train. Therefore, the power pattern for an isophoric
array must necessarily pass through the fixed points prescribed
by (14).

It follows that for an isophoric array

for
for all other

(19)

Fig. 1 shows the normalized power pattern for a particular
isophoric linear array of 32 elements on a 63-slot lattice with
uniform -wavelength spacing. The regularly spaced,
dotted points located at are the
sample points referred to in (18). At each of these “even-
numbered” sample points
dB, illustrating the effects predicted by (18) and (19).

Note that in Fig. 1, the peak at is simply a repetition
of the main beam. From (1), it is straightforward to show that
any array in which the elements are constrained to be located
at the fixed points of a uniform lattice will necessarily have a
power pattern that is periodic in with period
as well as being symmetric about any integer multiple of

, where is the spacing between adjacent lattice
points measured in wavelengths.

For comparison, Fig. 2 shows a power pattern for arandom
array3 of 32 elements on the same aperture. Note that: 1) there
is no regularity evident in the dotted points and 2) the PSL
for this particular array is approximately 6 dB higher than that
for the isophoric array.

More generally, as shown in the Appendix, the expected
PSL of the isophoric array will be lower than that of a
corresponding random array by

Isophoric PSL reduction (linear array)

dB 4 (20)
3In this paper, the termrandom arrayrefers to an array in which an element

may appearanywherewith an aperture with equal likelihood. Alattice array
is an array in which elements may only appear at uniformly spaced points
in the aperture. A random lattice array is an array in which the elements are
located at randomly chosen lattice points.

4 In this paper, “log” means logarithm to base 10, and “ln” means log to
base
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Fig. 1. Isophoric linear-array power pattern. number of elements= 32; aperture size= 62 half-wavelengths.

Fig. 2. Random linear array power pattern. Number of elements= 32, aperture= 62 half-wavelengths.

As shown in Section VI, the 3-dB portion of the PSL reduc-
tion comes from constraining the locations to those determined
by difference sets. The remainder of the improvement comes
from simply constraining the elements locations to the points
of a fixed lattice. Note that this latter improvement becomes
vanishingly small with increased thinning; that is, as
approaches zero. However, the 3-dB improvement remains
even for highly thinned arrays.

The theory of the random array [2], [16]–[18] shows that

dB (21)

is the average power in the sidelobe region of a random array.
Both figures show a reference line at this average level for
these arrays, namely at15.05 dB.

Reference [10] contains additional experimental compar-
isons and between random and isophoric array PSL’s. Results
are summarized in Table II. In Table II, PSL values are in
decibels above , the average (normalized) power level
in the random array sidelobe region. As seen in the table,

TABLE II
EXPERIMENTAL RESULTS OBTAINED FOR THE REDUCTION

IN PEAK SIDELOBE LEVEL OFFERED BY ISOPHORICARRAYS

WHEN COMPARED TO EQUIVALENT RANDOM ARRAYS

the experimentally observed reductions in isophoric-array PSL
versus random-array PSL compare favorably with predicted
values from (20).

Of course, PSL’s for the random array may be reduced
by cut-and-try variations in element placement. However,
the random array theory shows that the PSL has a standard
deviation of about dB about its expected value. Therefore
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Fig. 3. Expected power pattern of isophoric array withV = 63 and K = 32.

it would take a great many random array evaluations before
one could expect an array to have a PSL as low as a typical
isophoric array.

VI. EXPECTED POWER PATTERN

OF A LINEAR ISOPHORICARRAY

Isophoric array PSL’s in the preceding section could be
reduced still further by trying variouscyclic shifts of the
difference set that was used to generate the initial array. A
cyclic shift of a difference set simply adds an integer

to each member of and then reduces each result
modulo . Clearly, there are unique such shifts possible
for . This is a relatively small number to
apply in a “cut-and-try” attempt at lowering PSL.

More importantly, as shown in this section, the average
power pattern of an isophoric array, taken over allcyclic
shifts of the underlying difference set, is exactly the same as
the average power pattern of all possible
arrays that one could create by placing elements on a
lattice with slots. As shown in Section VII, this has some
interesting implications for modern arrays which form multiple
simultaneous beams.

The expected (average) power pattern of a linear isophoric
array is defined as

(22)

where is the power pattern generated by an array whose
underlying difference set has undergone a cyclic shift of
units.

As shown below,

(23)

The derivation of this result is straightforward but lengthy.
To conserve space, we simply outline the steps as follows.

1) Note that as with any power pattern, each is the
Fourier transform of the autocorrelation of the element
location function of the array built from a cyclic shift
of the underlying difference set.

2) By substituting the Fourier transform expression for each
in (22) and interchanging the order of summation

and integration, the average Fourier transform of the
power patterns becomes the Fourier transform of the
average of the autocorrelations.

3) As shown in the Appendix, fundamental properties of
difference force the average autocorrelation to be

for

(24)

4) The (normalized) Fourier transform of is
, as given by (23).

Note that for a moderately large, (say, greater than 30),
and not close to zero (that is, the sidelobe region),

the contribution to be made by the second term in (23) is quite
small. Under these conditions

(25)

That is, the power pattern is approximately a constant!
Fig. 3 shows for the family of
isophoric linear arrays. As seen, the sidelobe pattern is so
smooth that it is almost meaningless to speak of a PSL.

In the special case , the array is filled and the
expression reduces to the well-known power pattern of a filled
array. The filled array is in fact a special case of an isophoric
array, corresponding to the “trivial” difference set (7).

As shown in the Appendix, (23) also represents the grand
average power pattern of all possible place-
ments of elements on a -slot lattice. One way of viewing
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the cyclic shifts of an isophoric array is that they represent
a small set of arrays whose average power pattern is the same
as the average pattern of the much larger set of all possible of

elements on a -slot lattice. In the example used thus far,
the 63 cyclic shifts of Array 1 have an average power pattern
identical to that of the 9.16 10 possible placements of 32
elements on a 63-slot lattice.

Note also that while the average sidelobe power of a
random array is , the average power of a randomlattice
array is .
Thus, simply constraining the element placements to lattice
positions reduces sidelobe levels to some extent, although
the improvement becomes vanishingly small with increased
thinning. As stated in Section V, further constraining the
element placements to be those dictated by a difference set
produce another 3 dB of expected PSL reduction. This 3-dB
reduction is independent of how much the array has been
thinned.

VII. COMPLEMENTARY ISOPHORIC

ARRAYS WITH “SPATIAL HOPPING”

While the sidelobe characteristics of would make it
a desirable power pattern for many purposes, no single static
array placement can produce it. However, using simple digital
beam forming (DBF) techniques, it is possible to operate
a filled array as two independent complementary isophoric
arrays, each of which has the “ideal” pattern. The
technique, herein called “spatial hopping,” is as follows.

1) Begin with a filled array with slots and
elements.

2) Choose a difference set with parameters
. For example, the (63, 32, 16) difference

set that generates the pattern in Fig. 1 is

3) At time designate isophoric array to be the
elements whose positions are listed in .

4) From , generate the complementary difference set
whose element positions are all of those that not in

. Set will have
. Continuing the example above

5) At time , designate isophoric array to be the
elements whose positions are listed in .

6) At each sample time thereafter, spatially “hop” the array
element assignments by adding integerto each member
of the underlying difference sets, reducing the result
modulo . Integer can be one or any other integer
that shares no common factors with.

The result will be two independent arrays, each of whose
power patterns is given by (23) and illustrated for the example
above in Fig. 3. This pattern retains the original beamwidth
(angular privacy) of the full aperture-filled array and has an
ideal (nearly flat) sidelobe region. Each of the two arrays
would, however, suffer a 6-dB loss in absolute gain when
compared to the original filled array.

In some applications, it may be advantageous to trade abso-
lute gain for reduced power consumption or increased speed of
computation by temporarily operating a filled array as a single
hopped subarray. In other applications, where two subbeams
must be formed simultaneously, splitting a filled array into two
independent subarrays may be computationally simpler and
faster than generating two beams with digital beamforming
(DBF) computations. Finally, in applications where more than
two beams are needed, splitting the computation into two
independent antennas may be computationally faster than that
for one array of twice the size. This is particularly true for
antennas with hundreds or thousands of elements.

VIII. E XTENSIONS TO PLANAR ARRAYS

Isophoric arrays, both static and spatially hopped, can be
planar as well as linear. The principals are the same. We
seek a deterministic placement of elements in a rectangular
lattice such that the element location function has a two-level
autocorrelation function in two dimensions.

The element location function for a planar array is defined
by

(26)

where the array has dimensions , is
interpreted as a unit impulse at location , and
the coefficients form a -by- matrix of ones and zeros
that designate the presence or absence of an array element at

.
Analogous to (10), we form a two-dimensional autocorre-

lation for an infinitely repeated version of
as

(27)

We let the number of ones in the coefficients equal
and assume that we can discover a placement of ones and

zeros such that

if divides and divides
otherwise.

(28)

That is, has a two-level autocorrelation function. If
this can be done, then we know that all the sample points
in the sidelobe region of (5) will necessarily have
magnitude . We also know that the even-numbered samples
from the sidelobe region of will have magnitude .
The odd-numbered samples will be the ones that determine
the PSL.

Results from Monte Carlo simulations [10] show that com-
pared to a random (nonlattice) placement of elements on the
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TABLE III
EXAMPLE OF HOW A 9� 7 PLANAR ARRAY CAN BE

CONSTRUCTED FROM A(63,32,16) DIFFERENCE SET

same aperture, a static (not spatially hopped) isophoric array
will have an expected improvement in PSL of

Planar Array Isophoric PSL Reduction

dB (29)

where . This improvement is 1.5 dB smaller than it
was for linear arrays. (See Appendix for further discussion.)

As with linear arrays, if we can find a placement algorithm
with the property described by (28), then we can spatially
hop the array element assignments as we did for linear arrays,
thereby guaranteeing a fixed low-sidelobe power pattern for

as we did for . One algorithm that works
[19] is as follows.

Assume we have a linear sequence ofones and zeros

dictated by a difference set as in (6). Then the assignment

where mod and

mod (30)

will create a rectangular array of ones and zeros

(31)

that has the desired two-level autocorrelation function.
For example, the (63, 32, 16) difference set would be placed

in a 9 7 array as shown in Table III. As shown, is placed
in the “southwest” corner of the array and each succeeding
coefficient is placed in the slot to the “northeast,” continuing
from the other side whenever an edge is reached until the
entire coefficients have been placed.
The table shows the placement of the first 18 coefficients. An
antenna element will be placed in each location where
and not placed where . Additional discussion may be
found in [19].

Fig. 4. Expected power pattern of isophoric planar array with
V = VxVy = 15 � 17 half-waves andK = 128 elements. This
exact pattern is realizable with “spatial hopping.” Note pattern floor at
10 log � = �24 dB.

With the approach above, we can create a static isophoric
array with expected power pattern

(32)

As with linear arrays, once we move into the sidelobe region
(that is, and not too close to 0, 2, 4, ), the expected
normalized pattern is approximately the constant, where is
given by (15). Fig. 4 shows for a -slot lattice, with
128 elements.

Note that for the special case , becomes zero
and becomes the power pattern of the familiar filled
rectangular-lattice array. Note also that the beamwidth implied
by (32) is independent of the thinning factor .
Even a very highly thinned isophoric array will have the same
beamwidth as a filled array.

Again, as with linear arrays, if we begin with a filled lattice
and operate it as two independent interwoven isophoric arrays
with spatially hopped element assignments, we can actually
achieve two independent patterns obeying on a
time-averaged basis.

In modern multibeam arrays with digital beam forming,
computational complexity tends to grow as thesquare of
the number of elements. Some of the arrays contemplated
for space applications have thousands of elements, creating a
huge computation-speed challenge. For such cases, the results
of this section show that the computation burden can be
reduced by operating the array as two independent isophoric
spatially hopped arrays. Each of the arrays will have the
narrow beamwidth (angular privacy) of the original filled array
and each will have the well-behaved sidelobe pattern implied
by (32) and shown (by example) in Fig. 4.



LEEPER: MASSIVELY THINNED PHASED ARRAYS WITH WELL-CONTROLLED SIDELOBES 1833

IX. CONCLUSIONS AND OPEN ISSUES

This paper has described a class of massively thinned linear
and planar phased arrays calledisophoric arrays. Isophoric
arrays have element locations that are constrained by an
algorithm based ondifference sets, a topic from combinatorial
mathematics. These constraints produce arrays with PSL’s
demonstrably better than those obtainable with simple cut-
and-try placement techniques, as well as many previously
published algorithmic techniques.

Isophoric designs may be useful even in traditional filled
arrays when more than one beam must be formed. In particular,
a technique calledspatial hopping is introduced that can
produce two independent beam patterns from a single filled
array. While each of these beams will have 6 dB less gain than
the original filled array, each will retain the narrow beamwidth
of the original array and each will have a power pattern with
a virtually perfect (“flat”) sidelobe region.

A detailed comparison of isophoric arrays with those de-
rived from the most recent genetic algorithms and dynamic
programming is left as a future research issue. It may be
profitable tocombinethe two approaches in some way such
as by using isophoric arrays as the initial array in the search
algorithms.

APPENDIX

Derivation of (20): From examination of Fig. 1, it is evi-
dent that the peak sidelobe (PSL) behavior of the isophoric
array is determined by the behavior of the odd-numbered
sample points of the power pattern as it is defined
in (4b).

By defining and ,
, and by using the sampling expansion of

(4a), the array factor representation for these PSL-determining
points may be written as

for (33)

From (5) and (19), for an isophoric array, , and

for (34)

That is, if and only if the array is isophoric, all of these
points have identical fixed magnitude and some phase
angle . Applying (34) and a simple trigonometric identity
allows

(35)

For the cases of interest, is moderately large (greater
than 50) and is approximately or less. Note that in
(35), the terms with the largest magnitude will be those for
which and . The magnitude of those two

terms is approximately . The sidelobe regionof
is defined herein as that region offor which exceeds
the magnitude of the first term in brackets in (35). By simple
algebra, this implies

sidelobe region

This is, effectively, the region where the influence of the
main beam sample becomes subordinate to the influence of
local samples of (see [2]). For the arrays in Figs. 1 and
2, this interval is approximately . In the
sidelobe region, (35) becomes

sidelobe region (36)

The phases are as yet unspecified. They will vary
depending on the particular difference set chosen as well
as the particular selected cyclic shift of the difference set.
While they are deterministic, for purposes of peak sidelobe
estimation they may be modeled as independent, identically
distributed random variables, uniformly distributed over the
interval . It follows that the even-numbered sample
points in may be modeled as the magnitude of the
fixed sample points times the magnitude of a random
variable represented by the summation in (36).

Note again that the most influential terms in the summation
are where and . Note also that the
argument of the sine function is quite small in the region of
greatest importance. Since is approximately equal to

for small , the function may be replaced by its argument.
Finally, under the assumptions on, the factor will
have no influence on the distribution of the random variable
represented by the summation. It may therefore be dropped.
Combining these assumptions produces

sidelobe region (37)

where the symbol is to be read “is distributed as.” As a
final approximation, under the assumption thatis greater
than 50 and can only assume values from the sidelobe
region, the dependence on and becomes very weak. For
convenience, the summation above is assumed equivalent to
the complex random variable

(38)

Finally, using this definition for and dividing by
to force

(39)

In words, (39) states that the squared magnitude of the even-
numbered sample points of in (4b) is distributed as the
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fixed squared magnitudeof the odd-numbered sample points
times a random multiplier

where is given by (38).
It is straightforward to show that has an expected value

of one and a variance of 2/3. But since there are approximately
opportunities for the power pattern to attain a large PSL,

the real interest in the expected value of the random variable
, where

largest of samples of

Unfortunately, the cumulative distribution function of
does not appear to exist in closed form. Accordingly, simula-
tions were used [10] to generate the approximation

The expected PSL for an isophoric array is therefore

PSL (Isophoric)

dB (40)

relative to the peak of the main beam. The conditions for this
approximation to be valid are that and .5

The theory of the random array [2] shows that the PSL
for a random array is (41), shown at the bottom of the
page. Numerical and graphical evaluation [10] of these two
approximations yields

PSL (Random) PSL (Isophoric)

dB (42)

This is the result shown in (20). The improvement predicted
by this result is borne out in actual test cases, as shown in
Table II.

Derivation of (24)

To derive (24), we first note that if is the average
autocorrelation across the cyclic shifts of the underlying
difference set, then

(43)

indicates the total number of interelement spacingswhich
appear (collectively) in all cyclic shifts of the underlying
difference set . We know that mod has
exactly solution pairs in the difference set for .
For each such pair there is a cyclic shift which

5The log function argument in the first term is the variable� (5-5). Given
the conditions onK andV , the approximation has used the simplerK=V to
approximate(K � 1)=(V � 1).

will make . Then for each such pair, the cyclic shifts
will cause the

positive interelement spacing to appear a total of
times. Since there are such pairs

for

Using (18) to eliminate

for (44)

Since this derivation is identical for the symmetric case of
negativeinterelement spacings , we also have

. Furthermore, since there are elements
in each of the cyclic shifts of . Combining
these two observations with (43) and (44) yields (24).

As indicated in Section VI, (24) and consequently (23) also
apply to the set of all possible placements
of elements on a -slot lattice. To show this, we let

where

(45)

replaces in (43). To begin, we consider that to obtain a
spacing of , there must be an element at zero
and an element at . The remaining elements
may be located anywhere within the remaining slots.
Hence, there are

unique element placements to yield a spacing of .
Similarly, to obtain a spacing of , there must
be an element at zero and or an element at one and

. Thus

It follows that for

(46)

Noting the same symmetry as above for negative spacings
and the fact that , we can divide by

and obtain (24).

PSL (Random) dB (41)
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Derivation of (29)

Equation (29) for planar arrays may be derived in a manner
parallel to that which led to the linear array (20), but starting
with the two-dimensional sampling expression given in (5).
This (lengthy) process produces the following analog to (37):

(47)

As described in Section VIII, the PSL of the pattern will be
determined by the odd-numbered samples of the array power
pattern. The behavior of these samples can be estimated in the
same manner as for the linear array case, but the derivation
is much more lengthy. The planar array equivalent to (47),
above, turns out to be

(48)

Analogous computations show that as in the
linear case. However, Var , which is larger than
the value of 2/3 obtained for the linear case. This necessarily
implies an increased likelihood of a large PSL. Indeed, Monte
Carlo simulations produce the results in (8-4) showing that the
3-dB improvement offered by linear Isophoric arrays reduces
to 1.5 dB for planar arrays.
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