1820 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 47, NO. 12, DECEMBER 1999

Coordinate-Independent Dyadic Formulation of the
Dispersion Relation for Bianisotropic Media

Eng Leong Tan and Soon Yim Tan

Abstract—This paper presents a coordinate-independent dyadic  In this paper, based on the coordinate-independent dyadic
formulation of the dispersion relation for general bianisotropic  formulation, we present the dispersion relation for plane wave

media. The dispersion equation is expanded with the aid of ; ; AN ; ; ; ;
dyadic operators including double-dot, double-cross and dot-cross prope:gatlc?n n gen&erzl blanISCf)tlﬁ)pIC r‘r;_edla. Tf;g dlSp;(ﬁr;mn
or cross-dot products. From the dispersion relation, the Booker eql‘_'a lon 1S _expan e. as a Iull guartic equation utilizing
quartic equation is derived in a form well-suited for studying Various dyadic operations such as the double-dot and double-

multilayered structures. Several deductions are made in con- cross products defined in [8]. Moreover, the less commonly
junction with the bianisotropic media satisfying reciprocity and  ysed dot-cross or cross-dot operators are also exploited and
losslessness conditions. In particular, for reciprocal bianisotropic incorporated into the dispersion equation to extract the anti-

media, the dispersion equation is biquadratic in wave vector while tri ¢ f dvadics. S fthe identiti iated
for lossless bianisotropic media, all dispersion coefficients are of Symmetric vectors ot dyadics. some ol the iaentiies associate

real values. As an application example, the dispersion equation With these operators are listed in Appendix A. From the
for gyrotropic bianisotropic media is considered in detail. dispersion relation, the Booker quartic equation is derived in

coordinate-free form as well. Several deductions are made in

conjunction with the bianisotropic media satisfying reciprocity

and losslessness conditions. To demonstrate the application

. INTRODUCTION of general dispersion equation, the gyrotropic bianisotropic

N the study of plane wave propagation and interactionedia which comprise many recently proposed materials are
with various media, the dispersion relation plays a fundgonsidered in particular [9]-[14]. The explicit expressions of

mentally important role. Since the past few decades, mafi}¢ dispersion coefficients are given in detail in Appendix B.

papers have been devoted to the derivation and utilization

of the dispersion relations for several complex media. In [1], Il. FORMULATION

the dispersion relation for both electrically and magnetically

anisotropic media has been developed along with the Bookgr Dispersion Equation

guartic equation for the refractive-index vector componentA homogeneous linear bianisotropic medium can be char-

normal to a given plan_e_. In_[21 and .[3]' th? dISperSIOI?alclterized by the constitutive relations of the form [7]
relations for lossless positive bianisotropic media and general

anisotropic media follow readily from the wave normal and
ray surface equations derived using coordinate-independent
dyadic formulation. In [4], the dispersion equation and Booker

quartic equation obtained in coordinate-free forms have begRere? and7 are, respectively, the permittivity and perme-

applied to solve the problem of wave reflection from agy;jity dyadics, while¢ and¢ are the magneto-electric pseu-
anisotropic medium. A more comprehensive treatment on thggyadics. Substituting (1)—(2) into the source-free Maxwell
coordinate-free approach to wave propagation and reﬂec“@&uations and considering a plane wave with space-time

from anisotropic media can be found in [5]. For arbitrar)ﬁependence factor ef*"c—*“*, we find the dispersion relation
general bianisotropic media, a detailed derivation of the di

_ X . : .  0%5m the conditions for nontrivial solutions of electromagnetic
persion relation has been carried out in Cartesian coordmaﬁ s as

in [6]. Although the coefficients of the dispersion equation o

have been reduced largely by symmetry considerations, their D =w*detedetmdet[e - (k x T + &)

remaining expressions are still fairly lengthy and cqmpersome. T (kxI-0)+1]=0 3)
These lengthy expressions tend to obscure the insights into

the properties of the dispersion relation, for instance, Wheghere & = (%/w) and T is the identity dyadic. The factor
reciprocity and losslessness, which represent two importgitdet zdet 7 has been introduced to normalize the dispersion
medium conditions, are under consideration [7]. equation and these determinant terms also make the resulting
equation applicable in the limit of singulaior 7z [6]. Equation

(3) relates the wave vectdr and the angular frequenay
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may resort to the dyadic algebra which facilitates coordinatexitten in a manner which is well suited for studying special
independent formulation. Moreover, the dyadic notations alseedium conditions, namely reciprocity and losslessness to be
help to provide much insights into the functional dependendéscussed later. In particular, we observe that except the last
of the dispersion equation on various constitutive parameteiso terms inds, c.f. (12), all other terms involving: in the

We first note the expansion of the following determinardispersion equation have been cast in the form (descending
function [8]: order)(A : k) (B : kk), kx1I : C (kk), kk : D, and
kx1 : E.Itthus remains to convert those terms into the form
kE : T since this would facilitate subsequent analyzes on the
+(A-B) : I+1 (4) dispersion equation, e.g., derivatives with respedt {a5].
The term(&E x I : €2T) (Ex 1 : ¢P7) can be dealt

(2) denotes cross product square operatloﬂ(zié 1A 3 with in a facile manner by noting the fact that the trace of the
product of a symmetric matrix and an antisymmetric matrix

and the symbols “” and %" are the double-dot and double-

is, zero [5]; that is
cross product operators defined in [8]. For convenience of
reference, we list some of their elementary identities and axI: A
properties in Appendix A. In the language of matrix algebra, °

the double-dot operation gives the trace of a matrix as In other words, for double-dot operation with x 1, only

A .T=tra (5) the antisymmetric part needs to be taken into account. This
antisymmetric part is characterized by a vector which can be
while the cross product square and double-cross operators extsacted through the dot-crogsor cross-dot’ operations [8].
related to the transpose (superscfiptof matrix adjoints as As shown in Appendix A, these two operators are intimately
— — related to each other and either one can be chosen at will.
A® =adjA (6)  Adopting the dot-cross operator which results in the following

(A% ﬁ) =adj(4 + B) — (adj A + adj B). (7) explicit vector components:

det(A-B+1) = det Adet B+ (A-B)® -

il

which applies to the thirdet term in (3). Here, the superscript

=0, for Z symmetric (15)

X

; o T A A, — Ay
In view of (7) [or (A9)] and the fact thatk x 1)® = Ek, - = T
we have [Alayz x I = [Azz — Az (16)
O Ao = Ao
ExT+A —Fk+A +(FExI) XA 8
(k x ) + (kx 1) 8 we have
Applying this relation along with the identities in Appendix - — - — - - —
A into (4), we obtain axl :A)ax1l: B)y=aa: (A I)B 1) (17)
D = dy + wdy + w?dy +wdy + wid (9)  written in dyad terms. We next move onfid x 1) X £°] -
where [(kxI) g . 1. Applying (17) together with the identity
dy=(: RE)(i : BE) = (€ @(? kE) (10) (A:B),;I=A-(B,D+B-(A;,1) (18)
dy =k x1 :[(C : kR)EDT — (€ : BR)CDT :
= = Sy o= e = we arrive at
+&x (€ kk-m)— ¢ (- kk-€)] (11) L o
do =Tk : f-COT T4 7 -eT .2 [(@xD) A B-[(axI) C"-D: 1
— (det O)€ — (det E)C — 2@ X 77 =aa : [-AT-(BX D). O
F(TxT : EOTYExT : (AT +[(A L I)-BJ(C ;. I)- D]
C(ExD) CEE(Rx DX T T (12) +AT-((CT)-Dx1)-B
dy =F x 1 : [(det QDT — (det €)cDT +CT-([(A I)- Bl xI)-Dl. (19)

+ AT AT - 5(2_)T '5'ﬁ_(2)T Hence, with (17) and (19) determined, we have all the terms
FELE- T - (8T T (13) in dy expressed in the form involvingk only.
=, .= Incorporating the dot-cross operator into the fiiét) and
do = detf det 7 —detﬁdet( _ _ _ third (d3) order terms, one can simplify them on (the) basis of
F(EDT G (OT T ¢ . GT . C.EDT)y . T. (14) (15). Furthermore, the fairly expensive double-cross operations
. . . .__inthe resultant expressions can be eliminated via (18) although
E_quatmns_ (9)._(14) constifute the expansion OT trl_e d'Sp%e choose to retain the cross-product square since they bear
sion relation into a fourth-order algebraic equationkinBy

e . SR L the meaning of matrix adjoints. Then, the final dispersion
considering the actual matrix representationskéf k& x I equation reads

and (k x I) £ A in (8), these equations can be shown to L o 3
coincide with those derived in [6]. Moreover, they have been D = f,(kk, kk) + fa(k, kk) + fo(kk) + f1(E) + fo  (20)

ol
N
=



1822 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 47, NO. 12, DECEMBER 1999

where B. Booker Quartic Equation
= = _ = _ = = = = The dispersion equations (9)—(14) or (20)—(25) have been
fulAs, Bs) = (¢ {*)(“ B,) - (§ f_l $)(¢ ‘_BS) (21) expressed in terms of total wave vectbrand wave dyad
f3(@w) =wa- [(C : w)e@T . T—(€ : w)(®T ;T kk. For the study of multilayered structures, one is often
= - = =y = - - _ interested in waves propagating along a preferred direction,
* 52 [(U:' DRs (_6 'j‘)] B C (@& % (@-m)] sayp, normal to the structures. Decomposing the wave vector
+(E& 1) (T -p)e-w) into its components longitudinal and transverse tas
— (¢ D)-(@-9(E-w) E=kpp+Fke, Fi=knt+ kot (31)
(22)

- — - _ we have the symmetric dyaldk expanded in the form
fo(A) =, s [TV 4 g _ -
== kk = k2pp + ki S+ ik, S =pk+Ekp. (32)

_72 X T (5(2)T : f)(f@)T : f) The phase-matching condition at the layer interface requires
X X
=7 = = = ky andky, to be the same throughout all layers and each may
+5_' (e_x K )_' ¢ B run from —oo to +oo to account for all incident directions
— (€. D9l . T 7 or point source excitation [16]. Then, the dispersion equation

yields a fourth-order algebraic equation fgrin each layer as

~E (kD AxD)E cregebraee
L (E.D AxD) 7 (23) B = bkt +bgk® 4 bok2 + bk, + 5o =0 (33)
fi@) =0®a- [([des OEDT ;T — (det§)CPT ;T Where
+(EDT ATy L T by = fu (PP, PP) (34)
_FOT E. 5Ty - T bs = fu(pp, ) + f4(5712ﬁ)_+ f3(D, BD) (35)
+E[ECOT.H LT ba =f4(ﬁA7/€t:/€t) + f4£575) + fa(kike, pp)
—CFEETE LT +=£’>(f7;9)+f3(_tfaA):+ J2(pp) (36)
HECE D) - f4(; (ktlg)z—: f4(=:t(l%t’%)) L)+ L() 37
= ZT = (7 -7 + J3(P; keke) + falkie, ©) + f2(5) + f1(p
. :C;(CZ'. EDT.8 (¢ D) g;‘r; bo = falkike, kike) + fa(ke, keky)
+ fa(kike) + fu(ke) + fo (38)
The functionsfy, fs,-- -, fo are so defined to cater for sub-Equation (33), commonly known as Booker quartic [1], [4],

sequent development of Booker quartic equation. In the cagws us to determine:, in terms of angular frequency,

of lossless positive symmetric media whéfe=¢, 2" =i, constitutive parameters and transverse wave numbers. This
ET =¢ = we find (22) and (23) coincide readily withequation can be solved numerically or analytically and their
those in [2] sinced, ; I = 0 for A, symmetric. Moreover, solution characteristics are worthy of further investigation.
based on the dual transformation of wave normal and ray

vectors introduced in that paper, we can write the second- Il. SPecIAL MEDIUM CONDITIONS

and first-order terms as In this section, we shall consider more closely two important

= = NT =T = = - .= special cases for the medium conditions, choosing (10)—(14)
f2(4,) =w do As [Ec(l)_ +7, __(“d x I)_(Vd x 1) as the basis of our study.
~E-CE )T E-E T O]

(26) A. Reciprocity

(@) —3dya- (Fa—T7a) & T 27) For reciprocal bianisotropic media, the constitutive dyadics
satisfy the reciprocity requirements [7]
where e=e m=w, (=-C (39)
Fa=pu - C-(e—&mt O (28) Substituting these conditions into (10)—(14), the even tetms
Ty=cl. E (Fi— E =1 E) 1 (29) d_g andd, can be simplified slightly by noting% : AT =
d = detTdet(c— .51 .7 kk : A. Moreover, the odd termds; andd; are found to be
0=qe fL © (_C i fL :C) of the formk x I : (A + AT) and, therefore, vanish due to
=detedet(m— (-1 8). (30) (15). Then, we have the dispersion equation biquadratic in

or k (its magnitude). This implies that there exist two pairs
These expressions are seen to be in more compact form, diusolutions corresponding to two waves propagating with the
they require explicit computation of the inverse of dyadics. same velocity in opposite directions in each pair. Notice that
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similar deductions can be made for anisotropic (not necessaflgr operations involving the wave vectdr = kk with
reciprocal) media wheré = ¢ = 0 since all terms ind; and k-k =1, we have
d; are dependent on them [3], [8]. However, it should be se = 5 5
noted that while only the’s and f; functions in (21)—(25) are ki G=Goc” + Grs (48)
void, the Booker equation (33) may still constitute full quartig,nare - and s are the cosine and sine of the angle between
polynomial in%,. In other words, more stringent conditions;. 54 g
must be |mposed to make the Booker equation biquadratic. X

c=k-g (49)
B. Losslessness §2 = (i€ X §) - (k X §). (50)

For lossless bianisotropic media, the constitutive dyadltL:Js h Its (42)—(48 b he di
satisfy the conditions [7] sing the results (42)—(48), we obtain the dispersion equation

_ _ for gyrotropic bianisotropic media as
d=F, w=m, =€ (40)

D = fo(kk, kk)k* + fa(k, ER)K® + fa(kR)E? + fr(B)k + fo
wherex indicates complex conjugation. Applying these con- (51)
ditions into (10)—(14) and assumirfgis real with direction

cosines, we find that all coefficients in the algebraic equatiovith the f’s given explicitly in Appendix B.

for k are of real values since they merely involve dyadics of Equation (51) reduces readily to the case of many recently
the form A + A* or operations leading ta = a*. Thus, the proposed materials including chiral [9], Faraday chiral [10],
dispersion equation represents a real polynomiak efhose uniaxial chiro-omega [11], [12], uniaxial bianisotropic [13],
roots form in general complex conjugate pairs. By the sard@d transversely bianisotropic uniaxial [14] media. These me-
token, all&’s in the Booker quartic equation (33) are foundlia may find potential applications in wide range of areas such
to be real forp and k, being real. Their roots fok, will —as antenna radomes, absorbers, integrated circuit technology,
then be complex conjugate pairs as well [17]. For slightljitegrated optics, etc.

lossy media where the losslessness conditions (40) are hardly

violated, these conjugate roots may serve as initial guess for V. CONCLUSION

the actual roots in the respective region above and below th

; CThis paper has presented a coordinate-independent dyadic
real axis.

formulation of the dispersion relation for plane wave propa-
gation in general bianisotropic media. The dispersion equation
has been expanded as a fourth-order algebraic equation with
As an application example for the general dispersion equaie aid of dyadic operators including double-dot, double-
tion derived above, let us consider the gyrotropic bianisotropicoss and dot-cross or cross-dot products. From the dispersion
media whose constitutive dyadics are of the form [8] relation, the Booker quartic equation has been derived in a
= = . .= form well-suited for studying multilayered structures. Two
GG, Gy, Ga) = Gele + Gygg + Gag x I (41) important medium conditions, namely reciprocity and loss-
for G = ¢,11,¢,¢. Here, g is the gyrotropic axis which has lessness, have been examined more closely. For reciprocal
been normalized tg - § = 1 and 7, is the transverse (tg) bianisotropic media, the dispersion equation is biquadratic in

, : L = = . . wave vector. For lossless bianisotropic media, all dispersion
part of identity dyadic, i.e.[; = I—g. The gyrotropic dyadic gefficients are of real values. As an application example
has its trace, determinant, and antisymmetric vector given ﬁ){ . . . - AS an app ) \mpie,
e dispersion equation for gyrotropic bianisotropic media has

IV. APPLICATION TO GYROTROPIC BIANISOTROPIC MEDIA

G T=2G,+G, (42) been considered in detail.
det G = G, (G2 + G?) (43)
= = APPENDIX A
G, T=2G,.§ (44) o
Dyadic identities [8]
where the factor 2 in (44) is due to the dot-cross operation o o
employed. For two gyrotropic dyadics, their dot and double- A:B=B:A=A-B :1I=B -A:1
cross products are (A1)
Gy - Gy =G(GGry — Ga1Gaz, G G o, A:ab=A" :ba=a-A-b (A.2)
G11Go2 + G12Gor) (45) A:axI=-A" : axT (A.3)
61 ; 62 IG(GﬂGgg =+ GtQGgl, A § B=B § A (A4)
= = =T =T
2(G1 G2 + Gar1Gaz), (AXBT=4 XB (A.5)
Cor oz GozCiar) 49 Aiah=—axT-A-bxT (A.6)
while the adjoint follows as 1 x B-0O—A4:8B x ol (A7)
—(2)T = = = = =
gt G(G:G,, G? 4+ G?,-G,G,). (47) (A-B)» =a® .BO® (A.8)
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APPENDIX B

(A.9)
(A.10)

(A.11)
(A.12)
(A.13)
(A.14)
(A.15)
(A.16)

(2]

(3]

(7]
(8]

El

For the gyrotropic bianisotropic media described i)

Section 1V, thef coefficients in (51) are
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