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Frequency-Domain Green’s Function for a Planar
Periodic Semi-Infinite Phased Array—Part Il
Diffracted Wave Phenomenology
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Abstract—This second part of a two-paper sequence deals with along ther andz coordinates, respectively, (see [1, Fig. 2]). The
the physical interpretation of the rigorously derived high-fre-  time harmonic ¢/«*) electric field is represented in terms of a
quency asymptotic wave-field solution in Part |, pertaining {0 a  ggrieg encompassing propagating and evanescent Floquet waves

semi-infinite phased array of parallel dipole radiators. The asymp-  Zpw /- _ . .
totic solution contains two parts that represent contributions due E; (77 = (=, 4, 2) = (p, ¢, #)) together with their corre-

to truncated Floquet waves (FW’s) and to the corresponding edge sponding diffracted field.@fli(F), which arise from the edge of
diffractions, respectively. The phenomenology of the FW-excited the array. Using the same notation as in [1], the high-frequency
diffracted fields is discussed in detail. All possible combina- gqiution is summarized as

tions of propagating (radiating) and evanescent (nonradiating)

FW and diffracted contributions are considered. The format o g — B o =
is a generalization of the conventional geometrical theory of  E(7) = Z B (MU(¢py —¢) + Z ES(7) (D)
diffraction (GTD) for smooth truncated aperture distributions P, g=—00 q=—00

to the truncated periodicity-induced FW distributions with their

corresponding FW-modulated edge diffractions. Ray paths for where

propagating diffracted waves are defined according to a general- ~

ized Fermat principle, which is also valid by analytic continuation BEV () = G(kap, kypg> koq) (i Bepm ki) thear ()
for evanescent diffracted ray fields. The mechanism of uniform rq B 2d,dkypq

compensation for the FW-field discontinuities (across their trun-

cation shadow boundaries) by the diffracted waves is explored for represents the Floquet waves (FW) on thinite array, trun-
propagating and evanescent FW's, including the cutoff transition - cated in (1) via the Heavyside unit step functibitn) at the

from the propagating to the evanescent regime for both the FW 7 .sB
and diffracted constituents. lllustrative examples demonstrate: shadow boundary plang = (/)P’I [1. €q. (22)]. In (1)

1) the accuracy and efficiency of the high-frequency algorithm

under conditions that involve the various wave processes outlined (7 C—J’(k‘pqﬂ+k‘zqz) 27y B
above and 2) the cogent interpretation of the results in terms of 2 (1) ~ dnd. ko p [ a(®)
the uniform FW-modulated GTD. = rt
r
Index Terms—Electromagnetic diffraction, Green’s functions, - (82 _1
phased-array antennas. + ZP (wpq_(d))[ (Epg—) =11
p——
- 2
+6Pwpq+(¢)[F(6pq+) - 1] )

. INTRODUCTION

. . -~ represents edge-generated diffracted fields, which uniformly
I N .PAR_)T | of this paper [1], a un_|fo_rmﬁh|gh_ frequen_cy_ S0 compensate for the discontinuity of the truncated FW’s. The
lution is presented for the electric field radiated at finite

distance by a planar semi-infinite phased array of parallel ellé\—N indexesg andp tag features associated with the array

mentary electric dipoles. The array is infinite in thelirection periodicities along the infinite domain and the semi-infinite

and semi-infinite in the:-direction with interelement period, + do_mam, respeciively. In (Z)G(k“f’ ky, kz_) IS th_e spectral
andd. in thex andz directions, respectively; the dipoles arelin—a mplitude of the vector electric field radiated in free-space

. . . . by an elementary dipole oriented along [1, eq. (13)],
early phased with,, and~.denoting the interelement phasmg:?czp s kg kymyarepthe propagation r?oLstan?s Esp?a]ctral

wavenumbers) of theqth FW along the directions, =z, p, ¥,
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The present paper deals with the phenomenology of the
diffracted fields which are formally represented in (3). In
Section I, ray theory is introduced to parameterize and in-
terpret the diffracted waves associated with both propagating
(radiating) and evanescent (nonradiating) truncated FW. The
FW (diffracted field) connection, which is established via
phase matching along the edgeaxis), can be expressed as
a Floquet-generalized Fermat principle. The diffracted fields
as such are categorized in terms of propagating and radially
evanescent contributions depending on whefhgris real or
imaginary. Section Il deals with the mechanism of uniform

compensation for the FW field discontinuities by the diffracted %/

waves, and with the spatial transition regions near the shadow : s
boundaries, due to propagating and evanescent FW’s incident NRRNRRAR R R

on the edge. Section IV calls attention to phenomena associated BEEREEEEIIYY
with FW cutoff on truncated arrays by tracking the high-fre- (b)

guency solution through the transition from the propagating

to the evanescent regime. Moreover, the cutoff transition pf- 1. Edge diffracted waves excited by FW's (3). (a) Propagating diffracted
. . . . rays (|k.,] < k) emanating from a point), and propagating along a

diffracted waves from conical propagation to radial evanegiraction cone with aperture anglé,. (b) Evanescent diffracted wave

cence is discussed. Section V deals with simplifications of thi¢.,| > &) propagating along and decaying exponentially along The

various solutions in the far-field limit. Section VI containgvavefrontand radial amplitude profile are schematized.

illustrative examples that test the accuracy and effectiveness

of our high-frequency solution, and quantify the influence Gnd7” = pcos¢Z + psin¢gg + z2. Thus, an observer atis

various wave processes on the solution. The paper ends wiAched by a ray which emanates from a paJptat z, on the

conclusions in Section VII. edge of the array with directiokf’. Becausé:¢ in the(p, ¢, z)

coordinate system is independentdgfthe phasd?;i -7 is the

Il. GENERALIZED FERMAT PRINCIPLE FORDIFFRACTEDRAYS ~ same for all points, z) on the ray cone centered @, with

The ray interpretation of the FW and diffracted wave Solus_eml-angleﬁq given by

tions is based on the wavenumber vectl%@ and %4, which k.
. . . 3 — —1 *q 7
parameterize the ray field. Thus, we introduce fBq = cos ) @)
FEW = kot kgl + kg2 (4) This scenario is schematized in Fig. 1(a), which depicts the

local coordinates, the ray coordinates, centere@ atThe ray

as the wave vector perpendicular to the phase front of the profsinching mechanism is that associated with an edge-centered
gating FW's. The carétenotes a unit vector. For a propagatingquivalent line source having a linear FW-based phasing
FW (PFW),k05 " is real and identifies the radiation (ray) direcexp(—jk.,z), which generates the conical ray fields along
tion of thepgth PFW (PFW,,). For an evanescent FW (EFW),/}’;Ii for the propagating casf:.,| < k. This provides the
the y component oft;"™ is purely imaginary. The EFW’s connection between the RV field exciting the array edge
propagate at grazing with phase-propagation (ray) vector  and the resulting diffracted field, whence the paiht can be

. regarded as the FYy diffraction point for the field observed

Re(ETV) = kupd + kg’ (5a) at a specified”. The process can also be formalized by a

o _Floquet-generalized Fermat principle as
maintaining a phase speed less than the speed of light

(|%m(I§EIFW)| > k) and exhibiting exponential decay along /f(f—f’Q) 5 JPEW (82)
|y|with attenuation vector |7 — Zg P

(5b) [see Fig. 1(a)]. Similarly, EFW’s with fast phase-propagation
speed along the-axis (|k.4| < k) diffract at a pointQ, on
The boundary between the propagating and the evanesdBftedge, whose coordinatg is determined by a generalized

zm@EIFW) = kypqd-

FW's is defined by the cutoff conditioh,,, = 0. Fermat principle for EFW's
k(7 — Z . ;o
A. Propagating Diffracted Rays % L= ,;’Eqm . 5. (8b)
—2Q

The diffracted field phase term in (3) is generated by the ) . _ . o
saddle-point condition for the formal steepest descent path inf. the previous d|scu§5|on on phase matching, the projections
gralin [1, eq. (23)], and can be written Ag,p + k.2 = /5;11 7, of the phase propaga'uon vectors for PFW’s and EFW’s in (8)
with along thez-axis are

K& = Kpg €08 ¢ + kg Sin ¢ + kog? = kpgp+ kg (6) REFW .z =, foranyp. 9)
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;, Transition regions / / / /
[ (parabolas) /) ¢ -
SB A

Transition regions
(ellipses) —

Fig. 2. = = constant plane projections of the shadow boundaries opdttte FW and thepth transition regions of theth diffracted ray in (3). The FW is
confined to the regiong < ¢52 and¢ > 2m — ¢52. () PFW(052 = ap,g = cos™(kap/ksg)). (b) EFW, with propagating diffracted wavgh.,| < k;
@58 = cosT (kg /kap)). (C) EFW, with evanescent diffracted wallé.,| > k; ¢52 = 7/2).

For this reason, the diffracted field contributiﬁiff(?) has been diffraction effects caused by EFW’s with_,| > k can be ne-
tagged with only one summation indexnstead of the double glected due to their radial exponential decay.

index pertaining to the FW'’s. Diffracted rays produced by FW’s The various asymptotic wave fields in (3) undergo spatial
with differentk., arise from distinct diffraction points (one for transitions across their respective shadow boundaries which are
eachq). Moreover, far from the shadow boundaries of all FW'sreated below.

(¢ far from ¢52), the transition functiod” [1, eq. (29)] tends to

unity so that the summation oveiin (3) does not contribute to

the leading asymptotic order; what remains [i.e., the contribu- Ill. SHADOW-BOUNDARY TRANSITION FOR DIFFRACTED

tion associated witl]ﬁq((z))] represents the nonuniform asymp- WAVES

t9t|c e>_<press.|on for the d'ﬁraCt‘?d f|elE;11(F). In th|§ re_g|me, The FW shadow boundary is located where the steepest
D,(¢) in (3) includes all of the diffracted FW contributions de'descent path (SDP) intercepts its spectral pole (see [1, Sec.
noted byp = —oo top = +oo. l1I-A]). We select a FW and follow the evolution of its shadow
boundary (SB) (i.e., the migration of its spectral pole) and of the
B. Evanescent Diffracted Waves corresponding diffracted field when varying the interelement
Ehasing% (this corresponds to scanning the beam of the array
the plane orthogonal to the edge). During this evolution, the
W transforms from propagating to evanescent; Fig. 2 depicts
a schematic of the truncated FW in a plane orthogonal to the
edge ¢—y plane). Across a shadow bounday= ¢52, the
gument of the Fresnel transition functiénin (3) produces a
§continuity in the representation Egj which compensates
or the FW truncation. Fig. 2 also shows the transition regions
of Eg which are defined as those regions of physical space,
exterior to which the diffracted field has a ray optical behavior,
i.e., where the nonuniform asymptotic (isolated) evaluation of
E4(7) o e7WReale for g such thafk.,| > k. (10) the diffracted field contribution associated wiffy, in (3) is
sufficiently accurate. Conversely, inside this region where the
Theg-series of diffracted rays in (1) now converges rapidly witkW and diffracted ray fields cannot be separately identified the
distance from the edge. This behavior of the diffracted wavEsesnel transition functiod” significantly differs from unity
Eg(F) along p (with ¢ such thatik.,| > k) could again have (see Appendix), thus generating the proper transformation of
been anticipated because of the previously mentioned equive diffracted ray for uniform compensation of the truncated FW
alence with radiation from a smooth traveling-wave line cudiscontinuity. In the following subsections, the compensation
rent alongz, which has a phase velocity less than the speedmichanisms and the evolution of the transition regions during
light. The diffracted FW’s which contribute substantially to théeam scanning are discussed for three different cases: PFW
scattered field include all PFW’s and those EFW’s that hayEig. 2(a)], EFW with propagating diffracted field [Fig. 2(b)],
|k.q| < k. Sufficiently far away from the edge of the arrayand EFW with evanescent diffracted field [Fig. 2(c)].

As inferred from (7), the diffraction cones become mor
and more acute when the phase velocity of the EFW along
z-axis decreases. When, approaches or —k, the diffraction
cone angleg3, tends to zero ofr, respectively. After that, when
|k.q| > k, there is no real poin), on the edge that satisfies
(8), and the solution of (7) is complex. Thus, the diffracted ra
become complex and the resulting diffracted field is evanesc
along thep direction [Fig. 1(b)], with exponential decay term
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(@) (b)

Fig. 3. Truncated FW, close to cutoff transition«(,, &~ 0 ora ). The amplitude of the FW tends to infinity. Longer arrows denote diffracted rays with greater
amplitudes. The amplitudes of the diffracted rays tend to diverge at the shadow boundaries when these SB’s approach grazing. (a) Shadow ledormany clos
(apg = 0); the truncated FW for the semi-infinite array is confined to a small angular region of space. (b) Shadow boundaryr¢loge te = ); the truncated

FW for a semi-infinite array is distributed essentially throughout all of space. (c) Finite array close to cutoff of FW; the truncated FW is canneallteegion

of space. At the cutoff limi«,, — 0, 7), the angular domain of existence of the FW tends to zero and the combination of diffracted fields from the two edges
provides cancellation of the singularity at grazing aspect.

A. Propagating FW'’s B. Evanescent FW and Propagating Diffracted Wave

Consider the shadow bounda@f [1, eq. (22a)] for the PFW h . h that th b
[Fig. 2(a)], which occurs along the propagation direction of t e,W en 7, varies such that the FW becomes evanescent

PFW in the transverse: (= const.) plane E|g. 2(b)] while maintaining a prop_agqting diffracted field
with |k.,| < k, the shadow boundary is given by

2(113 = Qpq = COS_I(kwp/kpq)- (11)

Here (¢ =~ d);(l;’), Opg— = /2kpgpsin((apg — ¢)/2) in [1,

ed. (30)] vanishes and the uniform theory of diffraction (UTDJo interpret (15) geometrically, let us denotedipe unit vector,

Fresnel function can be approximated as [2] which defines the direction of propagation of that diffracted ray
that lies exactly on the shadow boundary. This direction is iden-

- — N\ ek, ified from the | ion b he shadow boundary pl
F(82,_) ~ sgn(¢SB — ¢)sin <%q 9jk,.p (12) fified from the intersection between the shadow boundary plane
e P 2 " ¢ = ¢3P and the diffraction cone with apertug

5B = cos T (kpy fhap),  TOT |kog| < k. (15)

prq

wheresgn is the sign function. Thus, the transition functiéh
assumes the same value on each side of the SB. Consequently 5= 1 /}qi = sin 3, cos ¢2§§§;
[see (3)] R PR

. + sin B3, sin ¢S24 + cos 3, 5. (16)
F(65,_)Tpq—(¢) > Tra e

~ sgnu(¢ — ¢5B) V7 hpgp Glkap, kypas koq) (13) FOr @ PFW, [see (4) and (11)], one notes thiat = kLW,
PN 25 kypq e Py thus confirming that the PFYy travels with the speed of light
alongs. Although it is not obvious, the same property holds for
an EFW,,. In fact, (5a), (9), and (15) imply that
Eq(7) ~san(d— dp) 5 By (M; d~dpy (1) SR FEFW
bq

and (3) simplifies to

)-8 =sing, cos d)?,l;’k,,p +cos Bk, =k (A7)

which states that the amplitude of the leading diffractive term

in (3) is exactly 1/2 of that of the nontruncated FW field in (2Jhus demonstrating that in the directiénthe phase velocity of

on the shadow boundary. This ensures continuity of the tothe EFW wavefront likewise equals the speed of light. Since

scattered field. A similar behavior is known to hold for a smooth lies on the diffraction cone, the entire propagating conical

edge SB [2]. edge-diffracted wave travels with the speed of light. This shows
Fig. 2(a) also shows the transition region surrounding the SBat the direction where the compensation mechanism occurs,

Like the transition region for the diffracted fields due to a peroincides with that direction which ensures the phase matching

fectly conducting half-plane illuminated by a propagating plarteetween£" ™ and the associated diffracted wakg.

wave [2], this region is cylindrical with respect to the edge and When the observer is situated near the $B:(</)p};’), the ar-

has a parabolic cross section defined by a constant valiyjg.of guments?,_ [1, eq. (28)] of the transition functioft' in (3) has

(see (28) in Appendix). a vanishﬁ%]é real part and a nonnegative imaginary part, making
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F discontinuous. Using [1, eq. (31)], the discontinuous part fer diffracted waves from the conical propagating to the radi-
put in evidence via ally evanescent regime.

— p A. Diffracted Ray Behavior During FW Transitions
F(8% ) =2U(¢ — ¢°B)sin <M> 257k Ha- _
(8pg-) (¢ = 9p) 2 1 5paP From (2), it is apparent that in each FW contributibf,",

T A% erfe(e™ 46, (18) a factork,,, appears in the denominator; thus, the figlf"
becomes singular at its cutoff condition

where
/' same function as in (1); kypg = 0. (21)
erfc continuous function given in [1, eq. (29)].
Introducing (18) into (3) leads to This conditions is equivalent to
fid (= SBY 7AFW /. ~ 4SB 2 _ 1.2 2
Eq (r) ~ U(d) - ¥pq )qu (m7 d) ~ ¥pq - (19) k kl’P + kZ(I (22)

Therefore, close to the shadow boundary, the dominant asyrifiich means that the phase velocity of the FW at grazing
totic term ink,,p has the same value as the nontruncated Faiches the speed of light. Consequently, the fields radiated
wheng > (/)%3, but vanishes whep < 2;3 thereby providing collectively by the source array superimpose coherently along
continuity of thetotal field. Note that becaus%q_ - j|6§q—|! the array plane, thus gstabllshln_g a kind of global resonance.
the first contribution in (18) decays exponentially, as it must ifOr the present case, since an infinite number of sources are fed
order to compensate for the EFW discontinuity. On the contraRy enforced currents, the field at the cut-off diverges. In actual
the second contribution in (18) is not attenuated since the furltennas, at the beam-pointing angle where a Floquet wave is
tion erfc asymptotically provides a terexp(—js2, _) out of a at cutoff, the ac;tive input imp'edances become §trongly reactive.,
transition region. For the present case the transition region i@l an abrupt impedance mismatch occurs; this phenomenon is

an elliptical shape [see Fig. 2(b)]. As shown in the Appendi$10wn as scan blindness.

[see (30)] the transition ellipse has one of the two foci on the The cutoff condition also implies that,, = |ks,|. This
array edge and the other on thaxis; the shadow boundary in-means that the azimuthal angig, defined by both (11) and
tersects the ellipse at its apex. (15) is

When ~, changes further, the FW becomes so strongly
evanescent that the shadow boundary approaches the limiting
casep>* = 7/2. The transition region tends to a circle centere . . . .

pgq -
at the edge, as can be inferred by observing that the eccentrigi’ir positive or negativé, respectively. The two cutoff condi

1/] cos apq| vanishes fotk,,| — cc.

pg =0 OF Qpg=m (23a, b)

c%s in (23) describe different phenomenologies.

Consider first a situation when thegth truncated FW ap-
proaches the conditiom,, = 0 [Fig. 3(a)], thus implying from
(11) that¢? ~ 0. The FW just emerges from the evanescent

The phenomenologies in Fig. 2(a) and (b) may also be gentrthe propagating regime and exists in a relatively small region
ated by variation of the interelement phasing In that event, of spaceld < ¢ < 2}? < land¢ > 27 — ¢§};’ near the array
even the diffracted field itself may become evanescent wheurface, as seen from (1). The first term inside the braces of the
|k=q| > k [Fig. 2(c)], thus providing diffracted fieldﬁg in (3) is finite and well behaved far from the

shadow boundary. In thesum of (3),w,, F (¢) contain a van-
2(113 =7/2, |k.q| > k (k,q, purely imaginary. (20) ishing termsin c,, in the denominator [1, eq. (24)]. However,

because, = sgn(k.,) =1andés2 , ~ &2 _ the quantity

C. Evanescent FW and Evanescent Diffracted Wave

The diffracted field discontinuity is described again by (19),
since (18) is also valid for imaginary values/gf,. As shown Wpg (D) F(6p4—) + eppg s (B)F(65,4) (24)
in the Appendix [see (31)], the transition region has again an
elliptical shape but with the second focus in theirection. In- is finite and well behaved everywhere far from the shadow
creasingy. (and, thus|k.,|), the diffracted contributiorE;j be- boundary. Near the shadow boundapy~ d)]qu), only the term
comes more radially evanescent and the ellipticity of the trangi (3) that contains the relevant transition function becomes
tion regions increases as well. However, for increafing, E;l large, as it must be in order to compensate for the disconti-
becomes insignificant due to its strong radial attenuation.  nuity of the FW as stated in (14) or (19), for PFW or EFW,
respectively.

Consider now the case when the truncated,Fapproaches
the conditionay,, = , implying from (11) that>? ~ . The

In this section, we discuss the phenomenology of the dilomain of existence of this FW is all of space, as can be verified
fracted rays for the cases in which the exciting FW’s underdgmm (1) [Fig. 3(b)]. Near the cutoff conditiofxy,, ~ ), this
transition from propagating to evanescent, as may occur duriR@/ exists almost everywhere with an amplitude, which tends to
beam scanning. Furthermore, we discuss the cutoff transitiorfinity. However, this apparently unphysical behavior does not

IV. CUTOFF TRANSITIONS
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occur when applying the present formulation to an array of fianishes and the direct FW contribution does not contribute
nite size, which contains a second edge. In this case indeed,tthéhe total field. The far-field pattern is then provided by the
existence range of the FW is constrained to a very small angutambination of the diffracted fields from the two edges, as oc-
region of space by the shadow boundary of the opposite edgeofs for GTD scattering by a metallic strip. In this combination,
the array [Fig. 3(c)]. Now, far from the shadow boundary, thihe singularities of the diffracted rays at the shadow boundaries
diffracted fieldﬁg due to both edges is finite and well behavedtancel, thus providing a well-behaved field everywhere. The
in particular, the expression in (24) wheﬁ}f ~ 7 is again total far-field E,(#) from the strip array may be obtained see
finite since¢, = —1 and 6§q+ ~ 65(1_. In ray-optical terms, [1, eq. (17)] as

whenay,, — 0 (7) and¢ — 0 () simultaneously, the grazing

diffracted ray at edge 1 [see Fig. 3(c)], after being excited by . V275 eI kpgpthsgz)

the FW, propagates phase matched to the FW at the speed of By(r) = drd, Z \/ﬂ

light due to the close-to-cutoff condition. Consequently, when v o
the same FW excites the diffracted field at edge 2, the latter is "By (#)G(kpgcos ¢, kpgsing, k.y)  (26)
in phase with the diffracted ray from edge 1. Since the excita-

tion coefficient at edge 2 is equal in magnitude but opposite where the summation overincludes only the propagating dif-
sign with respect to that at edge 1, the individual diffracted rdyacted fields G is defined in [1, eq. (13)] and

singularities cancel also for this limiting case.

1 o dNdalkpg cos 6—72]

By(¢) = 27)

B. Cutoff Transition Behavior of Diffracted Rays 1 — eidalkpq cos =]

The transition from propagating to evanescent diffracted rays

pd ] i —

£ is defined by_ the cutoff ngd_'t'o’f"’q = 0. From (3) one priate to and weighted by the initial phase at the two edges.
notes that the diffracted field is singular whenk,, = 0 gquation (27), which yields essentially the array factor of the
or, alternatively, whenk.,| = k(8, = 0, 7). In this lim- £\ _eycited array, has maxima Atd,, [k,q cOS P — 72| = 2pm,

iting case, the dlffrac_'uon poin®, moves toward infinity and ; o for ¢ = a, With ay, real. This confirms the well-known

the aperture of the diffraction cone tends to zeroroAs al-  connection between antenna theory and FW theory, whereby the

ready noted in connection with (7), the scattering behavior paittern maxima line up with the SB's of the synthesizing FW's.
similar to that of radiation from a traveling wave-line source

whose phase velocity at cutoff is equal to the speed of light;
the coherent confinement of the field energy to the vicinity of
the z-axis causes the amplitude to diverge. However, the dif-

fracted field £ due to an edge of finite length is bounded by nymerical calculations have been carried out to test the accu-
two shadow boundary cones arising dfrom the two end-points Qfcy and effectiveness of the asymptotic solution (1), as well as
the edge. Whet.,| = £, the field £7 again collapses to the v, pighlight the effects of the various transitions between wave
vicinity of the edge but is radiated into space by the end-poigfe ies A reference solution is constructed via the element by
contrlbutlgns (tlp dlf_‘fracted fields). This will be the subject of &ement summation of the individual dipole source contribu-
separate investigation. tions in [1, eq. (2)], which necessarily have to be truncated. Our
truncated reference arrays containk A/ elements along and
z, respectively. Because the finite array is intended to simulate
the semi-infinite array of dipoles, all field evaluations are refer-
Using the FW-modulated aperture distribution model, the fagnced to one of the-oriented edges (the-axis in our case) and
field pattern of a strip-type array can be treated by the superiBe dimensionsvd, andA d. of the array should be chosen so
sition of the nonuniform diffracted rays from the two paralleds to render the contribution from the other edges (and there-
edges. For each edge, the nonuniform contribution at infinilere also from the corners) small enough to be negligible. Ra-
distance from the array is given by the dominating diffractivéial field scans are then conducted around the poiat 0 on

term in (3) when the Fresnel transition function tends to unitythe z-axis in the center of the truncatéd section [see inset of
Fig. 4(a)]. For one special case (the first example in Fig. 4(a)

. 1 o . with &N = 1000, M = 3000), we have successfully calibrated
EJ(7) ~ =] T eIkeartha2) 3 (). (25) the asymptotics for the semi-infinite array against the reference
=\ PpaP solution because the additional edge contributions can truly be
ignored from an array of this size. However, because of the ex-
The diffraction patternﬁq(¢) contains singularities at theh cessive computation times required for this reference solution,
shadow boundary of the PEWI1, eq. (17)]. we have chosen arrays with = 100 andA4 = 2000 (Figs. 4(b)

For a strip array withV dipoles in thex direction, the trun- and 5) orA = 3000 (Figs. 6-8) for the other numerical exam-
cated FW is confined between two parallel shadow boundapies (Figs. 4(b)-8). The choidé = 100 ensures that for obser-
planes. On the plane orthogonal to the edges, at a disfanceations taken along circular arcs centered at 0 on thez-axis,
greater tharL?/\ (whereL = (N — 1) dz), using the far-field the field from the othee-directed edge is small in comparison
limit, the angular region, where each propagating FW exidbsit not entirely negligible. Therefore, the curves in Figs. 4(b)-8

generated by the interference of the pattefn$¢) appro-

VI. |LLUSTRATIVE EXAMPLES

V. FAR-FIELD LIMIT
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region of existence ig < d)ﬁ}f (see Fig. 2); the shadow bound-
aries SB, are here located at°53, = 127°, ¢58 = 83.6°,
and¢$P = 34.4°. The FW field is discontinuous at each SB,
and the diffracted fieldﬁg, arising from the diffraction point
Qo atzg = 0, compensates for the three discontinuities so as to
provide a continuous total radiated field. Every other diffracted
field Eg with ¢ # 0 becomes negligible sufficiently far from
o 30 6 9 120 150 180 the edge because of its exponential decay [see (10)]. Actually,
o (degree) the ¢ # 0 diffracted fields compensate for discontinuities at the
shadow boundaries of the EFW'’s. However, these discontinu-
6 - (a)SB - ities are small due to the EFW exponential decay algrasd
P - are practically invisible for the case in Fig. 4(a)
Fig. 4(b) compares the total field obtained from the present
technique (continuous curve) fof = 100 and N = 1000; the
3= dots again represent the reference solution. All other parameters
40 N=1000 are the same as in Fig. 4(a). Far = 100, the contributions
35 FW+diff — from bothz-edges are included. It is evident that the diffraction
go YL effect due to the far parallel edge is small compared to that of
0 30 60 90 120 150 180 the edge under investigation. Thus, in the remaining examples,
¢ (degree) N = 100 will be considered sufficient to essentially highlight
(b) the effect of the diffracted field from an isolated edge, although
we retain the second edge contribution in order to confirm the

Fig. 4. Amplitude ofz-component of electric field versusat radial distance accuracy of the algorithm when Comparing with the reference
p = 2A from the z-axis. M = 3000;d, = 1.4\, d. = 05\ ~, =

0.7A~1, . = 0 (kEFW in (4) points in the directio = 90°, ¢ = 83.6°). Strip array.
Truncated FW contribution [first sum in (1)]: dashed curve; high-frequency In Fig. 5, the near-field scan is at= 2.2\ from the z-axis
expression of the total field in (1_):so|id curve; element-by-glementsummatioahd the periodicity isl, = 0.3\ d. = 1.1\. The interele-
dots. (@)/V = 1000. (b) Comparison betweeN = 100 andN = 1000. . 1 Ey_1

ment array phasing, = —0.9A %, v. = 0.5\ * is chosen

so that the array vectdt}F™W in (4) points along the direc-
calculated by our asymptotic algorithm also include the diffratcion 5 = 85.4°, ¢ = 98.3°. The z-component of the elec-
tion contribution from thez-edgez = Nd,., thus modeling a tric field is shown in Fig. 5(a), whereas theand ¢ compo-
strip array. nents are shown in Fig. 5(b). The high-frequency solution [solid

We now discuss these examples in detail. Fig. 4(a) shows eexve, (1)] is in excellent agreement with the reference solu-

sults for a near field scan at radial distance= 2X from the tion (dotted curve) and significantly differs from the FW con-
z-axis. In this example)/ = 3000 and N = 1000 is chosen as tributions alone (first summation in (1), dashed curve). As be-
noted above so as to render the contribution from the other edgee, the FW contribution£"" and the diffracted field&¢ are
negligible. The periodicity igl, = 1.4\, d. = 0.5, and the taken over the indexes3 < (p, ¢) < 3 because all the other
interelement array phasing, = 0.7A7!, v, = 0 is chosen so FW's and diffracted waves can be neglected due to their expo-
that the PFW array vect@%’OFW in (4) points along the direction nential decay along thg andp directions, respectively. Again,
B =90°, ¢ = 83.6°.The three curves in Fig. 4(a) represent thexcellent agreement is found between solution in (1) and the ref-
z component of the electric field since all other components ageence solution. For these parameters, three PFW'’s propagate
zeroin this case. The continuous curve is obtained by the asyrapay from the arrayES ™YY, ESF W, and 5, with domains
totic high-frequency solution in (1), whereas the dashed curge< ¢5° andg® | = 105°, ¢55 = 98.3°, and¢gp = 162.6°.
is obtained by the FW contributions [first summation in (1)[The FW fields are discontinuous along these directions and the
The dots represent the reference solution (element-by-elemdiffracted fieldsﬁﬂl, Eg, and Ef compensate for the discon-
summation in [1, eq. (2)]. In both cases, only a finite numbeinuities at SB _;, SByy, and SB, respectively. It is impor-
of FW's E};}V have been included, namely those with indexdant to note that, due to the different choice of periodicity, we
p andq from —3 to +3; all others can be neglected because diave three propagating diffracted fields with three differemt-
their exponential decay along thedirection. Similarly, only dexes, while in the previous example, only one propagating dif-
diffracted field contributions@;}, with indexq from —3 to +3 fracted field § = 0) occurs even though both examples have
are retained in the summation (1) because all others can betheee propagating FW’s. Now, the three diffracted fields arise
glected due to their exponential decay alongdldérection. The from three different diffraction points identified &3_1, (o,
excellent agreement in Fig. 4(a) between the asymptotic sohrd@; in Section IlI-A and they propagate along three different
tion in (1) and the reference solution validates the series truncéffraction cones with semi-angles ; = 146°, 5, = 85.4°,
tions; both solutions coincide on the scale of the drawing. In faeind3; = 8.6° given by (9) [see also Fig. 1(a)]. Every other dif-
even a smaller number of terms would have been adequate. Tiaeted field can be neglected sufficiently far from the truncation
periodicity d, = 1.4\ along thez coordinate is large enoughbecause of its exponential decay algr(this is the case here for
to permit three PFW'’s to propagate away from the array. The= 2.2}). Again, as before, the diffracted field compensation
propagating FW fields arBTFYY | ENFW and ENFW and their  for the exponentially small EFW discontinuities at their SB's

E,(B)
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Fig. 6. Asin Fig. 5, except fof, = —0.945\ .
Fig.5. Amplitude of (a)-component and (ky)- and¢-components of electric
field versuss at radial distancg = 2.2 from thez-axis. M = 2000, N =

100; d = 05X, d. = 11N, 7o = —0.9A71, 7. = 0.5A~ l(kPF“ in

4) points in the directiom = 85.4"7 ¢ = 98.3°). FW contribution (dashed 60 S8 | o4
curve); FW plus diffracted field (continuous curve); element-by-element -
summation (dots).
)
=
cannot be detected in the plots of Fig. 5. Note that in the present Ky’
case, the = 1 diffracted field E¢ is stronger than the other two 45 | Fw i
due to the rather smal},; = 0.94\~*, which appears in the de- w0 el.byel." " 5
nominator of (3); the other two modes halyg _; = 3.51A~* 70 75 80 85 90 95 100 105 110
andk,, = 6.281 L. ¢ (degree)

In Fig. 6, we examine a case that is almost the same as in
Fig. 5. Nevertheless the difference is the now slightly small€&ig- 7. Amplitude ofz- component of electric field verst:isat radial distance
value ofy, = —0.945A~*, which leads to quite different be-" =~ 034 from the z-axis. M = 3000, W To0i d= = 0.5, d- =
PFW PFW 0.8X, 7. = —0.3A7", 7. = 1.57A7" (k57 Y in (4) points in the direction
havior: two propagatlng FW', "), By and one non- 3 = 75.5°, ¢ = 93°). FW contribution (dashed curve); FW plus diffracted
propagatlngEO EFW , which decays away from the array Howdield (contmuous curve); element-by-element summation (dots).

ever, the three correspondlng diffracted f|eIE§1, EO, and

E¢ all propagate away ff0m the truncation edge. The SB’s lie |n Fig. 7, representing the electric fielkcomponent, the
alongd)o * = 105.6% @5y = 98.7°, andgip = 176.5 »°, Te- near-field scarf0® < ¢ < 110° atp = 0.3X from the z-axis
spectively, andB,; delimits the region of existence (E‘OEIFW is intended to demonstrate compensation, by an evanescent
that is close to itsutoff condition (21)—(23); indeed, we havediffracted field ¢,, < k) of an SB discontinuity due to

kyor = —J0. 06 A% and gy = 7 + j0.06. At a distance the disappearance of an EFW contribution. The periodicity
p = 2.2X\EEFW s not negligible because itis close to cutoff. Afs d, = 0.5\, d. = 0.8, with the interelement phasing
a greater dlstance its contribution is negligible whereas the dif; = —0.3\7!, v. = 1.57A~! chosen to have the array

fracted fieldE¢ that compensates for its disappearance is progector K5FW in (4) along the directiot = 75.5°, ¢ = 93°.
agating and, thus, cannot be ignored. Infali’;f is strongest in All designations pertaining to Figs. 4(b)—6 apply, as do the
amplitude among the three propagating diffracted FW's becausemments pertaining to the number of retained JVénd

k,1 = 0.943\" ! is smaller thark, _; andk . Fig. 6 highlights diffracted contributions. Rather good agreement is found
the important role of the diffracted field. Note that the FW corbetween the asymptotic solution in (1) and the reference
tribution alone overestimates the field by about 10 dB due swlution, the small difference between the two curves being
the closeness of one FW to its cutoff. Under these critical codue to the closeness of the observation point with respect to
ditions in which there is a quasi-grazing EFW propagating clotiee edge; the asymptotic evaluation loses its accuracy there.
to grazing, the diffracted field (3) compensates for the disconffor the above parameters, o ¥ propagates away from
nuity of the EFW remarkably well and the total field predictethe array, whlleEOEF_V}’ is close to its cutoff condition. Fig. 7

by (1) is in excellent agreement with the reference solution. depicts the SB’s of these two FW's, at the azimuthal angles
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uation in the high-frequency range. This formal asymptotic so-
lution has been interpreted in the present paper (Part 1) in terms
of ray-optical constructs that generalize the methodology of uni-
form GTD for radiation from smooth linearly phased truncated
plane aperture distributions to the methodology of periodicity-
modulated truncated aperture distributions. Each of the gener-
alized effects due to bulk radiation from the truncated aperture
025 os oms 1 152 and the associated edge diffractions has been compared (where
o/ relevant) to the simpler effects encountered in the smooth con-
ventional case. These canonical studies can now be extended to
Fig. 8. Amplitude ofz-component of electric field versysato = 160°. honuniformly excited arrays. When a smooth slowly varying ta-
The curves denoted by (a), (b), (c), and (d), refer to the cases treatedpgring function modifies the excitation of the elements over the
Figs. 4(a), and 5-7, respectively. FW plus diffracted field (continuous curvgltire domain of the array, the asymptotic field is modified adi-
element-by-element summation (dots). . . . .
abatically by invoking the local nature of high-frequency phe-
nomena [3]. When the tapering function vanishes at the edge,
621 = 90°, @55 = 93°, respectlvely Note thatg® | is significant slope diffraction contributions may arise, which are
given by (20) becausk, _; = —j0.1A"! is imaginary. The presently under investigation.
FW fields are discontinuous along these directions and theSummarizing the particulars of this paper, we have estab-
diffracted fieldsE<, and E¢ compensate for the $B_; and lished that the periodicity-modulated diffracted rays arise from
SBy discontinuities, respectively. Note that in this case thdiffraction points on the edge4{axis) and propagate from there
diffracted field £¢, is evanescent WhlleEff is propagating. along the surface of diffraction cones according to GTD. The
Also, E¢ 1 isvery close to the cutoft,, = 0 for the diffracted aperture of these cones and the position of the diffraction points
field. The small discontinuity ap = 90° is due to the disap- are intimately related to the-component:., of the propaga-
pearngOEFJ}’ field and is well compensated by the evanescetibn vector associated with each exciting F\WThe diffracted
diffracted field. The combination of small = 0.3\ and small waves are radially propagating or evanescent depending
kyo,—1 = —j0.32A7* near thek,,, = 0 cutoff has made it on whether|k.,| is smaller or greater than the free-space
possible to highlight the compensation mechanism. wavenumberk. Under the latter condition, the nonradiating

Finally, the scan along thedirection in Fig. 8 demonstratesdiffracted fields behave like waves excited by an equivalent
the convergence of the asymptotic solution even close to tslewly phased-line current propagating along the edge, with
edge and close to the cutoff condition of the diffracted fieldadial decay, storing reactive energy in the vicinity of the edge
The scan is performed withranging betweefi.1x and2X ata dipoles. Apart from this pleasing physical interpretation of
fixed angle¢ = 160°. At greater distances, the asymptotic rethe edge-centered diffraction processes, the radially attenuated
sultin (3) is more accurate than in the proximity of the edge ariffracted waves, which are negligible sufficiently far from the
its accuracy is thus not analyzed there. The four cases shoeuge, furnish a simple criterion for truncating the diffracted
denoted by (a), (b), (c), and (d), refer to the cases treatedwave series similar to that for truncating the FW series. Thus,
Figs. 4(b)-7, respectively. Again, solid curves refer to our solexcept for calculations of fields very close to the array, our
tion in (1), while dots refer to the reference solution. The agreasymptotic formulation is substantially more efficient than the
ment between the two solutions is fairly good even close to tbedinary element by element summation (the estimated gain in
edge. The solid and dotted solutions agree wellggs 0.2X. computing time is about two or three orders of magnitude for
Case (c) refers to the quasi-cutoff FW; nevertheless the convilie examples in Section IV). Numerical examples have demon-
gence of the asymptotic solution is good even in proximity tetrated that our high-frequency algorithm is uniformly valid
the edge. through a variety of shadow boundaries and cutoff transitions
for the truncated FW’s and their associated edge diffractions
and that good accuracy prevails even relatively near the edge
(down to about\/4 in our examples).

In this two-part sequence of papers, we have examined théThe results obtained and the physical insight gained from this
formal structure and the detailed phenomenologies pertainipigptotype problem form the basis for extension to more gen-
to semi-infinite linearly phased planar periodic arrays of paeral truncated periodic and quasi-periodic arrays. It should be
allel current dipole radiators or, equivalently, to oblique planeoted that the active periodic Green’s function of an array of
wave scattering by parallel short-wire elements arranged int@aurces is the basic building block for construction of a method
planar periodic array. By collective treatment of the effects dud moment (MoM) solution for large array antennas, which may
to the individual radiators or scatterers, the problem has bemrercome problems of large matrix inversion typical for an ele-
rephrased in terms of a superposition of truncated FW’s and tinent-by-element approach; the field representation in terms of
associated FW-excited edge diffractions. We have explored BW diffracted rays can be usefully employed to expand the un-
possible combinations of propagating and evanescent FW-(diitown currents of the integral equation pertinent to the array
fracted wave) interactions and have structured the rigorous ar@bblem. This leads to the hybrid asymptotic MoM method for
ysis in [1] in such a form as to permit efficient asymptotic evalarge arrays described in [4], which is being further developed.

E, (dB)

VII. CONCLUSIONS
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APPENDIX 3) Evanescent FW's with Evanescent Diffracted Walre:
this case, botlt,,, andk,, are imaginary, where both, and
arpg are complex (cf. [1, eq. (39) and fig. 3(b)]). Nowgs cp,q IS
imaginarysin «,, is real and greater than 1, and (28) is rewritten
The transition region can be analytically defined £65?) — as

1| > ¢, wheree is a small arbitrarily chosen positive number.
Due to the regular and continuous behavior of the transitio
functionF in[1, eq. (29)], which tends to unity for large magni-

DIFFRACTED RAY-TRANSITION REGIONS

I;%l‘P| sin 3| [(1 F sin ¢sin ocz,,q)2 — (cos pcos am)Q] 1/2 < A

tude of its argument and vanishes for small arguments, the abgve (32)
relation can be equivalently expressed&s$ < A, whereA is

such thatF'(A)| = 1 — ¢ [5]. Referring to [1, eq. (30)] and (7), A 33
this implies that p< e[ sin 3, (sin cpy F Sin¢) (33)

The transition regions are again elliptical but the major axes
lie on they-axis. One focus of each ellipse still coincides with
the edge of the array; the other focus is on the relevant shadow
boundary, which coincides with the positive or negatjvaxis
(28)  for6,,_ oré,, , respectively [Fig. 2(c)]. The interfocal distance

is 24 /(k sin 3, cos arpe|?) and the eccentricity i/ sin cvy,,.

2 (¢Fa
|6§q:F| = ‘ZkﬂquHlQ <qu

=kp|sin ,(1 — cos ¢ cos a,g Fsingsina,y)| < A.

Since (28) does not involve the observation coordinatthe
transition regions are cylinders with axes parallel to the array ACKNOWLEDGMENT
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