2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Antennas and Propagation
Volume 48 Number 1, January 2000

Table of Contents for this issue

Complete paper in PDF format

Novel Material with Narrow-Band Transparency Window in the Bulk

Chryssoula A. Kyriazidou , Member, IEEE, Rodolfo E. Diaz and Nicólaos G. Alexópoulos Fellow, IEEE

Page 107.

Abstract:

This paper presents the theoretical design of an artificial dielectric exhibiting narrowband frequency selective properties in the bulk without relying on periodic placement of elements. In this manner, it initiates a novel approach that bypasses the drawbacks of the traditional frequency selective surfaces (FSS), namely, unwanted passbands, dependence on excitation angle and polarization, and difficulties in conversion from planar to curved geometries. The key design elements are the concentric geometry of the inclusions and the use of Lorentzian resonant media. A discussion of physical resonant materials is presented, substantiating the credibility of the theoretical design. To illustrate the approach, a novel complex medium is synthesized as an ensemble of spherical particles composed of a lossy core coated with a highly resonant dielectric layer and embedded into a dielectric host. The resulting structure is an amorphous substance, lossy over its entire spectrum except for two narrow-band transparency windows, where it may become as lossless as desired. The parameter space of the system is thoroughly analyzed which determines the type of constitutive materials and geometries for tailor-designing the windows according to specifications (shape, positioning and overall normalization). In this sense, the lossy concentric structure forms an ideal candidate for thin absorbing films (TAF's) with extensive applications in antenna systems, RF absorbers, and anechoic chambers.

References

  1. T. A. Cwik and R. Mittra, "Scattering from general periodic screens", Electromagn., vol. 5, no. 4, p.  263, Dec.  1985.
  2. B. A. Munk, R. G. Kouyoumjian and L. Peters Jr., "Reflection properties of periodic surfaces of loaded dipoles", IEEE Trans. Antennas Propagat., vol. AP-19, p.  612,  Sept.  1971.
  3. S. W. Schneider and B. A. Munk, "The scattering properties of `super dense' arrays of dipoles", IEEE Trans. Antennas Propagat., vol. 42, p.  463, Apr.   1994.
  4. J.-O. Ousbeck and L. Petterson, "Frequency selective radomes", in Proc. 3rd Int. Conf. Electromagn. Aerosp. Applicat., Torino, Italy, Sept. 1993, p.  115. 
  5. B. Philips, E. A. Parker and R. J. Langley, "Curved dipole frequency selective surfaces", in Proc. 3rd Int. Conf. Electromagn. Aerosp. Applicat., Torino, Italy,Sept. 1993, p.  123. 
  6. R. J. Langley and C. K. Lee, "Design of single-layer frequency selective surfaces for multiband reflector antennas", Electromagn., vol. 5, no. 4, p.  331, 1985 .
  7. D. Bresciani and S. Contu, "Scattering analysis of dichroic subreflectors ", Electromagn., vol. 5, no. 4, p.  375, 1985.
  8. M. S. Durschlag and T. A. DeTemple, "Far-IR optical properties of freestanding and dielectrically backed metal meshes", Appl. Opt., vol. 20, no. 7, p.  1245,  Apr.  1981.
  9. E. J. Danielewicz and P. D. Coleman, "Hybrid metal mesh-dielectric mirrors for optically pumped far-infrared lasers", Appl. Opt., vol. 15, no. 3, p.  761,  Mar.  1976.
  10. C. M. Horwitz, "A new solar selective surface", Opt. Commun. , vol. 11, no. 2, p.  210, June  1974.
  11. W. A. Janos, "Synthetic dielectric material for broadband-selective absorption and reflection", in IEEE AP-S Int. Symp. Dig., Newport Beach, CA, June 1995,U.S. Patent 5 298 903, Mar. 1994, pp.  1852-1855. 
  12. R. E. Diaz and N. G. Alexópoulos, "An analytic continuation method for the analysis and design of dispersive materials", IEEE Trans. Antennas Propagat., vol.  45, p.  1602, Nov.  1997.
  13. C. J. F. Bottcher, Theory of Electric Polarization, New York: Elsevier, 1952, pp.  199-212, 417. 
  14. G. A. Niklasson, C. G. Granqvist and O. Hunderi, "Effective medium models for the optical properties of inhomogeneous media", Appl. Opt., vol. 20, p.  26, 1981.
  15. H. Looyenga, "Dielectric constants of heterogeneous mixtures ", Physica, vol. 31, p.  401, 1965.
  16. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media, 2nd ed.   New York: Pergamon Press, 1960, p.  45. 
  17. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles, New York: Wiley, 1983, ch. 9, sec. 5.2, 12.1, 12.3, 12-4, 9.1.4, 9.1.5, p.  149. 
  18. K. G. Breitschwerdt and H. Radscheit, "Microwave resonant absorption in metal-ammonia solutions", Phys. Lett., vol. 50A, no. 6, p.  423 , Jan.  1975.
  19. J. C. M. Garnett, "Colors in metal glasses and in metallic films", Phil. Trans. Roy. Soc. London, vol. 203, p.  385, 1904.
  20. J. C. M. Garnett, "Colors in metal glasses and in metallic films", Phil. Trans. Roy. Soc. London, vol. 203, p.  385, 1904.
  21. A. R. von Hippel, Dielectrics and Waves, New York : Wiley, 1954, pp.  97-98, 166-169. 
  22. P. Robert, Electrical and Magnetic Properties of Materials, Norwood, MA: Artech House, 1988, pp.  317-325. 
  23. G. Arfken, Mathematical Methods for Physicists, 3rd ed.   New York: Academic, 1985, p.  488. 
  24. M. L. Gorodetsky, A. A. Savchenkov and V. S. Ilchenko, "Ultimate Q of optical microsphere resonators", Opt. Lett., vol. 21, no. 7, p.  453,  Apr.  1996.
  25. I. W. Hall and C. Poteet, "High strain rate and other properties of a carbon microsphere reinforced magnesium alloy", J. Mater. Sci. Lett., vol. 15, no. 12, p.  1015, June  1996.
  26. T. Tani, K. Takatori, N. Watanabe and N. Kamiya, "Metal oxide powder synthesis by the emulsion combustion method", J. Mater. Res., vol. 13, no. 5, p.  1099, May  1998.
  27. C. A. Kyriazidou, R. E. Diaz and N. G. Alexópoulos, "Rayleigh analysis of novel dense medium exhibiting narrowband transparency window", in Conf. Proc. 14th Annu. Rev. Progress Appl. Computat. Electromagn., Monterey, CA, Mar. 1998, p.  179.