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Coordinate-Independent Dyadic Formulation of the
Dispersion Relation for Bianisotropic Media

Eng Leong Tan and Soon Yim Tan

Abstract—This paper presents a coordinate-independent dyadic
formulation of the dispersion relation for general bianisotropic
media. The dispersion equation is expanded with the aid of
dyadic operators including double-dot, double-cross and dot-cross
or cross-dot products. From the dispersion relation, the Booker
quartic equation is derived in a form well-suited for studying
multilayered structures. Several deductions are made in con-
junction with the bianisotropic media satisfying reciprocity and
losslessness conditions. In particular, for reciprocal bianisotropic
media, the dispersion equation is biquadratic in wave vector while
for lossless bianisotropic media, all dispersion coefficients are of
real values. As an application example, the dispersion equation
for gyrotropic bianisotropic media is considered in detail.

Index Terms—Bianisotropic media, dispersion relation.

I. INTRODUCTION

I N the study of plane wave propagation and interaction
with various media, the dispersion relation plays a funda-

mentally important role. Since the past few decades, many
papers have been devoted to the derivation and utilization
of the dispersion relations for several complex media. In [1],
the dispersion relation for both electrically and magnetically
anisotropic media has been developed along with the Booker
quartic equation for the refractive-index vector component
normal to a given plane. In [2] and [3], the dispersion
relations for lossless positive bianisotropic media and general
anisotropic media follow readily from the wave normal and
ray surface equations derived using coordinate-independent
dyadic formulation. In [4], the dispersion equation and Booker
quartic equation obtained in coordinate-free forms have been
applied to solve the problem of wave reflection from an
anisotropic medium. A more comprehensive treatment on the
coordinate-free approach to wave propagation and reflection
from anisotropic media can be found in [5]. For arbitrary
general bianisotropic media, a detailed derivation of the dis-
persion relation has been carried out in Cartesian coordinates
in [6]. Although the coefficients of the dispersion equation
have been reduced largely by symmetry considerations, their
remaining expressions are still fairly lengthy and cumbersome.
These lengthy expressions tend to obscure the insights into
the properties of the dispersion relation, for instance, when
reciprocity and losslessness, which represent two important
medium conditions, are under consideration [7].
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In this paper, based on the coordinate-independent dyadic
formulation, we present the dispersion relation for plane wave
propagation in general bianisotropic media. The dispersion
equation is expanded as a full quartic equation utilizing
various dyadic operations such as the double-dot and double-
cross products defined in [8]. Moreover, the less commonly
used dot-cross or cross-dot operators are also exploited and
incorporated into the dispersion equation to extract the anti-
symmetric vectors of dyadics. Some of the identities associated
with these operators are listed in Appendix A. From the
dispersion relation, the Booker quartic equation is derived in
coordinate-free form as well. Several deductions are made in
conjunction with the bianisotropic media satisfying reciprocity
and losslessness conditions. To demonstrate the application
of general dispersion equation, the gyrotropic bianisotropic
media which comprise many recently proposed materials are
considered in particular [9]–[14]. The explicit expressions of
the dispersion coefficients are given in detail in Appendix B.

II. FORMULATION

A. Dispersion Equation

A homogeneous linear bianisotropic medium can be char-
acterized by the constitutive relations of the form [7]

(1)

(2)

where and are, respectively, the permittivity and perme-
ability dyadics, while and are the magneto-electric pseu-
dodyadics. Substituting (1)–(2) into the source-free Maxwell
equations and considering a plane wave with space-time
dependence factor of , we find the dispersion relation
from the conditions for nontrivial solutions of electromagnetic
fields as

(3)

where and is the identity dyadic. The factor
has been introduced to normalize the dispersion

equation and these determinant terms also make the resulting
equation applicable in the limit of singularor [6]. Equation
(3) relates the wave vector and the angular frequency
in the most compact form. In practical computation, it is
sometimes more convenient to expand (3) into an algebraic
equation in terms of or its components. For this purpose, one
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may resort to the dyadic algebra which facilitates coordinate-
independent formulation. Moreover, the dyadic notations also
help to provide much insights into the functional dependence
of the dispersion equation on various constitutive parameters.

We first note the expansion of the following determinant
function [8]:

(4)

which applies to the third term in (3). Here, the superscript
(2) denotes cross product square operation as
and the symbols “:” and “” are the double-dot and double-
cross product operators defined in [8]. For convenience of
reference, we list some of their elementary identities and
properties in Appendix A. In the language of matrix algebra,
the double-dot operation gives the trace of a matrix as

tr (5)

while the cross product square and double-cross operators are
related to the transpose (superscriptof matrix adjoints as

adj (6)

adj adj adj (7)

In view of (7) [or (A9)] and the fact that ,
we have

(8)

Applying this relation along with the identities in Appendix
A into (4), we obtain

(9)

where

(10)

(11)

(12)

(13)

(14)

Equations (9)–(14) constitute the expansion of the disper-
sion relation into a fourth-order algebraic equation in. By
considering the actual matrix representations of,
and in (8), these equations can be shown to
coincide with those derived in [6]. Moreover, they have been

written in a manner which is well suited for studying special
medium conditions, namely reciprocity and losslessness to be
discussed later. In particular, we observe that except the last
two terms in , c.f. (12), all other terms involving in the
dispersion equation have been cast in the form (descending
order) , , , and

. It thus remains to convert those terms into the form
since this would facilitate subsequent analyzes on the

dispersion equation, e.g., derivatives with respect to[15].
The term can be dealt

with in a facile manner by noting the fact that the trace of the
product of a symmetric matrix and an antisymmetric matrix
is zero [5]; that is

for symmetric (15)

In other words, for double-dot operation with , only
the antisymmetric part needs to be taken into account. This
antisymmetric part is characterized by a vector which can be
extracted through the dot-crossor cross-dot operations [8].
As shown in Appendix A, these two operators are intimately
related to each other and either one can be chosen at will.
Adopting the dot-cross operator which results in the following
explicit vector components:

(16)

we have

(17)

written in dyad terms. We next move on to

. Applying (17) together with the identity

(18)

we arrive at

(19)

Hence, with (17) and (19) determined, we have all the terms
in expressed in the form involving only.

Incorporating the dot-cross operator into the first and
third order terms, one can simplify them on the basis of
(15). Furthermore, the fairly expensive double-cross operations
in the resultant expressions can be eliminated via (18) although
we choose to retain the cross-product square since they bear
the meaning of matrix adjoints. Then, the final dispersion
equation reads

(20)
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where

(21)

(22)

(23)

(24)

(25)

The functions are so defined to cater for sub-
sequent development of Booker quartic equation. In the case
of lossless positive symmetric media where

we find (22) and (23) coincide readily with
those in [2] since for symmetric. Moreover,
based on the dual transformation of wave normal and ray
vectors introduced in that paper, we can write the second-
and first-order terms as

(26)

(27)

where

(28)

(29)

(30)

These expressions are seen to be in more compact form, but
they require explicit computation of the inverse of dyadics.

B. Booker Quartic Equation

The dispersion equations (9)–(14) or (20)–(25) have been
expressed in terms of total wave vectorand wave dyad

. For the study of multilayered structures, one is often
interested in waves propagating along a preferred direction,
say normal to the structures. Decomposing the wave vector
into its components longitudinal and transverse toas

(31)

we have the symmetric dyad expanded in the form

(32)

The phase-matching condition at the layer interface requires
and to be the same throughout all layers and each may

run from to to account for all incident directions
or point source excitation [16]. Then, the dispersion equation
yields a fourth-order algebraic equation for in each layer as

(33)

where

(34)

(35)

(36)

(37)

(38)

Equation (33), commonly known as Booker quartic [1], [4],
allows us to determine in terms of angular frequency,
constitutive parameters and transverse wave numbers. This
equation can be solved numerically or analytically and their
solution characteristics are worthy of further investigation.

III. SPECIAL MEDIUM CONDITIONS

In this section, we shall consider more closely two important
special cases for the medium conditions, choosing (10)–(14)
as the basis of our study.

A. Reciprocity

For reciprocal bianisotropic media, the constitutive dyadics
satisfy the reciprocity requirements [7]

(39)

Substituting these conditions into (10)–(14), the even terms,
, and can be simplified slightly by noting

. Moreover, the odd terms and are found to be
of the form and, therefore, vanish due to
(15). Then, we have the dispersion equation biquadratic in
or (its magnitude). This implies that there exist two pairs
of solutions corresponding to two waves propagating with the
same velocity in opposite directions in each pair. Notice that



TAN AND TAN: DYADIC FORMULATION OF DISPERSION RELATION FOR BIANISOTROPIC MEDIA 1823

similar deductions can be made for anisotropic (not necessarily
reciprocal) media where since all terms in and

are dependent on them [3], [8]. However, it should be
noted that while only the and functions in (21)–(25) are
void, the Booker equation (33) may still constitute full quartic
polynomial in In other words, more stringent conditions
must be imposed to make the Booker equation biquadratic.

B. Losslessness

For lossless bianisotropic media, the constitutive dyadics
satisfy the conditions [7]

(40)

where indicates complex conjugation. Applying these con-
ditions into (10)–(14) and assuming is real with direction
cosines, we find that all coefficients in the algebraic equation
for are of real values since they merely involve dyadics of
the form or operations leading to . Thus, the
dispersion equation represents a real polynomial ofwhose
roots form in general complex conjugate pairs. By the same
token, all ’s in the Booker quartic equation (33) are found
to be real for and being real. Their roots for will
then be complex conjugate pairs as well [17]. For slightly
lossy media where the losslessness conditions (40) are hardly
violated, these conjugate roots may serve as initial guess for
the actual roots in the respective region above and below the
real axis.

IV. A PPLICATION TO GYROTROPICBIANISOTROPIC MEDIA

As an application example for the general dispersion equa-
tion derived above, let us consider the gyrotropic bianisotropic
media whose constitutive dyadics are of the form [8]

(41)

for . Here, is the gyrotropic axis which has
been normalized to and is the transverse (to
part of identity dyadic, i.e., . The gyrotropic dyadic
has its trace, determinant, and antisymmetric vector given by

(42)

(43)

(44)

where the factor 2 in (44) is due to the dot-cross operation
employed. For two gyrotropic dyadics, their dot and double-
cross products are

(45)

(46)

while the adjoint follows as

(47)

For operations involving the wave vector with
, we have

(48)

where and are the cosine and sine of the angle between
and

(49)

(50)

Using the results (42)–(48), we obtain the dispersion equation
for gyrotropic bianisotropic media as

(51)

with the ’s given explicitly in Appendix B.
Equation (51) reduces readily to the case of many recently

proposed materials including chiral [9], Faraday chiral [10],
uniaxial chiro-omega [11], [12], uniaxial bianisotropic [13],
and transversely bianisotropic uniaxial [14] media. These me-
dia may find potential applications in wide range of areas such
as antenna radomes, absorbers, integrated circuit technology,
integrated optics, etc.

V. CONCLUSION

This paper has presented a coordinate-independent dyadic
formulation of the dispersion relation for plane wave propa-
gation in general bianisotropic media. The dispersion equation
has been expanded as a fourth-order algebraic equation with
the aid of dyadic operators including double-dot, double-
cross and dot-cross or cross-dot products. From the dispersion
relation, the Booker quartic equation has been derived in a
form well-suited for studying multilayered structures. Two
important medium conditions, namely reciprocity and loss-
lessness, have been examined more closely. For reciprocal
bianisotropic media, the dispersion equation is biquadratic in
wave vector. For lossless bianisotropic media, all dispersion
coefficients are of real values. As an application example,
the dispersion equation for gyrotropic bianisotropic media has
been considered in detail.

APPENDIX A

Dyadic identities [8]

(A.1)

(A.2)

(A.3)

(A.4)

(A.5)

(A.6)

(A.7)

(A.8)
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(A.9)

(A.10)

(A.11)

(A.12)

(A.13)

(A.14)

(A.15)

(A.16)

APPENDIX B

For the gyrotropic bianisotropic media described in
Section IV, the coefficients in (51) are

(B.1)

(B.2)

(B.3)

(B.4)

(B.5)
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