IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 48, NO. 1, JANUARY 2000 67

Frequency-Domain Green’s Function for a Planar
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Truncated Floquet Wave Formulation
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Abstract—This two-part sequence deals with the derivation and large-size arrays. Therefore, attention has recently been given
physical interpretation of a uniform high-frequency solution for  to the efficient representation of the Green’s function of the
the field radiated at finite distance by a planar semi-infinite phased global array. When the primary objective is the inputimpedance

array of parallel elementary electric dipoles. The field obtained by .
direct summation over the contributions from the individual radi- of the feeding network, one can often regard the structure as

ators is restructured into a double series of wavenumber spectral infinite and employ a Floquet Wave (FW) representation of
integrals whose asymptotic reduction yields a series encompassingthe array Green’s function [4]. Accordingly, one may reduce
propagating and evanescent Flogquet waves (FW's) together with the numerical domain of the entire array to that of a single
corresponding diffracted rays, which arise from scattering of the  ,ariqgic cell. These techniques fail for the near-edge elements

FW at the edge of the array. The formal aspects of the solution
are treated in the present paper (Part I). They involve a sequence of the array and for both near-edge and moderately far-edge

of manipulations in the complex spectral wavenumber planes that €lements close to scan-blindness conditions. In general, for
prepare the integrands for subsequent efficient and physically inci- accurate pattern design or for prediction of coupling with other
sive asymptotics based on the method of steepest descent. Differenintennas, the array cannot be described using the hypothesis of

species of spectral poles define the various species of propagatingy , jxfinite structure. Instead, the FW representation mentioned
and evanescent FW. Their interception by the steepest descent path e . .
(SDP) determines the variety of shadow boundaries for the edge above needs to be mOd'f'ed to accoqnt for.a finite array, as in
truncated FW. The uniform asymptotic reduction of the SDP inte- Several recent studies [5]-[10] dealing with frequency- and
grals, performed by the Van der Waerden procedure and yielding time-domain scattering from finite periodic or quasi-periodic

a variety of edge-diffracted fields, completes the formal treatment. structures. In these studies, by using the Poisson summation
The companion paper (Part Il [1]) deals with the phenomenology - ¢4 m1a, the Green’s function of a finite array is collectively

of these local diffracted waves based on the present formal solu- L 7. .
tion. The phenomenology encompasses all possible contributions"€Presented as the radiation from a superposition of continuous

of propagating and evanescent edge diffractions excited by propa- truncated FW distributions over the aperture of the array.
gating and evanescent FW's. The outcome is a physically appealing With this representation, the radiation from, or scattering
and accurate high-frequency algorithm, which is numerically effi-  py, finite phased arrays is interpreted as the radiation from a
cient due to the rapid convergence of both the FW series and the g,ernosition of continuous equivalent FW-matched source
series of relevant diffracted fields. This is demonstrated by numer- distributi tendi h tire finite- X

ical examples for radiation from a strip array in Part Il. IStribu 'o.ns extending over the en '.re .'n'_e arrqy apgr ure.
] ’ ) Asymptotically, each FW aperture distribution gives rise to
arrlggixmlirrﬂiﬁcloquet expansions, Green's functions, phased- 5, edge truncated FW plus FW-modulated edge and vertex
' diffracted contributions. The result can be phrased in terms

of a periodicity-induced generalized geometrical theory of

|. INTRODUCTION diffraction (GTD) ray theory, which includes nonspecular

HE electromagnetic modeling of large finite-array anr_eflections as well as multiple conical edge and spherical vertex

tennas is a subject of current interest [2], [3]. The mogﬂffractlons. The FW series and the series of corresponding

direct prediction approach is based on an element-by-elem HEfaCted fields converges well in those regions away from

method of moments (MoM) implementation, which, howeve e array were all evanescent fields are negligible, thereby
i 0rl';—:tndering the FW-based formulation more efficient than direct

summation over the spatial contributions from each element of
the array.
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array of parallel dipoles in free space. For simplicity, the
dipoles are oriented parallel to the edge truncation. (Arbitrary
orientation of parallel dipoles can also be accommodated by
the techniques in this paper and will be dealt with elsewhere.)
The asymptotic treatment of the corner diffraction mechanisms
is carried out in [11] based on a canonical Green'’s function for
a sectoral-phased dipole array.

The high-frequency results from the present analysis and
from that in [11] can be applied directly to the prediction of
the radiation pattern distortion and the interantenna coupling
that occurs when the actual array is placed in an electromag-
netically complex environment like that of a large array in the
antenna farm of a space platform (Fig. 1). Such predictions are
conventionally obtained by computation-intensive tracing of
ray fields from each individual element of the array through
the complex environment [Fig. 1(a)]. Alternatively, global ray
tracing based on the FW-modulated array aperture description
permits characterization of the entire array aperture radiation
in terms of a few rays whose number is independent of the
number of array elements [Fig. 1(b)], thereby drastically re-
ducing the computational effort. The same FW parametrization
of rectangular phased-array Green’s function asymptotics can (b)
precondm_on the full wave analysis O_f aCtu_aI _reCtangl‘”ar arra¥%. 1. (a) Element-by-element ray tracing: each array element generates aray
of short wire dipoles or of apertures in an infinite ground plangat must be traced through the complex environment. (b) Global ray tracing:

as described with numerical comparisons in a forthcomiragymptotic treatment of each FW aperture distribution for the rectangular array
publication [12] generates a few FW-modulated diffracted rays from the edges and vertices of

. . . . . the array, whose tracing through the environment yields substantial saving of
The presentation of this paper is divided into two parts. Th@mputer time.

present paper (Part I) deals with the mathematical formulation.

The problem is first addressed by superimposing the field C%If-space/ > 0(¢ € (0, 7). From symmetry, the results can
tributions of each source and is then transformed into FW-based o tanded to directly7< 0. For the source array in (1),
spectral integrals that are evaluated asymptotically by the Van

der Waerden method. Part Il is devoted to the detailed phys- © = -

ical interpretation of the variety of phenomena that arise and to A7) = Z Z 9(7s ndy, md.)j(nd,, md.)  (2)
the assessment of the accuracy and efficiency of the algorithm m=—00 n=0

through numerical examples. whereg is the free-space scalar Green’s function

N

o7 k|f—ndyz—md. 2|

Il. FORMULATION

9(7 ndy, md..) ®)

. o _ T 4n|7 — ndyd — md 2|
The geometry of the problem is shown in Fig. 2, which com-
prises a phased array of infinitesimaldirected dipoles with We shall employ the spectral wavenumber Fourier representa-
unit current amplitude; the array is infinite in thedirection and tion [14, p. 481]

semi-infinite in thez-direction. Both Cartesian and cylindrical

reference coordinate systems with theiaxis along the array (7 o, 7)) = LQ /Oo /Oo

edger = 0 are introduced so that the array occupies the region 8725 J oo oo

x > 0, y = 0. The interelement period i&, andd.. in thex and e ilke (@=a")4hyy+k(z=2")]

z directions, respectively, and the dipoles are linearly phased ’ k, dkz dk,

with +, and~. denoting the interelement phasings along:the b= 2 2 @)
¥ x z

andz coordinates, respectively. With a suppressed time depen-

denceexp(jwt), the dipole currents can be represented as wherez’ = nd, andz’ = md.. On the top Riemann sheet of

the complex:,.-plane, the branch df, is chosen so as to render
J(ndy,, md.) = ze(endatrzmd:) (1) Sm(ky) < 0fork? — k2 < k2 andk, > 0for k% — k2 > k2.

The location of branch points and branch cuts with respect to the
where(z’, 2’) = (nd,, md,) is the position of dipole:, m; real-axis integration path in thg.-plane is found by introducing
here and, henceforth, a cafetenotes a unit vector and an arronsmall lossesIm (k) = 0~), which are eventually removed [14].

— denotes an arbitrary vector. The electromagnetic vector fieldSubstituting (4) into (2), a first step toward reducing the re-
at any observation point = (z, v, z) = (p, ¢, z) can be de- sulting formal solution involves the interchange of the sequence
rived from the magnetic vector potentﬁ(%‘), as shownin (11). of the n-sum and spectral integration operations, followed by
Without loss of generality, we shall restrict observations to tteimming the resulting-series into a closed form. Because the
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Equation (9) defines the FW wavenumbers along the untrun-
catedz-domain, accounting collectively for thedomain peri-
odicity. The vector potential in (6) is thus reduced to

" 2 > ootje 1
Ar) = drjd, q; / 1 — it (R

G—j[kww-l—kyqy-l—k;qz}
ky’l

ks (10a)

kyq = /K% — k2 — qu (10b)
Fig.2. Geometry of a semi-infinite array of dipoles oriented alorithe array o . .
is truncated in the direction and infinite along the direction. The vector electric field generated by the dipole array is ob-
tained from the vector potential in (10) via

spectraln-series summands are highly oscillatory undamped . O | -
exponentials wheh,, is real, then-sum is ill behaved. For sta- E=—jupA+ e VV-A (11)

bilization, we introduce a small shiét> 0 in the &, spectrum . o o )
[note thatd < ¢ < —Im(k)], thereby ensuring uniform con- Interchanging the derivative and summation-integration opera-

vergence of the-sum along the displaceld,-contour tions a_nd passing to the limit— 0 leads to the spectral repre-
sentation
. 7? oo Ne'o) ~oo+j€ oo 0o oo _
APy = —— / dk. / dk, oy L Gk, kyq, k=)
87r2j "l;oo — 00 —00+j€ nz::o E(m - 47rdz _z_: o ]_ —_ dea:(ka:*"/a:)
J(kl 7"/1)7“11‘ J(k: 7"/:)"“1: Ci—‘][kl x+kyy+k:z} 5 C_J[Za.—m'l'kl/qy'i'kzqz}

Yq

Sincele/(*= —=)%+| is less than unity along the integration pathyith the spectral vectoff given by
the series inside the integral can be evaluated in closed form
5 ¢

Glky, ky, k) = = (2kok. + 9kyk. + 2 (K2 — K*)) . (13)

R 5 o0 (&S} oco+tje k z
=2y / s / dk, o | |
8y ) e —oo+je For arbitrary orientation of the parallel dipoles with respect to
1 ' e—ilkemthyy+k. 2] the edge, the vector in (13) is replaced by a dyadic.
R ——1 ¢ (k= —v)md- — % Fig. 3 depicts the complek,-plane for the integrand in (12).
¢ Y We write

(6)
kpg = A/ K2 — k2 14
The real poles located at Pq q (14)

p requiring that3m(k,,) < 0 for k2, > k?, andk,, > 0 when

—, p=0,+1,+2 --- @) kgq < k2. This requirement is in accord with (4) and (10b),

o i.e., Sm(ky,) < 0fork? < k7 andk,, > 0for k>, >

which define the FW wavenumbers along thelirection, are k2. The integration path is indented in the clockwise direction

thereby placed below the,-integration path. around the poles. The residues at these poles describe the FW's
Next, we interchange the sequence of the bilaterally infini@ the infinite array. Whek,,, is real ¢, < £?), the poles

m-series and thek(,, k.) spectral integration operations. Thdocated on the proper Riemann sheBtr((k,,) < 0) inside

resulting spectrat-sum can be restructured via the Poissofif outside the interval{k,,, k,,) are associated with proper

ka}p =Y+

sum formula [5], by using the identity propagating or evanescent FW'’s, respectively. However, when
k,q IS imaginary @q > k?), all the corresponding FW'’s are
g d. evanescent. In both cases, improper poles, which yield FW's
> exp [j bz = 72)5 27””} that grow along the positivg-axis, are located on the improper
m=meo Rieman sheeim(k,,) > 0; although these latter poles are not
_2m i 5 <k o @) ®8) intercepted in subsequent contour deformation, their presence
T d. =7 d, can affect thek,-integration and will be accounted for in the

g=—00

asymptotic evaluation carried out in Section Ill.

which reduces thé. integration to ag-series evaluated at the To simplify the integrand in (12), we introduce the change of
spectral points variables from the Cartesiatk,, k,,) to the cylindrical polar

(kpq, @) coordinates in the spectral domain

2
buy=7+ 0 q=0,£1L %2 (9)

ke = k,q cos a, kyq = kpq sin a. (15)
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Smik

PFW Iépq EFW  Relk}

kxl kxz kx;
Fig. 3. Topology of thé:. -plane for each term of thgsum in (12). The poles @)

k., are located below the integration path; branch points occy &t k..,

with k,q = \/k? — k2. When|k.,| > k, the branch points-k,, are located Sm{o) h SDP
on the imaginary axis. : - !
-0, ® 2“'0‘24;‘
Representing the physical coordinates, z) in terms of the ‘a1q+ 21:-%# .
polar coordinatesy, ¢, z), with x = pcos ¢, y = psin ¢ -3 ¢ = 7
(¢ € (0, n), see Fig. 2), (12) becomes "Gt 2“'0‘041' Refa}
1 o -oc,,q; 21c-oc_lq$
B() = D (c)e I keap cos(a—@)+keqg] g, | ;8 :
() dnd., q:z—:oo /Ca a(@) -0, i o I
(16)

(b)

Fig. 4. Topology of thex-plane (A2), integration path€',,, and SDP’s for

in which « is the angular spectrum variable and

. é’ k k : k. (a) real values ok, and (b) imaginary values @f,,. In the shaded zones, the
Dy(a) = (Fpg COS, @, kg Sin &, kzq) . (17) integrand in (A2) tends to zero for large values of the imaginary past dhe
1 — edde[kpg cos a—va] poles in the nonshaded region are improper FW poles of thalane.

The integration patli’,, in the complexx-plane corresponds _

to the real axis in thé,.-plane. In particulaiC,, = (—joo, 7+  kpg = (kup, kypqe, k-¢) associated with F\Y, is oriented par-

joo) is shown in Fig. 4(a) wheh,, is real andC, = (r/2 — allel to the plane) = «;,, in the edge-centered polar coordinate

Jjoo, m/2 + joo) is shown in Fig. 4(b) whetk,, is imaginary. system (see Fig. 2). The plage= «,,, truncates the domain of

The polesy,,, of the functionD,(«) are depicted in Fig. 4 and existence of the PFYy on the semi-infinite array and it there-

occur atee = ay,g, With fore constitutes the PFYY shadow boundary. More will be said
about this later.

1 { Ve +27p/d, 1 { kap It is worth noting that in the arragcatteringproblem, when
Ppg = €08 < kpq ) - oo <_> (18) dealing with propagating FW’s for which,,, is real,m — a,

defines the direction of incidence of that plane wave which gen-

herek,, = ,/k? — k2, may assume real or imaginary values€rates by phase matching the same specular reflected field as
the radiated PF\),; it therefore defines as well the shadow

The cos™! function in (18) is defined through its principal . .
values [see also Appendix A, (38) and (39)] so that the pOkk:e)§>1undary for th.ereflected PFW,, in the scattering problem
when the array is truncated.

ap are located as depicted in Fig. 4(a) and (b) for real an
imaginaryk,,, respectively. The integration contoQy, avoids
the poles via a semicircular detour in the counterclockwise ll. HIGH-FREQUENCY SOLUTION

direction. The improper (nonphysical) poles are distributed 14 evaluate each integral in (16) in the high-frequency range,
along locii identical withC,, except for a translation of7;  the integration contour is deformed into the steepest descent

these poles correspond to those on the improper Rieman shggh (SDP) through its pertinent saddle point in the phase func-
of the k, plane. tion

The poles represent the angular spectra of FW’s on the infinite
array of dipoles. Poles with?, + kZ < k? are associated with a= . (20)
propagating Floquet waves (PFW’s) (régl,,) while all other

poles are associated with evanescent Floquet waves (EFW@), cases have to be distinguished depending on whéther

Pq

(imaginaryk,,,). From (10b) and (18) is real or imaginary. Referring to Appendix A, whep, is real
the SDP assumes the conventional shape shown in Fig. 4(a),
kypg = \/k? — k2, — k2, = k,q sin ap, (19)  while whenk,, is imaginary, the SDP is a straight line parallel

to the imaginary axis [Fig. 4(b)]. In the latter case, all poles are
with the branch of the square root defined in accord with (4¢aptured during the deformation wheén< = /2 and none is
Sm(kyp,) < 0whenk?, + 2, > k* andk,,, > 0 when captured wher > x/2. The residue contributions due to the
kip + kgq < k?. For PFW,,, is real and the wave vectorintercepted poles yield FW fields (Section 11I-A). The saddle-
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point evaluation of the integrals along the SDP yields diffracted 2) To provide the required continuity of thépq and ﬁpq

FW’s emanating from the edge of the array (Section IlI-B). fields across th Iqu shadow boundary of Fyy. These
analytic and physical attributes of the diffracted field will
A. Truncated Floguet Waves be substantiated from the asymptotic evaluation of the
Implementing the contour deformation described above, the ~ SDP integral in (23), which is performed next and which
electric vector field in (16) is expressed in terms of two contri- IS interpreted in detail in Part Il [1].
butions Anticipating briefly, the asymptotic edge diffracted field is

oo oo found to be modulated by thedomaing-indexed FW period-

B(R) = EFW AU(65B — é) + Bl (1) icity [see (9)] but, for a given, is not affected by the-domain
() 2 B U o)+ 2 B p-indexed FW periodicity. The diffracted field ray vectors

P, q=—00 g=—00 L,
k;j are centered on the-axis and reach the observer along
where diffraction cones, which are FW-modulated generalizations of
~FW 1 = the smooth-edge version in conventional GTD.
By (1) = 2dod. kypq G(Kaps Fupgs kzq) _ The asymptotic evaluation of the SDP integral, which defines
i (apwtheq2thypqy) 22) E?(F), is performed via the Van der Waerden (VdW) method

[15] (see also [14, Sec. 4.4]). The asymptotics is dominated

arises from the residues at the poles intercepted during the ptfhe saddle-point contribution, but is sensitive to whether the

deformation and?;j(f‘) represents the integral along the SDP Pol€ is near the SDP and/or is crossed by the SDP. If the pole
and the SDP are distinct, each can be evaluated separately from

5q(a)6_j[kpqp cos(a—d)Hk=a7] gy the_ other. When t_he SD_P and pole are contiguous, the_asymp—
4rd. Jspr totics must be refined, i.e., made uniform, to account simulta-
(23)  neously for both; this is the transition region near and across
As noted earlier, the residue contributions represent the FWife FW,, shadow boundaryﬁqu in physical space. The Vdw
of the doubly infinite array; they are truncated in (21) by thghethod proceeds by mapping the given spectral integral onto a
Heavyside unit step functioti(r) = O or1forn <0orn >0, canonical integral, which expresses the pole-SDP interaction in
respectively, which terminates their domain of existence at thﬁg simplest possible manner in addition to a regular pole-less
shadow boundary planes = ¢, ”. The shadow boundary is yemainder integral. The canonical integral is the error function,
defined to occur at that ang‘ﬁgq for which the polea,, lies  the transition function familiar in the uniform theory of diffrac-
on the SDP. Expressions fgf P pertaining to the various FW tion (UTD) [16]. While there are various asymptotic techniques
species, derived in Appendix A are as follows: which yield the decomposition into the transition function plus a
i regular remainder, we regard the VdW method as the “cleanest”
;ff = qp, = cos™! <ﬂ> forrealk,,,(PFW) (24a) for asymptotic book keeping and best suited for our purposes.
re Via the VdW method, each pole is individually extracted from
the spectral integrand, thereby isolating the pole contribution

AGE

;ff = cos ! <kﬂ) for from the resulting regularizing remainder. Because the regular-
zp ization process is addition and subtraction, the integrity of each
imaginaryk,,,(£F'W) and reak,, (24b)  operation is evident and its asymptotic behavior with respect to
largek (i.e., high frequencies) can be assessed systematically.

sB _ T sor Turning now to our spectral integral in (23), we have found
pe 2 it convenient to isolate from the spectral integrand the function

imaginaryk,,,(EFW) and imaginary:,,. ~ (24c) [g]

Note that the above formulation applies ¢o € (0, 7); ex- . r . .
pressions relevant tp € (r, 2r) here and in what follows Wq(@) = D" (Wpg—(a) + epibpgr (@), € = sgn(ksy)
may be obtained by formally substituting — 27 — ¢ and p==r (25)
yo oy Ty where
B. Diffracted Waves—Uniform Asymptotic Evaluation -1 é(/% +k k.q)
i i i T ; Wpgr (@) = o= B v (26)
The SDP integral in (23), which represents mﬁf‘) contri- 25kypqda qin pe to
bution to the total electric field, is here broadly referred to as
the diffracted field. It serves two principal functions: In the modified remainder, this function is subtracted from

1) To introduce an FW-modulated edge-diffractgdn- 5q(a) in (16). The functionl/f/q(a) is constructed in such a
dexed wave species, which is essentially cylindrical witivay as to have the same poles and residued gs) in (17).
respect to the array edge along thexis. This wave As shown in Appendix BIV, () exp(—jk,,p cos(a— ¢)) can
species exists for all observation angfesn contrast to be expressed in a closed analytic form on the SDP. Increasing
the (p, g)-indexed truncated FW’s in (21), which behavehe numberP of extracted poles augments the region around
like plane waves [see (22)] in the regign< ¢§(IB and the saddle point in which the functioﬁq(a) — Wq(a) is
vanish whenp > ;fq’;. smooth and regular, thus legitimizing its approximation by
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the value it assumes at the saddle point. Note that the polesofollows [17]:

be extracted include not only those associated with physical ) jnjag s i/

PFW and EFW, but also those associated with improper waves F(6%) = £/m /™06 e erfe(c/™/76) (32)
whose presence may influence the behavior of the integrand. |
particular,w,,+(c) contains the improper poles. The overal
procedure, which is summarized in Appendix B, leads to t

Here the upper/lower signs apply ffe/™/45) 2o. Equation
32) can also be written as

following asymptotic expression for the diffracted field F(8?) = ﬁejw/466i62
B . Nerfe(ed™/48) — _ jm/4
By L [ et lexfe(e/™/46) — 20 (~Re(e™/46))] . (33)
1 drd, \| kpqp

As seen from (33), the functio(6,,—) = F(62, )/bpq—,
which is proportional to the term,,_(¢)F(67, ) in (27), is

Io() + Z wp(l—(‘/’)F(‘s;q—) discontinuous whe# e(¢?*/46,,,_) changes signs. From (31)
p== and (33), it also follows thaf,,_ (¢)F(&2,_) is discontinuous
when its complex argumer&ﬁq, crosses the imaginary axis.
+ epWpg () F(82,4) (27) Taking into account thak,, = |k,q| Or k,y = —jlk,q|, when
|k2ql < Eoorlk.,| > k, respectively, it is straightforward
- to verify that this discontinuity occurs exactly on the shadow

in which 75, (at) = D,(«) —

g(a). This expression may be poyundaryp = ¢52 where the FW’s are spatially truncated. The
rearranged as

function Q(6,,—) compensates uniformly for the discontinuity

- of the truncated FW’s. Details on the compensation mechanism
E{c}i(;’) ~ 1 27 eI (kpgpthzqz) for the various FW species are given in Part Il of this paper.
dmd, \/ Kpqp Here we only mention that the termsgu,,(¢)F (5, ) in
r (27), which correspond to improper poles in the extraction pro-
Dy(¢)+ > (g (HF(E2,) —1] cedure, have ng-discontinuity in the upper(> 0) half-space
p=—1P region, but stabilize the asymptotic solution across the shadow
boundary of a proper FW even when that boundary approaches
gy (DF (1) = 1]) | - (2g) 9razing aspect

When |k.,| > E, the resulting diffracted field in (27) or

(28) is evanescent along thalirection, with exponential decay
In (25)—(28),k,, is defined in (14) and” denotes the number exp(—|k,4|p). Those radially attenuated diffracted waves that
of poles extracted in the VAW procedure. The error funcfion are negligible sufficiently far from the edge furnish a rough

is the transition function of the UTD [16] criterion for truncating they-series of diffracted rays in (21),
' o 3 . which is analogous to that for truncating the FW series in (21).
F(z) = 2j/x " / " dt, with — 5 < arg(z) < 5 Thus, except for field calculations very close to the array, our
» (29) formulation is substantially more efficient than the ordinary el-

ement-by-element summation; this aspect will be quantified in
the Part Il of this paper.

fapg k¢
bpgt = \/2k,qp sin <MT> . (30) IV. SUMMARY

The functionF'(x) tends to unity for large magnitude of its com- A ur)ifo]cr_njthigh-fr%quer;]cy sgll;tion has be_en present;aqdfor
plex argument, i.e., for observation points far from the shado%vsfml"m |n|te pzr.lo l'C P .aset d elam-s;;n_nln% array 0” II en-
boundaries. Consequently, (28) is suitable for interpretation tb(fa elementary dipoles onented along rection parafle

the asymptotic behavior of the diffracted fields far from th&O the array edge. Arbitrary orientation of paraliel dipoles can

shadow boundaries. For lard the quantityl — I is of asymp- also be addressed by the same formulation and will be dealt

totic order(k,,p)~" so that the dominant asymptotic term is asw'th elsewhere. The field is represented in terms of propagating

sociated with the FW-modulated diffraction coeﬁicielﬁg(@ (rac_iiating) and evanescent (nonrqdiating) '.:W,S "’.‘”d of propa-
in (17); the diffracted field has the cylindrical decay rate/2 gating and evanescent diffracted fields, which uniformly com-
Equ:ation (27) is more suitable for exploring the field behévi ensate for the FW discontinuities at their shadow boundaries.

close to one of the shadow boundaries; in this case, the term ar%? physical interpretation of the various wave processes con-

sociated wit Ef closest top becomes asymptotically domi_tamed in the asymptotic solution presented here is carried out in

nant and necessitates the compensation of the shadow boun('jjélalrt Il of this paper, with an emphasis on the diffracted ray-field

r . "
discontinuity in both the truncated propagating and evanescé)HF{vr a broad range of operating conditions. Moreover, the accu-

Floguet waves. To show this, it is convenient rel&tdo the racy of the asymptotic algorithm is assessed there by numerical

complementary error function examples.
The present solution may be used for rectangular arrays by

invoking the locality of high-frequency edge phenomena as for-
malized in the GTD. Accounting for the corner diffraction con-

whose argument&ﬁqjE in (27) and (28) are given by

erfc(z) = % /00 e dr (31)
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tributions on arectangular array via an asymptotic Green'’s func- APPENDIX B

tion procedure based on the formalism here is presently under THE VAN DER WAERDEN PROCEDURE

investigation [10}-[12]. Mogifying 5q(a) in (16) by adding and subtracting the func-
tion W,(«) defined in (25), yields

APPENDIX A
THE SDPAND THE SHADOW BOUNDARIES ., 1 i PO
o E(7) = > eIy + Iw) (40)
The SDP, for the two cases in whiéh, may assume real or dmd. g0
imaginary values, can be ascertained by decomposing the argu-
ment of the exponential term in (16) into its real and imaginavyhere
parts, . o :
Iy = / T, () Ikear cos(a=2) gq (41)
. SDP
— Gkpgp cos(cr — )
= —jkpgp (cos(a, — ¢)cosh oy
+j sin(c,. — @) sinh o), 0 = @ + joy;. (34) Ly = Wq (c)e Thear cos(a—e) Jny (42)
sDIP?

By definition, the SDP is the locus of points for which the imag-

, - : nwhich T, («) = D () — W, (c) is a smooth regular function
;n;d%g%r;ig;trf dp))hia:e function in (32) is equal to that at tdﬁthe vicinity of the SDP. Consequently, thgintegral in (41) can

be asymptotically approximated by replacifig«) by its value

Sm (—jkpgplcos(a,. — @) cosh «; + 7 sin(a,. — @) sinh o)) atthe saddle point = ¢ so that

. —k,yqp, fork,,real - . V2T§
= %m(—jkmp) = {07 e for kZZ imaginary. (35) I ~Ty(¢) Fpap e Ikear, (43)
Equation (33) is then reduced to Due to the particular choice ¥, the integral in (42) is evalu-

cos(ar — ¢)cosh ay = 1, for &, real ated in an exact closed form by using the equality [18]

sin(a,. — ¢) = 0, for k,, imaginary (36)
yielding the SDP depicted in Fig. 4(a) and (b), respectively.

e_jkpqp cos(a—¢)
/ e e
SDP i <¢pq + a)
The shadow boundary angfg’? is found by imposing that 2

the SDP passes through the polexat «,,, i.e., _ V27j e Ikeap . <2k » sin® <¢pq + ‘/’>>
kpqp in <¢pq + (/)) e 2
cos (Re(ayg) — ;ff) cosh (Im(ayy)) =1, for k,, real 2
(37a) (44)

with F' defined in (29). From (43) and (44), itis straightforward
sin (Re(apg) — ¢57) =0, for k,, imaginary  (37b) to obtain (27).
It is worth noting that (43) and (44) are valid fb, real or
Consider first a real pole,,,, which is associated with a PFW;imaginary and with corresponding SDP contoursin Fig. 4(a) and

in this case, (37a) reducesdes(c,,, — qu) = 1sothaty,, = (b), respectively. To reduce the left side of (44) into the standard

¢3B, as stated in (24a). When,, is associated with an EFW canonical integral, use changes of variable —jv/2 sin((a—
(k2 "> k2.), while maintainingk,, real, the inversion of the #)/2) ands = v/2 exp(—j/4) sin((a—¢)/2) for &, real and
zp pq/? rq ’ . - . re
cos function in (18) yields imaginary, respectively.
tpg = —J cosh™ (kup /K py), for k,, positive  (38a) ACKNOWLEDGMENT

One of the authors, F. Capolino, would like to thank the Com-
mission for Educational and Cultural Exchange between Italy
) . . and the United States for a Fulbright Grant awarded in 1997, to
apg =7+ cosh™ (kazp/kpq)  fOT kap negative  (38b) conduct research at Boston University, Boston, MA.
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whenk,, is imaginary
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