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Abstract—In the evaluation of the frequency response of a
scattering object by the integral equation technique, generally
a large linear system of equations has to be solved for each
frequency point. This paper deals with a technique that drastically
reduces the size of the linear system without loss of accuracy.
The key point is the definition of a set of problem-matched basis
functions. These basis functions are extremely efficient in the
representation of the unknown in the parameter range of interest.
In this way, the central processing unit (CPU) time required
in the response evaluation is drastically reduced. Examples of
application concerning reflection gratings are reported.

Index Terms—Gratings, method of moments.

I. INTRODUCTION

T HE method of moments (MoM) can be considered as one
of the most popular numerical techniques for solving ei-

ther open or closed scattering problems. A crucial point is usu-
ally the choice of a suitable basis function set to represent the
unknown of the problem. For instance, in the case of the scat-
tering from a conducting body, the unknown is the current in-
duced on the surface. As is well known, if is the number of
basis functions, the unknown is determined through the solution
of a linear system of size . When one is interested in the
frequency response of the structure, the MoM has to be applied
over and over again for each value of the variable parameter.

Concerning the choice of the basis functions, a small number
of them should be able to provide a good representation of the
induced current. If the structure is very complicated, “general-
purpose” type functions are used such as those introduced in
[1], which allow the maximum flexibility. If the geometry of the
structure is more or less canonical, entire domain functions are
used and the efficiency of the representation can be increased
by selecting functions that satisfy the edge condition [2]. Even
so, when the current to be expanded is a two-dimensional (2-D)
vector field, the required number of basis functions may still
be too high for response investigations or optimization-based
design activities.

In this paper, we present a new technique to generate a set of
problem-matchedbasis functions,which isbasedontheMoMso-
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lution of the scattering problem for a selected set of values of the
variable parameter. The expansion coefficients of the unknown
function are arranged columnwise in a matrix, which is then sub-
jected toasingularvaluedecomposition. In thisway, theorthogo-
nalizedproblem-matchedbasis functionset isdefined.Moreover,
by inspectionof thedynamicrangeof thesingularvalues, it ispos-
sible to control the accuracy level of the procedure.

A related method has been presented in the past to reduce the
computationaleffort involved in the frequencyanalysisofprinted
antennas [3]. It was based on the use of the resonant modes of
the antenna patch as basis functions for the representation of the
current in the MoM discretization of the electric field integral
equation (EFIE). The resonant modes were determined by ap-
plying the singular value decomposition to the part of the total
impedance matrix that refers to the radiating element. A different
technique, called “marching on in frequency” has been proposed
in the area of transient electromagnetic scattering [4]. It is based
on the the iterative solution (according to the conjugate gradient
scheme) of the frequency domain discretized EFIE. The fact that
the unknown function depends smoothly on frequency is taken
into account in the setting of the iterative scheme.

The new method that we propose is presented by discussing
an application to a structure consisting of a frequency selective
surface (FSS) of metal patches printed on a dielectric support
and backed by a solid plate. Generally, the determination of the
response to an incident wave coming from different directions
does not require the recomputation of the MoM system matrix,
butonly the relatively fastback-substitutionprocess.However, in
the case of periodic structures such as FSS, the Green’s function
is represented in terms of Floquet modes, which depend on the
incidence direction. This implies that if one is interested in the
incidence direction response of the structure, the MoM system
matrix has to be recomputed for each value of the variable param-
eter. This new method can be applied with advantage also in this
case. The geometry of the structure presented in the result section
has been defined with the goal of reducing the specular reflection
for a given frequency band and for a range of incident directions.
The example shows that this method allows the drastic reduction
of the number of basis functions without loss of accuracy and
saving a considerable amount of computation time.

II. THEORY

Even though the concept presented below can be applied to
any kind of scattering problem, a specific case is presented to
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(a) (b)

Fig. 1. Geometry of a FSS backed by a solid plate. (a) Top view. (b) Side view.

illustrate the idea. Consider the scattering from a FSS consisting
of a periodic array of patches printed on a stratified dielectric
support of thickness and permittivity backed by a metal
plate as shown in Fig. 1.The conducting patches are arranged in
the plane on the generally skew 2-D lattice defined by
the basis vectors . The problem is formulated as an EFIE,
where the current induced on the patches is represented on the
basis function set as

(1)

The application of the method of moments leads to a linear
system that, following the formulation presented in [5] and [6],
can be written as

(2)

where is an abstract matrix of size , with in-
dicating the number of points of the reciprocal lattice,the
number of basis functions, and the superscriptindicates the
hermitian adjoint. The element contains the 2-D Fourier
transform of the vector basis functions , evaluated
in the th point of the reciprocal lattice . In particular, if
the primary incident plane wave has a transverse wave vector

, the reciprocal lattice points
are defined by

(3)

where the couple of integers denotes the th point of the
reciprocal lattice. The basis vectors, are related to the
direct lattice basis vectors via

(4)

where the carets denote unit vectors. Moreover, it is well known
that are the transverse wave vectors of the Floquet modes ex-
cited by the discontinuity. The diagonal abstract matrix

appearing in (2) is the spectral representation of the Green’s
function evaluated in the points of the reciprocal lattice. The

th element of this matrix has the dyadic expression

(5)

where and are the total load impedances of the modal
current generator that represents the unknown current distribu-
tion in circuit terms. In this case, one has

(6)

where

(7)

Analogously, is an abstract diagonal matrix, de-
scribing the reflection of the structure in absence of the metallic
patches. Its th element has the dyadic expression

(8)

where

(9)

The incident electric field is described by the abstract column
vector , whose elements are the transverse electric field of
the incident plane waves with transverse wave vector. In
particular, in the case of a single incident plane wave from the
direction , , only the element is different from zero.
Finally, the column vector contains the unknown expansion
coefficients of (1).

What is of interest is the multimodal reflection coefficient
of the structure and this can be computed by the following

operator expressed in the Floquet basis:

(10)

When the frequency or the incidence direction changes, the
reciprocal lattice moves in the spectral plane and the Fourier
transforms of the basis functions are sampled in different points,
unless these spectra are rigidly connected with the lattice. This
can be obtained by defining new basis functions which contain
the phase shift imposed by the incident plane wave

(11)

In this way, the transform of is and the rele-
vant matrix does not depend on, i.e., on frequency and inci-
dence direction and can be computed once for all, which entails
a computer time saving that can be significant if the transforms
have to be evaluated numerically.

In order to reduce drastically the computer time, only a few
basis functions must be used. Obviously, these functions must
fit closely the actual current distribution.
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Consider the problem where the frequency response of the
structure is required. A possible set of “problem-matched
basis functions” is generated as follows. Let with

be the current distributions at frequency points,
evenly spaced in the band of interest. They are obtained by the
MoM as described above and have the following representation
in the basis :

(12)

where with and .
These new basis functions are certainly problem matched,
but one has to decide how many of them are necessary. If too
few are chosen, there is an unacceptable loss of accuracy in the
evaluation of the response curve. If too many are selected, even
if , one has a redundant description and there may be the
risk that some basis functions are scarcely linearly independent
from the others.

The solution to the above problem can be found by applying
the singular value decomposition to the matrix with
elements introduced in (12). It is well known [7] that this
decomposition has the form

(13)

where is a unitary matrix, is a diagonal ma-
trix with positive elements (singular values), andis a
unitary matrix. The columns of are the singular vectors
and those corresponding to nonzero singular values form
an orthonormal basis in the subspace spanned by the current
vectors . The significance of the various singular vectors

in the description of the current distribution is measured
by the amplitude of the corresponding singular values. Since
these range over several orders of magnitude, not all the singular
vectors are needed to obtain accurate results in the response
curve. Also, inspection of the dynamic range of the singular
value set allows one to ascertain whether the frequency sam-
pling is adequate. A small dynamic range means, in fact, that
the corresponding singular vectors do not have sufficient span
for an acceptable representation of the current distribution.

Let then be the number of singular vectors assumed to
be adequate to represent the unknown. Hence,is the “equiv-
alent dimension” of the subspace that contains the current rep-
resentation, at least in the band of interest. Define a new set of
basis functions via

with (14)

which can be interpreted as “orthogonalized problem-matched
basis functions.” They lead to the definition of a new projection
matrix given by

(15)

where the matrix consists of the first columns of
the matrix . The projection matrix obviously does

(a) (b)

Fig. 2. Geometry of the reflection gratingL = 14 mm,� = 45 , d = 29

mm,d = 20:5 mm,� = 2:56, s = 4:8 mm. (a) Top view. (b) Side view.

not depend on frequency and can be computed at the beginning
of the response computation and stored. The linear system to be
solved for each frequency value is still expressed by (2) with
substituted with and has size where may be much
smaller than .

III. RESULTS

To illustrate the above idea, the scattering properties of a
reflection grating are analyzed. The structure consists of an
array of conducting patches printed on a dielectric substrate and
backed by a ground plane, as shown in Fig. 2. Such structures
may have the property of eliminating the specular reflection
with a proper choice of the grating geometry [8], [9].

The grating under consideration is printed on a dielectric with
and thickness mm. The lattice geometry

is rectangular with mm and mm so that
the first higher order Floquet modes can propagate atband.
The conducting patches are square with a rotation angle of

so that in conjunction with the choice of the aspect ratio of
the lattice, the structure is less sensitive to the direction of the
incident wave in the plane.

The structure has been designed so that the specular reflection
is eliminated. The current induced on the patches is represented
by weighted Chebyshev polynomials [10] in order to satisfy the
edge conditions. In particular, the divergent and convergent be-
haviors on a generic length along the -axis are represented
as follows:

(16)

where and are the Chebyshev polynomials of the first
and second kind, respectively. The Fourier transforms of
and have analytical expressions, which, apart from factors
that can be included in the definition of the current coefficients
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Fig. 3. TE reflection coefficient of the structure of Fig. 2 versus frequency
for the incidence direction� = 30 , � = 0 : TE /TE (solid line);
TE /TE (dashed line).

, can be represented in terms of Bessel functions of first kind
as

(17)

where is the spectral variable conjugate to. Combining the
expressions (17), the basis functions for a square patch of side

assume the following forms in the spectral domain:

for directed current

for directed current

(18)

with

and the unit vectors and are the symmetry axes of the patch
(see Fig. 2) and are given by

In this way, the total number of basis functions is
. Fig. 3 shows the plots of the specular TE reflec-

tion coefficient relative to an incident plane wave with ,
. As one can see, around 10 GHz there is a strong reduc-

tion of the specular reflection. This property is maintained also
while varying the angle of incidence as shown in Fig. 4. The in-
cident wave in this case is converted mainly into the scattered
TE Floquet mode that for at 10 GHz has the di-
rection . Figs. 3 and 4 also report the TE /TE
reflection coefficients. The slope discontinuity in the specular

Fig. 4. TE reflection coefficient of the structure of Fig. 2 versus angle of
incidence at the frequency 10.05 GHz and� = 0 : TE /TE (solid line);
TE /TE (dashed line).

Fig. 5. TE /TE reflection coefficient versus frequency, computed using
Q problem-matched basis functions;Q = 1; � � � ; 7.

reflection coefficient near 11 GHz is a resonance-type Wood
anomaly. In this frequency range, 16 Floquet modes are above
cutoff in the dielectric.

The convergence of the results presented above has been
reached with 72 basis functions of the type (18) with the spec-
tral summations extended over 1750 points of the reciprocal
lattice. This means that the projection matrixof (2) has size
1750 72 and a 72 72 linear system must be solved for each
frequency and incident direction.

The problem-matched basis function concept has been ap-
plied to this problem. In the case of frequency response com-
putation, the current coefficients for TE incidence are evaluated
at frequency points, evenly spaced in the range of 8–12
GHz. The singular values of the 727 matrix containing the
current coefficients were 17.673, 8.4713, 3.0933, 1.7738,
0.4401, 0.0125, and 0.0022. The range of the singular values
confirms that the frequency sample rate is sufficient to repre-
sent the frequency variations of the induced currents. In fact,
the sequence of singular values shows a clear exponential decay
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Fig. 6. TE /TE reflection coefficient versus angle of incidence at
frequency 10.05 GHz, computed usingQ problem-matched basis functions;
Q = 1; � � � ; 7:

starting at the fifth one. Fig. 5 shows the same specular reflection
coefficient curve of Fig. 3, evaluated usingproblem-matched
basis functions obtained by (14). It can be observed that with
just , the frequency response is reproduced. It has to be
remarked that in this case the system to be solved is reduced to
5 5 from 72 72, giving a remarkable reduction in compu-
tation time without loss of accuracy.

In the MoM application, most of the CPU time is devoted to
the computation of the system matrix rather than to its inversion.
In this example the use of problem-matched basis functions led
to the computation of just 25 matrix elements instead of 5184.

This method also produces good results when the variable
parameter is the angle of incidence. In the case of Fig. 6, the
current coefficients are evaluated at seven angles evenly spaced
in the range from 5 to 45 . As can be observed, also in this
case, just five problem-matched basis functions are sufficient to
reproduce the angular response with excellent accuracy.

It has to be noticed that the structure used to illustrate
the problem-matched basis function concept is analyzed in
a frequency range where higher order Floquet modes are
propagating in the dielectric support and even in free-space.
Moreover, the presence of the metallic ground plane causes
a multimodal standing wave in the dielectric support that
modifies significantly the current distribution on the patches
when the frequency changes. This proves the broad range of
applicability of this technique.

As a final comment, one can observe that if the sampling rate
is adequate, the sequence of singular values presents a knee,
after which they decrease exponentially. As a general rule, the
singular vectors corresponding to singular values at least two
orders of magnitude below the dominant one can be safely ne-
glected.

IV. CONCLUSION

The concept of problem-matched basis functions has been ap-
plied to moment-method analysis. This idea is very useful when,
due to the complexity of the geometry, a large number of basis

functions are required to represent the unknown. The method
has been applied to study the specular reflection from a planar
array of patches backed by a solid plate. However, this concept
can be successfully applied to a wide class of problems such as
the scattering from very complex objects or waveguide disconti-
nuity problems. Consider for example the design of multiplexers
or of dual-mode elliptical waveguide filters where the projec-
tion matrix has to be computed by numerical integration [11].
Often, the geometrical configuration is obtained by an optimiza-
tion process, where several full wave analyzes are required. In
this case, the application of this method produces a considerable
reduction in computation time. Finally, the same concept can be
applied to the mode-matching technique in the waveguide dis-
continuity problem. In fact, as demonstrated in [12], this tech-
nique can be seen as the MoM, where the basis functions are the
waveguide eigenmodes.
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