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Validity of the Measured Equation of Invariance
Yun-Sheng Xu,Member, IEEE, and Hong-Ming Chen

Abstract—The measured equation of invariance (MEI) is de-
rived without any postulates. It is shown that the coefficients of
the MEI are invariant to the field of excitation. However, the
accuracy of the MEI solution is closely related to the number of
nodes in the MEI. Coupling more nodes improves progressively
the accuracy of the MEI solution. With increasing nodes, the
matrix problem for the determination of the MEI coefficients
becomes seriously ill conditioned and generally must be solved
using multiple precision arithmetic. The consequences of the ill-
conditioning phenomenon are discussed.

Index Terms— Electromagnetic wave scattering, finite-dif-
ference method, measured equation of invariance.

I. INTRODUCTION

T HE measured equation of invariance (MEI) [1] is a newly
developed numerical method that may, if correct and

practical, truncate a finite-difference (FD) or a finite-element
mesh (FEM) very close to the object boundary in the analysis
of scattering problems. It has been applied to a variety of
field problems [1]–[20]. Since the MEI method is formulated
based on postulates and lack of theoretical foundations, there
have been conflicts on the validity of the method since
its appearance [21]–[27]. The major controversies lie in the
validity of the postulate of the invariance of the MEI to the
field of excitation, the dependency of the accuracy of the MEI
solution on the mesh size, etc. These subjects are addressed
in this paper.

More recently, Xu derived the MEI without any postulates
and came to the following conclusions [28]: the coefficients
of the MEI are indeed invariant to the field of excitation; on
the other hand, the accuracy of the MEI solution is closely
related to the number of nodes in the MEI. Coupling more
nodes may improve progressively the accuracy of the MEI
solution. The detailed derivation and related discussions in
[28] are given in Section II of this paper. With increasing
nodes in the MEI, the matrix used to determine the MEI
coefficients becomes seriously ill conditioned. Although the
ill-conditioning phenomenon has been mentioned in previous
publications [6], [9], [25], its severe consequences have not
been sufficiently recognized and the necessity and the way
to overcome this difficulty have not been pointed out. Hence,
an intensive investigation is presented in Section III. Multiple
precision arithmetic (MPA) [29] is eventually used to solve this
problem. It was demonstrated in [25] that the error of the MEI
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solution cannot be reduced below a certain limit no matter how
dense the mesh is if a six-node MEI is used. We show through
calculation of the scattering by perfectly conducting circular
cylinders in Section III that coupling more nodes in the MEI
may improve progressively the accuracy of the solution. Also
in Section III, we discuss the numerical method suitable to
the solution of the overall FD-MEI matrix equation and show
the fast decaying behavior of the residual of the MEI. In
Section IV, we discuss the consequences of the matrix ill-
conditioning phenomenon encountered in the computation of
MEI coefficients.

II. DERIVATION OF THE MEI

In this section, the MEI is derived for the problem of
electromagnetic wave scattering by a perfectly conducting
cylinder. For the case of a TM wave incidence, the longitudinal
electric field component of the scattered field can be
expressed as

(1)

where and are the position vectors to the field and source
points, respectively, is the contour of the cylinder,
is the induced longitudinal electric surface current density on
the cylinder, and is the two-dimensional free-space
Green’s function given by

(2)

with being the free-space wavenumber and
being the Hankel function of the second kind of order zero.
In order to derive a discretized form of (1) at, say, node 0 on
the mesh truncation boundary, is expanded in terms of a
complete set of basis functions defined on the surface of the
cylinder

(3)

where ’s are the current expansion coefficients. This expres-
sion is exact if becomes infinite. Substitution of (3) into (1)
yields

(4)

Hence, we have the following equation at node 0:

(5)

0018–926X/99$10.00 1999 IEEE



XU AND CHEN: VALIDITY OF THE MEASURED EQUATION OF INVARIANCE 1815

where the superscript denotes the matrix transposition.
and are column vectors defined as

(6)

(7)

with given by

(8)

where is the position vector to node 0. The unknown current
expansion coefficients ’s in (4) or (5) can be expressed as
linear combinations of the values of at nodes, locally
numbered 1 to in the immediate neighbor of node 0; and
the discretized form of (1) at node 0 can be derived in this
way. Use of (4) again at these nodes gives

(9)

where is the value of at node and the definition of
is the same as (8) except that is replaced by , the

position vector to node . In matrix form, (9) can be written as

(10)

where is a column vector given by

(11)

and is a square matrix of order whose elements
are . From (10), one can obtain

and its substitution into (5) results in the
following discretized form of (1) at node 0:

(12)

We will show that this is actually the MEI at node 0 and
the procedures in [1] to obtain the MEI are equivalent to the
above way of discretization of (1).

The MEI method postulates the validity of the following
equation at node 0:

(13)

Since one of these coefficients ’s may be arbitrary, we
can simply let . The rest ’s can be determined
through measures. If the same basis functions

are chosen as metrons, the value of theth mea-
suring function at node is then
and the measures are

(14)

Using matrix notation, (13) and (14) can be respectively
rewritten as

(15)

(16)

where is a column vector given by

(17)

Substituting derived from (16) into (15),
one obtains exactly the same equation as (12).

For the case of a TE wave incidence, the MEI can be
similarly derived. The only differences are:represents now
the longitudinal magnetic field component;and correspond-
ingly have other integral expressions. Obviously, the
present derivation of the MEI can also be extended to the
three-dimensional case.

Thus, we have derived the MEI without any postulates. It
is seen that the linear relation among the discrete field value
at a node on the mesh truncation boundary and those at its
immediate neighbors, namely the MEI, does exist. But it can
be derived and does not need to appear as a postulate as in
the original MEI method [1]. The coefficients of the MEI are
invariant to the field of excitation because the incident field
affects the current expansion coefficients’s only which do
not appear in the MEI nor in (16) used to determine the MEI
coefficients.

The only approximation in the above derivation exists in
(1) when is finite. If becomes infinite, the MEI is exact.
For finite , the MEI can only be approximately valid. This
implies that commonly used four-, six-, or, at most, eight-node
MEI may not be able to provide sufficiently accurate results
in any case. Numerical computations in [25] and here show
that this is indeed the situation, especially for electrically large
cylinders. However, it will be demonstrated through numerical
results in the next section that using a sufficient number of
nodes in the MEI and a sufficiently fine mesh, one may obtain
the MEI solution with desired order of accuracy.

It is well known that the MEI with small cannot produce
accurate numerical results for concave structures [14]. We
believe that with a sufficiently large one may also obtain
rigorous results for this kind of structures.

III. N UMERICAL RESULTS AND DISCUSSIONS

Numerical results for perfectly conducting circular cylinders
are presented in this section. The nodal configuration of
the MEI is shown in Fig. 1. The amplitude of the incident
plane wave is assumed to be unity. Harmonic basis functions

are chosen as metrons. The analytical
expressions of the corresponding measuring functions for TM
waves are available [25]

(18)

where is the wave impedance of free-space andand
are Bessel function of the first kind and Hankel function of
the second kind, respectively. For TE waves, the analytical
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Fig. 1. Nodal configuration and local numbering of the MEI(N = 17).

expressions of the measuring functions can also be derived as
follows:

(19)

It is easily seen that the MEI coefficients are actually the
same for both TM and TE waves. Besides, with the symmetric
nodal distribution of the MEI as in Fig. 1, the MEI coefficients
can be determined independent of its location on the mesh
truncation boundary.

A. Ill Conditioning of the Matrix

The matrix in (16) used to solve for the MEI coefficients
becomes seriously ill conditioned for , which is larger than
about seven. The 64-bit double precision arithmetic (DPA)
available on our personal computer cannot provide accurate
results for the MEI coefficients in this case. We apply MPA
[29] to tackle this problem.

Mathematically, the ill conditioning of a matrix is described
by the order of its condition number. The dependence of the
condition number of the matrix on , the electric size of
the cylinder, and the mesh density is shown in Figs. 2 and 3.
The results are obtained by the singular value decomposition
(SVD) with MPA and the condition number is equal to the
ratio of the largest and the smallest singular values. As can
be seen from the figures, the matrix becomes more ill-
conditioned as the electric size of the cylinder becomes larger,
the mesh size decreases, and increases. The condition
number changes most drastically with varying.

The inverse of the condition number of a matrix actually
represents the order of the required minimum floating-point
accuracy to guarantee a rigorous solution for the matrix
problem. For the case in Fig. 2, the condition number is about
10 when and ; all procedures of the
numerical computation related to the determination of the MEI
coefficients should then be more accurate than 10. In other
words, to obtain accurate results for the MEI coefficients, all
the numerical processes concerned should retain more than
30 significant decimal digits, which clearly goes beyond the
limitation of 64-bit DPA. Although on some workstations or
supercomputers 128-bit DPA is available, its ability to deal
with the present ill-conditioned matrix is still very limited.

Fig. 2. Logarithm of the condition number� versus the electric size of the
cylinder for variousN . �� = �=40;�� = ��=a.

Fig. 3. Logarithm of the condition number versus the mesh density for
variousN . a = 25�;�� = ��=a.

The MPA in [29] may provide as many significant digits as
desired, it is, therefore, used to determine the MEI coefficients.

To show the effect of the matrix ill conditioning on the accu-
racy of the computed MEI coefficients, we present (in Table I)
some numerical results obtained by SVD and Gauss–Jordanian
elimination (GJE) with DPA and MPA. Those calculated by
SVD and GJE with MPA coincide with each other. The
situation is different, if 64-bit DPA is used. For , both
SVD-DPA and GJE-DPA may provide sufficiently accurate
MEI coefficients—about five accurate decimal digits. Even in
this case, the effect of the matrix ill conditioning can also be
seen. If a well-conditioned matrix problem of such a small
order as 5 5 is to be solved, one may expect the 64-bit
DPA on our personal computer to provide the results with
about 16 accurate decimal digits. For , the results
calculated by GJE-DPA become inaccurate. SVD-DPA works
better than GJE-DPA, but generates only two or three accurate
decimal digits. For , both GJE-DPA and SVD-DPA
give completely wrong results. The reason can be easily found
through the condition number of the matrix . For the case
in Table I, we have also used the conjugate gradient method
with DPA to solve for the MEI coefficients, but succeeded in
obtaining similar accurate results as those generated by GJE
and SVD with DPA for only. For or , either
the results were inaccurate or the iteration did not converge.
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TABLE I
MEI COEFFICIENTSCALCULATED BY GJE AND SVD WITH DPA
AND MPA (a0 = �1). a = 25�;�� = �=40;�� = ��=a

B. Solution of the Overall FD-MEI Matrix Equation

Iterative methods are commonly utilized to solve large
sparse matrices. At the early stage of our work, we also
tried to apply (with DPA) various iterative methods such
as the conjugate gradient method, preconditioned biconjugate
gradient method, Jacobi semi-iterative method, successive
overrelaxation, and so on, to the solution of the overall FD-
MEI matrix equation. If few nodes, e.g. six nodes ,
are coupled in the MEI, they all work well, although some
of them may run faster than the others. Unfortunately, all of
them presented great difficulty in achieving the convergence
of iteration, as the number of nodes in the MEI increases.
A finer mesh or an electrically larger cylinder makes the
situation even worse. After many painful efforts with various
iterative methods, the authors finally decided to use a sparse
matrix solver “Y12M,” which utilizes a direct method—LU
decomposition with Gaussian elimination. It works well and
very fast. For the examples in the next part, solving a FD-MEI
matrix equation on our personal computer (233MHz Pentium
II) takes 5–60 s, depending on the situation.

Although we have not carried out intensive investigations as
in the preceding part, it is believed that the condition number
of the overall FD-MEI matrix increases as more nodes are
coupled in the MEI. Nevertheless, the problem is less serious
than in the preceding part, as far as the remainder of this
paper is concerned. Otherwise, we could not have obtained
with 64-bit DPA the rigorous results to be presented in the
next part.

C. Scattering by Circular Cylinders

Now we present some numerical results for the scattering
by circular cylinders obtained by the MEI together with the
FD method. The results are always calculated with sufficiently
small (often unnecessarily small) mesh sizes so that any finer
mesh will not make any significant difference, at least within
the error of graphic illustrations. For a cylinder of radius ,
it was demonstrated in [25] that the error of the MEI solution
for the case of a TM wave incidence cannot be reduced below

Fig. 4. Error of the MEI solution for the induced TM surface current density
Jz . a = 25�;�� = �=80;�� = 0:08�.

Fig. 5. Error of the MEI solution for the induced TE surface current density
Jt. a = 25�;�� = �=40;�� = 0:08�.

a certain limit no matter how dense the mesh is if a six-node
MEI is used. We have obtained the same results. It
is shown in Figs. 4 and 5 for TM and TE waves, respectively,
however, that using more nodes in the MEI may progressively
reduce the error. In Figs. 6 and 7, the induced surface current
densities for the cylinder of radius computed with various

are depicted for TM and TE waves, respectively. Again, the
MEI solutions become more and more accurate asincreases.

The numerical results here show clearly that the MEI is very
different from the conventional finite-difference equations. The
error produced by the finite-difference approximation of a
differential equation can be reduced to zero as the mesh size
goes to zero. Apparently, this is not the case for the MEI
with a fixed finite as an approximation of the exact mesh
truncation boundary condition.

D. Residual of the MEI

In this section, we discuss the residual of the MEI caused
by a finite and defined as

(20)
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Fig. 6. Amplitude of the induced TM surface current densityJz
calculated by the MEI method and comparison with the exact solution.
a = 50�;�� = �=40;�� = 0:05�.

Fig. 7. Amplitude of the induced TE surface current densityJt cal-
culated by the MEI method and comparison with the exact solution.
a = 50�;�� = �=40;�� = 0:05�.

The exact analytical solution for circular cylinders can be
expressed as a series in terms of harmonic functions. To
obtain accurate results for the case in Fig. 5 about
( up to 170) terms must be taken into account, as illustrated
in Fig. 8. On the contrary, if the problem is solved by the MEI
method, ( up to 11) is large enough to generate
a rigorous solution. Our explanation is that although both (3)
and (12) or (13) are truncated behind theth basis function,
the truncation errors or the residuals do not necessarily have
the same asymptotic behavior with respect to. In fact,
we believe that the residual of the MEI decays much faster
to zero than that of (3). To demonstrate this, we show in
Fig. 9 the residual of the MEI for various obtained by
substituting the exact analytical solution into (20). It can be
seen that the residual of the MEI approaches very rapidly to
zero as becomes large. Changing from 5 to 23 makes
the residual of the MEI about six orders of magnitude lower.
Although theoretically should approach infinity to make
the MEI exact, due to the fast decaying of its residual, only
a small number of basis functions need to be taken into
account in practice, even if any linear combination of these

Fig. 8. Analytical solution of the induced TE surface current densityJt
expressed in terms of harmonic functionsejn� with n up to�K. a = 25�.

Fig. 9. Logarithm of the residual of the MEI under a TE plane wave
incidence for variousN . a = 25�;�� = �=40;�� = 0:08�.

basis functions may be far from being sufficient to express
accurately the surface current density. It is this property of
the MEI that allows one use much less basis functions than in
analytical methods or the moment method so as to preserve
still-good sparsity of the overall FD-MEI matrix though not so
sparse as FD or finite-element matrices. Otherwise, the MEI
method would have no merits.

IV. CONSEQUENCES OF THEILL-CONDITIONING

PHENOMENON OF THE MATRIX

We have shown in the preceding section that the matrix
problem (16) is ill conditioned for large and MPA must
generally be used to obtain accurate results for MEI coeffi-
cients. MPA is much slower than DPA. For a circular cylinder,
since the analytical expressions for the measuring functions are
available and the MEI coefficients for each node on the mesh
truncation boundary are the same, this problem is not serious.
For electrically large cylinders of arbitrary cross section,
however, one must generally carry out numerical integration
with very high accuracy at various locations on the mesh
truncation boundary; even worse is that the required accuracy
increases drastically as the nodes in the MEI become more
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and the computation time would be eventually unacceptable.
This is also the reason why only numerical results for circular
cylinders are presented here. Consequently, although the MEI
method in its original form [1] is correct, provided a sufficient
number of nodes are used in the MEI, further investigations
must be carried out on the accurate and efficient calculation of
the MEI coefficients before the MEI method can generally be
used as a practical and efficient full wave numerical method
for scattering problems.
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