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Validity of the Measured Equation of Invariance

Yun-Sheng Xu,Member, IEEE and Hong-Ming Chen

Abstract—The measured equation of invariance (MEI) is de- solution cannot be reduced below a certain limit no matter how
rived without any postulates. It is shown that the coefficients of dense the mesh is if a six-node MEI is used. We show through
the MEI are invariant to the field of excitation. However, the calculation of the scattering by perfectly conducting circular

accuracy of the MEI solution is closely related to the number of . . . . .
nodes in the MEI. Coupling more nodes improves progressively cylinders in Section Ill that coupling more nodes in the MEI

the accuracy of the MEI solution. With increasing nodes, the May improve progressively the accuracy of the solution. Also
matrix problem for the determination of the MEI coefficients in Section lll, we discuss the numerical method suitable to

becomes seriously ill conditioned and generally must be solved the solution of the overall FD-MEI matrix equation and show
using _mu_ltlple precision arlthmet_lc. The consequences of the ill- the fast decaying behavior of the residual of the MEL. In
conditioning phenomenon are discussed. Section 1V, we discuss the consequences of the matrix ill-

Index Terms— Electromagnetic wave scattering, finite-dif- conditioning phenomenon encountered in the computation of
ference method, measured equation of invariance. MEI coefficients

|. INTRODUCTION Il. DERIVATION OF THE MEI

HE measured equation of invariance (MEI) [1] is a newly |n this section, the MEI is derived for the problem of
developed numerical method that may, if correct anglectromagnetic wave scattering by a perfectly conducting
practical, truncate a finite-difference (FD) or a finite-elememy/linder. For the case of a TM wave incidence, the longitudinal
mesh (FEM) very close to the object boundary in the analysifectric field componenty of the scattered field can be
of scattering problems. It has been applied to a variety ekpressed as
field problems [1]-[20]. Since the MEI method is formulated
based on postulates and lack of theoretical foundations, there © = —jwpo / G(p, HYK.(7) dt’ 1)
have been conflicts on the validity of the method since r

its appearance [21]-[27]. The major controversies lie in g0 e > and 7 are the position vectors to the field and source

\{alidity of t.he.postulate of the invariance of the MEI to th oints, respectivelyl" is the contour of the cylinder/. (7)
field of excitation, the dependency of the accuracy of the Mid e induced longitudinal electric surface current density on

solution on the mesh size, etc. These subjects are addre%ﬁgdcylinder, andG(7.7) is the two-dimensional free-space

in this paper. ) ) Green'’s function given by
More recently, Xu derived the MEI without any postulates
and came to the following conclusions [28]: the coefficients G(77) = iHSQ)(/ﬂﬁ— 7D @)

of the MEI are indeed invariant to the field of excitation; on 4j

the other hand, the accuracy of the MEI solution is closely

related to the number of nodes in the MEI. Coupling moith & = 27 /A being the free-space wavenumber atiff”
nodes may improve progressive'y the accuracy Of the Mﬁﬁ”ﬁlg the Hankel fUnCtion Of the Second k|nd Of Order Zero.
solution. The detailed derivation and related discussions lfyorder to derive a discretized form of (1) at, say, node 0 on
[28] are given in Section Il of this paper. With increasinghe mesh truncation boundary, is expanded in terms of a
nodes in the MEI, the matrix used to determine the MEQOMPplete set of basis functions defined on the surface of the
coefficients becomes seriously ill conditioned. Although trheylinder {f.(o"),n = 1,2,--}

ill-conditioning phenomenon has been mentioned in previous N

publicatiops_, [61, 9], [25]., its severe consequences have not J(7) = Z enfnli) (3)
been sufficiently recognized and the necessity and the way
to overcome this difficulty have not been pointed out. Hence , i - _

an intensive investigation is presented in Section Ill. Multipl l“her.ecn s are the current expansion coefficients. This expres-
precision arithmetic (MPA) [29] is eventually used to solve thiSiON IS €xact iV becomes infinite. Substitution of (3) into (1)
problem. It was demonstrated in [25] that the error of the MEf€!dS

n=1
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where the superscrigt denotes the matrix transpositiofb]
and [¢] are column vectors defined as

[bO]t = [b107 b207 T bJ\TO]

[e]* =[e1, 0,7+, en]

(6)
(7)
with b,,0 given by

buo = —jostin /F G (o, 7)) ¥ ®)

wherepy is the position vector to node 0. The unknown current
expansion coefficients,’s in (4) or (5) can be expressed as
linear combinations of the values g¢f at N nodes, locally
numbered 1 taV in the immediate neighbor of node 0; an
the discretized form of (1) at node 0 can be derived in thiﬁ

way. Use of (4) again at thes®¥ nodes gives

N
Pm :Z bnrncnv m:1727"'7N (9)
n=1

1815

Using matrix notation, (13) and (14) can be respectively
rewritten as

o =[al[¢] (15)
[bo] = [Bllal (16)

where[q] is a column vector given by
[a]' = [a1,a2, - -, an]. a7)

Substituting[a] = [B]~*[bo] derived from (16) into (15),
e obtains exactly the same equation as (12).
For the case of a TE wave incidence, the MEI can be
imilarly derived. The only differences arg:represents now
he longitudinal magnetic field componegt;and correspond-
gly b,,, have other integral expressions. Obviously, the
present derivation of the MEI can also be extended to the
three-dimensional case.

Thus, we have derived the MEI without any postulates. It
is seen that the linear relation among the discrete field value

where ¢, is the value ofy at nodem and the definition of at a node on the mesh truncation boundary and those at its

b.m 1S the same as (8) except th@t is replaced byp,,, the

immediate neighbors, namely the MEI, does exist. But it can

position vector to node.. In matrix form, (9) can be written as be derived and does not need to appear as a postulate as in

] = [B]'[d] (10)
where[¢] is a column vector given by
[4)0]1 = [Qalv P2, QON] (11)

the original MEI method [1]. The coefficients of the MEI are
invariant to the field of excitation because the incident field
affects the current expansion coefficientss only which do
not appear in the MEI nor in (16) used to determine the MEI
coefficients.

The only approximation in the above derivation exists in

and [B] is a square matrix of ordefV whose elements (1) whenn is finite. If N becomes infinite, the MEI is exact.
are by (n,m = 1,2,---, N). From (10), one can obtain gor finite IV, the MEI can only be approximately valid. This
[c] = {[B]'}~"[] and its substitution into (5) results in thejmpjies that commonly used four-, six-, or, at most, eight-node

following discretized form of (1) at node O:

o = [bol {[BI'} ' [e] = {[B] b} ] (12)

MEI may not be able to provide sufficiently accurate results
in any case. Numerical computations in [25] and here show
that this is indeed the situation, especially for electrically large

We will show that this is actually the MEI at node 0 andylinders. However, it will be demonstrated through numerical
the procedures in [1] to obtain the MEI are equivalent to thesults in the next section that using a sufficient number of

above way of discretization of (1).

nodes in the MEI and a sufficiently fine mesh, one may obtain

The MEI method postulates the validity of the followinghe MEI solution with desired order of accuracy.

equation at node O:

N
Z AmPm = 0.

m=0

(13)

It is well known that the MEI with smallV cannot produce
accurate numerical results for concave structures [14]. We
believe that with a sufficiently larg&y one may also obtain
rigorous results for this kind of structures.

Since one of these coefficients,’s may be arbitrary, we
can simply letag = —1. The resta,,’s can be determined
through N measures. If the same basis functidifs (7)), n = Numerical results for perfectly conducting circular cylinders
1,2,---,N} are chosen as metrons, the value of tiie mea- are presented in this section. The nodal configuration of
suring function at noden is thenb,,,,, (m = 0,1,2,---,N) the MEI is shown in Fig. 1. The amplitude of the incident
and the N measures are plane wave is assumed to be unity. Harmonic basis functions

N e (n = 0,1,2,---) are chosen as metrons. The analytical
bio = Z Ambim expressions of the corresponding measuring functions for TM
waves are available [25]

I1l. NUMERICAL RESULTS AND DISCUSSIONS

m=1
N _1 (2) Jné
boo = Z @b sTkand, (ka)H,” (kp)e
m=1 p>a, n= Oa :l:]-a :l:2a T (18)
N wherer is the wave impedance of free-space afgdandH,(f)
bno = Z A DN - (14) are Bessel function of the first kind and Hankel function of
m=1

the second kind, respectively. For TE waves, the analytical
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Fig. 1. Nodal configuration and local numbering of the MB = 17).
Fig. 2. Logarithm of the condition number versus the electric size of the
cylinder for variousN. Ap = A/40, A6 = Ap/a.

expressions of the measuring functions can also be derived as

follows:
45+ N=15
‘%WkaJ,’L(ka)H,(f)(kp)ej né 404 e e
] . S
p>a, n= 07 :l:]-v :l:27 Tt (19) 351 e N=11
It is easily seen that the MEI coefficients are actually the §>3O o N-9
same for both TM and TE waves. Besides, with the symmetric 254 _ et
nodal distribution of the MEI as in Fig. 1, the MEI coefficients 20_'"" N=7
can be determined independent of its location on the mesh — s
truncation boundary. 154 =7 - o=
ofase o -
A. lll Conditioning of the Matrix 10" 10” 10°
The matrix[B] in (16) used to solve for the MEI coefficients Apl 2

becomes seriously ill conditioned fd¥, which is larger than rig 3. Logarithm of the condition number versus the mesh density for
about seven. The 64-bit double precision arithmetic (DPArious N. a = 25A, A6 = Ap/a.
available on our personal computer cannot provide accurate
results for the MEI coefficients in this case. We apply MPA
[29] to tackle this problem. The MPA in [29] may provide as many significant digits as
Mathematically, the ill conditioning of a matrix is describedlesired, it is, therefore, used to determine the MEI coefficients.
by the order of its condition number. The dependence of theTo show the effect of the matrix ill conditioning on the accu-
condition number of the matrix[B] on N, the electric size of racy of the computed MEI coefficients, we present (in Table 1)
the cylinder, and the mesh density is shown in Figs. 2 and ©me numerical results obtained by SVD and Gauss—Jordanian
The results are obtained by the singular value decompositielmination (GJE) with DPA and MPA. Those calculated by
(SVD) with MPA and the condition number is equal to th&VD and GJE with MPA coincide with each other. The
ratio of the largest and the smallest singular values. As caituation is different, if 64-bit DPA is used. Fd¥ = 5, both
be seen from the figures, the matfiB] becomes more ill- SVD-DPA and GJE-DPA may provide sufficiently accurate
conditioned as the electric size of the cylinder becomes larg®tEl coefficients—about five accurate decimal digits. Even in
the mesh size decreases, afd increases. The conditionthis case, the effect of the matrix ill conditioning can also be
number changes most drastically with varying seen. If a well-conditioned matrix problem of such a small
The inverse of the condition number of a matrix actuallgrder as 5x 5 is to be solved, one may expect the 64-hit
represents the order of the required minimum floating-poiBXPA on our personal computer to provide the results with
accuracy to guarantee a rigorous solution for the matrabout 16 accurate decimal digits. FoF = 7, the results
problem. For the case in Fig. 2, the condition number is aboedlculated by GJE-DPA become inaccurate. SVD-DPA works
10°° whena = 25X and N = 13; all procedures of the better than GJE-DPA, but generates only two or three accurate
numerical computation related to the determination of the MEEecimal digits. For¥ = 9, both GJE-DPA and SVD-DPA
coefficients should then be more accurate than®10In other give completely wrong results. The reason can be easily found
words, to obtain accurate results for the MEI coefficients, dtirough the condition number of the matfi®]. For the case
the numerical processes concerned should retain more tivaTable I, we have also used the conjugate gradient method
30 significant decimal digits, which clearly goes beyond thgith DPA to solve for the MEI coefficients, but succeeded in
limitation of 64-bit DPA. Although on some workstations ombtaining similar accurate results as those generated by GJE
supercomputers 128-bit DPA is available, its ability to deand SVD with DPA forN = 5 only. For N = 7 or 9, either
with the present ill-conditioned matrix is still very limited.the results were inaccurate or the iteration did not converge.
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TABLE |
MEI CoEerrICIENTS CALCULATED BY GJEAND SVD witH DPA 0.20
AND MPA (ap = —1). a = 25X, Ap = A/40,A0 = Ap/a
N| o|an DPA I MPA 0154
o GIE SVD GIEorSVD E
a) | 88186551- 46120874/ | 88184253-46122952/ | 88186708-.46121710) 5.
a | 52500209-00459991) | .52500340-.00460145) | 52500274-.00459969; ~
5 {10 | as | .52500211-.00459992j | .52500399-.00460147/ | .52500274-.00459969) ! 0.101
! ag | -46489547+ 23905463 | - 46488562+ 23906684/ | - 46489693 - 23905870/ =)
| as | -464895494 23905465) | -.46488561 : 23906686 | -. 46489694~ 23905870; 7
! a) | -.04215176+.17477537j | 10189516~ 17344509/ | 10153021+ 17271612/ ™ 0.054
a, | 67810631-.02198604j | 66047099- 03091431/ | 66046528- 03080012/
a; | 67786570-02151188j 1 66046550- 03090967/ | 66046528~ 03080012
7 [10% | @ | 02316122- 08876620) | - 05230450- 08892341 | -.05211710- 08853890,
as | .02324291-.08875384) | - 05230354- 08892283/ | -05211710- 08853890/ 0.004
ag | -.18034232+.02289709; | - 15947342+.03330020; |- .15947059+.03316679j — —— ——— —————————
a; | -.18026140+.02264751) | -.15947110+.03329752/ |- .15947059+.03316679) J180 <120 -60 0 60 120 180
@, | -12771560+18005069/ { 1.0348164-.13129329/ | 67915859-.71533551)
a; |- 1985823511 6255204 | 1.8253107+.79885158) | .68196382-.00476563] 0 (degrees)
as | 1.4282420-1.8076766) | - 61897434- 88625720/ | .68196382- 00476563]
a, | .85583532-3.0217269) | -2.0792290- 86268349/ | - 46620690+ 48551612/ ) . . .
0 [10% | a5 | 1.0037300+75639331) | 85286772+.27337071) | - 46620690+ 48551612) Fig. 4. Error of the MEI solution for the induced TM surface current density
a, | 31001036-.80679575/ | - 73643480-.38770149/ | - 18274431 1.00508793; J-.a = 25X, Ap = A/80,A6 = 0.08°.
@y | -32828826+1 00305187 ( 55450659: 48568135/ | - 18274431+.00508793/
as | -26594512-12188467j | 85229126+ 06853226/ | 12734771-.12828858]
ao | -32950481- 76615964 | 55450659+.48568135/ | 12734771-.12828858]

0.501
B. Solution of the Overall FD-MEI Matrix Equation
Iterative methods are commonly utilized to solve Iargeg
sparse matrices. At the early stage of our work, we also®_- 0254

tried to apply (with DPA) various iterative methods such _:
as the conjugate gradient method, preconditioned biconjugate _
gradient method, Jacobi semi-iterative method, successive™
overrelaxation, and so on, to the solution of the overall FD-
MEI matrix equation. If few nodes, e.g. six node¥ = 5),

are coupled in the MEI, they all work well, although some

0.004

of them may run faster than the others. Unfortunately, all of
them presented great difficulty in achieving the convergence
of iteration, as the number of nodes in the MEI increasesg. 5. Error of the MEI solution for the induced TE surface current density
A finer mesh or an electrically larger cylinder makes thé. a = 25X, Ap = A/40,A6 = 0.08°.

situation even worse. After many painful efforts with various

iterative methods, the authors finally decided to use a SpaLsgertain limit no matter how dense the mesh is if a six-node

matrix solver “Y12M,” which utilizes a direct method—LU
decomposition with Gaussian elimination. It works well ang,
very fast. For the examples in the next part, solving a FD-M

EI (N=5
shown in Figs. 4 and 5 for TM and TE waves, respectively,
'ﬂowever, that using more nodes in the MEI may progressively

60 0 60
6 (degrees)

180 -120 120 180

) is used. We have obtained the same results. It

matrix equation on our personal computer (233MHz Pentiupyce the error. In Figs. 6 and 7, the induced surface current

Il) takes 5-60 s, depending on the situation.

) ) o o densities for the cylinder of radiu®A computed with various
Although we have not carried out intensive investigations as 4o depicted for TM and TE waves, respectively. Again, the

in the preceding part, it is believed that the condition NUMbfE| sojutions become more and more accuratd/dacreases.

of the overall FD-MEI matrix increases as more nodes aréthe numerical results here show clearly that the MEI is very

coupled in the MEI. Nevertheless, the problem is less serioygerent from the conventional finite-difference equations. The

than in the preceding part, as far as the remainder of ifqor produced by the finite-difference approximation of a

paper is concerned. Otherwise, we could not have obtaing@erential equation can be reduced to zero as the mesh size

with 64-bit DPA the rigorous results to be presented in tk@oes to zero. Apparently, this is not the case for the MEI

next part. with a fixed finite V as an approximation of the exact mesh
truncation boundary condition.

C. Scattering by Circular Cylinders

Now we present some numerical results for the scatterifg residual of the MEI
by circular cylinders obtained by the MEI together with the
FD method. The results are always calculated with sufficien:lll?/
small (often unnecessarily small) mesh sizes so that any fi e
mesh will not make any significant difference, at least within
the error of graphic illustrations. For a cylinder of raditis\,
it was demonstrated in [25] that the error of the MEI solution
for the case of a TM wave incidence cannot be reduced below

In this section, we discuss the residual of the MEI caused
a finite N and defined as

N
Z AmPm = R (ao

m=0

~1). (20)
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Fig. 6. Amplitude of the induced TM surface current densitf

calculated by the MEI method and comparison with the exact solutioﬁ!g' 8. Analytical solution of the induced TE surface current denity

@ = 50\ Ap = A/40,A8 = 0.05° expressed in terms of harmonic functiodd'? with n up to+K. a = 25\.

- _1-

] N=5

2_04 27 Ne7

3] N=9

1 N=11
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Fig. 9. Logarithm of the residual of the MEI under a TE plane wave

Fig. 7. Amplitude of the induced TE surface current density cal- . = ; A Ao A0 A — o
culated by the MEI method and comparison with the exact solutiomcIdence for variousV. a = 251, Ap = A/40,A8 = 0.08°.

a = 50X Ap = A/40,A0 = 0.05°.
basis functions may be far from being sufficient to express

The exact analytical solution for circular cylinders can baccurately the surface current density. It is this property of
expressed as a series in terms of harmonic functio®s To the MEI that allows one use much less basis functions than in
obtain accurate results for the case in Fig. 5 ah¥ut 341 analytical methods or the moment method so as to preserve
(n up to+£170) terms must be taken into account, as illustrat&li-good sparsity of the overall FD-MEI matrix though not so
in Fig. 8. On the contrary, if the problem is solved by the MEPPrse as FD or finite-element matrices. Otherwise, the MEI
method, N = 23 (n up to +11) is large enough to generatd"€thod would have no merits.
a rigorous solution. Our explanation is that although both (3)
and (12) or_ (13) are truncated pehmd tieh basis funct|_on, IV. CONSEQUENCES OF THELL-CONDITIONING
the truncation errors or the residuals do not necessarily have PHENOMENON OF THE MATRIX [B]

the same asymptotic behavior with respectX¥o In fact, . . . .
we believe that the residual of the MEI decays much fasterWe have shown in the preceding section that the matrix

: roblem (16) is ill conditioned for largev.and MPA must
tq zero than Fhat of 3). To demonstr_ate this, we show enerally(be) used to obtain accurategresults for MEI coeffi-
Fig. 9 the residual of the MEI for various obtained by qjones MPA is much slower than DPA. For a circular cylinder,
substituting the exact analytical solution into (20). It can bg e the analytical expressions for the measuring functions are
seen that the residual of the MEI approaches very rapidly fQajlable and the MEI coefficients for each node on the mesh
zero asN becomes large. Changiny from 5 to 23 makes tryncation boundary are the same, this problem is not serious.
the residual of the MEI about six orders of magnitude lowefor electrically large cylinders of arbitrary cross section,
Although theoretically N should approach infinity to make however, one must generally carry out numerical integration
the MEI exact, due to the fast decaying of its residual, onlyith very high accuracy at various locations on the mesh
a small number of basis functions need to be taken intuncation boundary; even worse is that the required accuracy
account in practice, even if any linear combination of thegecreases drastically as the nodes in the MEI become more
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and the computation time would be eventually unacceptabjer]
This is also the reason why only numerical results for circular
cylinders are presented here. Consequently, although the Mg
method in its original form [1] is correct, provided a sufficient
number of nodes are used in the MEI, further investigatiorff?]
must be carried out on the accurate and efficient calculation o
the MEI coefficients before the MEI method can generally be
used as a practical and efficient full wave numerical meth%io]
for scattering problems.
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