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Abstract—This second part of a two-paper sequence deals with
the physical interpretation of the rigorously derived high-fre-
quency asymptotic wave-field solution in Part I, pertaining to a
semi-infinite phased array of parallel dipole radiators. The asymp-
totic solution contains two parts that represent contributions due
to truncated Floquet waves (FW’s) and to the corresponding edge
diffractions, respectively. The phenomenology of the FW-excited
diffracted fields is discussed in detail. All possible combina-
tions of propagating (radiating) and evanescent (nonradiating)
FW and diffracted contributions are considered. The format
is a generalization of the conventional geometrical theory of
diffraction (GTD) for smooth truncated aperture distributions
to the truncated periodicity-induced FW distributions with their
corresponding FW-modulated edge diffractions. Ray paths for
propagating diffracted waves are defined according to a general-
ized Fermat principle, which is also valid by analytic continuation
for evanescent diffracted ray fields. The mechanism of uniform
compensation for the FW-field discontinuities (across their trun-
cation shadow boundaries) by the diffracted waves is explored for
propagating and evanescent FW’s, including the cutoff transition
from the propagating to the evanescent regime for both the FW
and diffracted constituents. Illustrative examples demonstrate:
1) the accuracy and efficiency of the high-frequency algorithm
under conditions that involve the various wave processes outlined
above and 2) the cogent interpretation of the results in terms of
the uniform FW-modulated GTD.

Index Terms—Electromagnetic diffraction, Green’s functions,
phased-array antennas.

I. INTRODUCTION

I N PART I of this paper [1], a uniform high-frequency so-
lution is presented for the electric field radiated at finite

distance by a planar semi-infinite phased array of parallel ele-
mentary electric dipoles. The array is infinite in the-direction
and semi-infinite in the -direction with interelement period
and in the and directions, respectively; the dipoles are lin-
early phased with and denoting the interelement phasings
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along the and coordinates, respectively, (see [1, Fig. 2]). The
time harmonic ( ) electric field is represented in terms of a
series encompassing propagating and evanescent Floquet waves

together with their corre-
sponding diffracted fields , which arise from the edge of
the array. Using the same notation as in [1], the high-frequency
solution is summarized as

(1)

where

(2)

represents the Floquet waves (FW) on theinfinite array, trun-
cated in (1) via the Heavyside unit step function at the
shadow boundary plane [1, eq. (22)]. In (1)

(3)

represents edge-generated diffracted fields, which uniformly
compensate for the discontinuity of the truncated FW’s. The
FW indexes and tag features associated with the array
periodicities along the infinite domain and the semi-infinite

domain, respectively. In (2), is the spectral
amplitude of the vector electric field radiated in free-space
by an elementary dipole oriented along [1, eq. (13)],

are the propagation constants (spectral
wavenumbers) of the th FW along the directions ,
respectively (see [1, fig. 2, eqs. (7), (9), (14), (19)]), while

is the angular spectrum formulation
corresponding to the ( ) coordinate frame ([1, eq. (18)]).
Furthermore, and are defined in [1, eqs. (17), (25),
and (26)] and is the transition function of the uniform
theory of diffraction (UTD) [1, eq. (29)], [2], whose arguments
are defined in [1, eq. (30)]. The above formulation applies
for ; expressions for may be obtained by
formally substituting and .
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The present paper deals with the phenomenology of the
diffracted fields which are formally represented in (3). In
Section II, ray theory is introduced to parameterize and in-
terpret the diffracted waves associated with both propagating
(radiating) and evanescent (nonradiating) truncated FW. The
FW (diffracted field) connection, which is established via
phase matching along the edge (-axis), can be expressed as
a Floquet-generalized Fermat principle. The diffracted fields
as such are categorized in terms of propagating and radially
evanescent contributions depending on whetheris real or
imaginary. Section III deals with the mechanism of uniform
compensation for the FW field discontinuities by the diffracted
waves, and with the spatial transition regions near the shadow
boundaries, due to propagating and evanescent FW’s incident
on the edge. Section IV calls attention to phenomena associated
with FW cutoff on truncated arrays by tracking the high-fre-
quency solution through the transition from the propagating
to the evanescent regime. Moreover, the cutoff transition of
diffracted waves from conical propagation to radial evanes-
cence is discussed. Section V deals with simplifications of the
various solutions in the far-field limit. Section VI contains
illustrative examples that test the accuracy and effectiveness
of our high-frequency solution, and quantify the influence of
various wave processes on the solution. The paper ends with
conclusions in Section VII.

II. GENERALIZED FERMAT PRINCIPLE FORDIFFRACTEDRAYS

The ray interpretation of the FW and diffracted wave solu-
tions is based on the wavenumber vectors and , which
parameterize the ray field. Thus, we introduce

(4)

as the wave vector perpendicular to the phase front of the propa-
gating FW’s. The caretdenotes a unit vector. For a propagating
FW (PFW), is real and identifies the radiation (ray) direc-
tion of the th PFW (PFW ). For an evanescent FW (EFW),
the component of is purely imaginary. The EFW’s
propagate at grazing with phase-propagation (ray) vector

(5a)

maintaining a phase speed less than the speed of light
( ) and exhibiting exponential decay along

with attenuation vector

(5b)

The boundary between the propagating and the evanescent
FW’s is defined by the cutoff condition .

A. Propagating Diffracted Rays

The diffracted field phase term in (3) is generated by the
saddle-point condition for the formal steepest descent path inte-
gral in [1, eq. (23)], and can be written as ,
with

(6)

(a)

(b)

Fig. 1. Edge diffracted waves excited by FW’s (3). (a) Propagating diffracted
rays (jk j < k) emanating from a pointQ and propagating along a
diffraction cone with aperture angle� . (b) Evanescent diffracted wave
(jk j > k) propagating alongz and decaying exponentially along�. The
wavefront and radial amplitude profile are schematized.

and . Thus, an observer at is
reached by a ray which emanates from a pointat on the
edge of the array with direction . Because in the
coordinate system is independent of, the phase is the
same for all points ( ) on the ray cone centered at , with
semi-angle given by

(7)

This scenario is schematized in Fig. 1(a), which depicts the
local coordinates, the ray coordinates, centered at. The ray
launching mechanism is that associated with an edge-centered
equivalent line source having a linear FW-based phasing

, which generates the conical ray fields along
for the propagating case . This provides the

connection between the FW field exciting the array edge
and the resulting diffracted field, whence the point can be
regarded as the FW diffraction point for the field observed
at a specified . The process can also be formalized by a
Floquet-generalized Fermat principle as

(8a)

[see Fig. 1(a)]. Similarly, EFW’s with fast phase-propagation
speed along the-axis diffract at a point on
the edge, whose coordinate is determined by a generalized
Fermat principle for EFW’s

(8b)

By the previous discussion on phase matching, the projections
of the phase propagation vectors for PFW’s and EFW’s in (8)
along the -axis are

for any (9)
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(a) (b)

(c)

Fig. 2. z = constant plane projections of the shadow boundaries of thepqth FW and thepth transition regions of theqth diffracted ray in (3). The FW is
confined to the regions� < � and� > 2� � � . (a) PFW(� = � = cos (k =k )). (b) EFW, with propagating diffracted wave(jk j < k;
� = cos (k =k )). (c) EFW, with evanescent diffracted wave(jk j > k; � = �=2).

For this reason, the diffracted field contribution has been
tagged with only one summation indexinstead of the double
index pertaining to the FW’s. Diffracted rays produced by FW’s
with different arise from distinct diffraction points (one for
each ). Moreover, far from the shadow boundaries of all FW’s
( far from ), the transition function [1, eq. (29)] tends to
unity so that the summation overin (3) does not contribute to
the leading asymptotic order; what remains [i.e., the contribu-
tion associated with ] represents the nonuniform asymp-
totic expression for the diffracted field . In this regime,

in (3) includes all of the diffracted FW contributions de-
noted by to .

B. Evanescent Diffracted Waves

As inferred from (7), the diffraction cones become more
and more acute when the phase velocity of the EFW along the
-axis decreases. When approaches or , the diffraction

cone angle tends to zero or , respectively. After that, when
, there is no real point on the edge that satisfies

(8), and the solution of (7) is complex. Thus, the diffracted rays
become complex and the resulting diffracted field is evanescent
along the direction [Fig. 1(b)], with exponential decay term

for such that (10)

The -series of diffracted rays in (1) now converges rapidly with
distance from the edge. This behavior of the diffracted waves

along (with such that ) could again have
been anticipated because of the previously mentioned equiv-
alence with radiation from a smooth traveling-wave line cur-
rent along , which has a phase velocity less than the speed of
light. The diffracted FW’s which contribute substantially to the
scattered field include all PFW’s and those EFW’s that have

. Sufficiently far away from the edge of the array,

diffraction effects caused by EFW’s with can be ne-
glected due to their radial exponential decay.

The various asymptotic wave fields in (3) undergo spatial
transitions across their respective shadow boundaries which are
treated below.

III. SHADOW-BOUNDARY TRANSITION FORDIFFRACTED

WAVES

The FW shadow boundary is located where the steepest
descent path (SDP) intercepts its spectral pole (see [1, Sec.
III-A]). We select a FW and follow the evolution of its shadow
boundary (SB) (i.e., the migration of its spectral pole) and of the
corresponding diffracted field when varying the interelement
phasing (this corresponds to scanning the beam of the array
in the plane orthogonal to the edge). During this evolution, the
FW transforms from propagating to evanescent; Fig. 2 depicts
a schematic of the truncated FW in a plane orthogonal to the
edge ( – plane). Across a shadow boundary , the
argument of the Fresnel transition functionin (3) produces a
discontinuity in the representation of , which compensates
for the FW truncation. Fig. 2 also shows the transition regions
of , which are defined as those regions of physical space,
exterior to which the diffracted field has a ray optical behavior,
i.e., where the nonuniform asymptotic (isolated) evaluation of
the diffracted field contribution associated with in (3) is
sufficiently accurate. Conversely, inside this region where the
FW and diffracted ray fields cannot be separately identified the
Fresnel transition function significantly differs from unity
(see Appendix), thus generating the proper transformation of
the diffracted ray for uniform compensation of the truncated FW
discontinuity. In the following subsections, the compensation
mechanisms and the evolution of the transition regions during
beam scanning are discussed for three different cases: PFW
[Fig. 2(a)], EFW with propagating diffracted field [Fig. 2(b)],
and EFW with evanescent diffracted field [Fig. 2(c)].
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(a) (b)

(c)

Fig. 3. Truncated FW close to cutoff transition (� � 0 or� �). The amplitude of the FW tends to infinity. Longer arrows denote diffracted rays with greater
amplitudes. The amplitudes of the diffracted rays tend to diverge at the shadow boundaries when these SB’s approach grazing. (a) Shadow boundary close to zero
(� � 0); the truncated FW for the semi-infinite array is confined to a small angular region of space. (b) Shadow boundary close to�(� � �); the truncated
FW for a semi-infinite array is distributed essentially throughout all of space. (c) Finite array close to cutoff of FW; the truncated FW is confined toa small region
of space. At the cutoff limit(� ! 0; �), the angular domain of existence of the FW tends to zero and the combination of diffracted fields from the two edges
provides cancellation of the singularity at grazing aspect.

A. Propagating FW’s

Consider the shadow boundary [1, eq. (22a)] for the PFW
[Fig. 2(a)], which occurs along the propagation direction of the
PFW in the transverse ( ) plane

(11)

Here in [1,
eq. (30)] vanishes and the uniform theory of diffraction (UTD)
Fresnel function can be approximated as [2]

(12)

where is the sign function. Thus, the transition function
assumes the same value on each side of the SB. Consequently
[see (3)]

(13)

and (3) simplifies to

(14)

which states that the amplitude of the leading diffractive term
in (3) is exactly 1/2 of that of the nontruncated FW field in (2)
on the shadow boundary. This ensures continuity of the total
scattered field. A similar behavior is known to hold for a smooth
edge SB [2].

Fig. 2(a) also shows the transition region surrounding the SB.
Like the transition region for the diffracted fields due to a per-
fectly conducting half-plane illuminated by a propagating plane
wave [2], this region is cylindrical with respect to the edge and
has a parabolic cross section defined by a constant value of
(see (28) in Appendix).

B. Evanescent FW and Propagating Diffracted Wave

When varies such that the FW becomes evanescent
[Fig. 2(b)] while maintaining a propagating diffracted field
with , the shadow boundary is given by

for (15)

To interpret (15) geometrically, let us denote bythe unit vector,
which defines the direction of propagation of that diffracted ray
that lies exactly on the shadow boundary. This direction is iden-
tified from the intersection between the shadow boundary plane

and the diffraction cone with aperture

(16)

For a PFW [see (4) and (11)], one notes that ,
thus confirming that the PFW travels with the speed of light
along . Although it is not obvious, the same property holds for
an EFW . In fact, (5a), (9), and (15) imply that

(17)

thus demonstrating that in the direction, the phase velocity of
the EFW wavefront likewise equals the speed of light. Since

lies on the diffraction cone, the entire propagating conical
edge-diffracted wave travels with the speed of light. This shows
that the direction where the compensation mechanism occurs,
coincides with that direction which ensures the phase matching
between and the associated diffracted wave.

When the observer is situated near the SB ( ), the ar-
gument [1, eq. (28)] of the transition function in (3) has
a vanishing real part and a nonnegative imaginary part, making
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discontinuous. Using [1, eq. (31)], the discontinuous part is
put in evidence via

(18)

where
same function as in (1);
continuous function given in [1, eq. (29)].

Introducing (18) into (3) leads to

(19)

Therefore, close to the shadow boundary, the dominant asymp-
totic term in has the same value as the nontruncated FW
when , but vanishes when , thereby providing
continuity of thetotal field. Note that because ,
the first contribution in (18) decays exponentially, as it must in
order to compensate for the EFW discontinuity. On the contrary,
the second contribution in (18) is not attenuated since the func-
tion asymptotically provides a term out of a
transition region. For the present case the transition region has
an elliptical shape [see Fig. 2(b)]. As shown in the Appendix
[see (30)] the transition ellipse has one of the two foci on the
array edge and the other on the-axis; the shadow boundary in-
tersects the ellipse at its apex.

When changes further, the FW becomes so strongly
evanescent that the shadow boundary approaches the limiting
case . The transition region tends to a circle centered
at the edge, as can be inferred by observing that the eccentricity

vanishes for .

C. Evanescent FW and Evanescent Diffracted Wave

The phenomenologies in Fig. 2(a) and (b) may also be gener-
ated by variation of the interelement phasing. In that event,
even the diffracted field itself may become evanescent when

[Fig. 2(c)], thus providing

purely imaginary (20)

The diffracted field discontinuity is described again by (19),
since (18) is also valid for imaginary values of . As shown
in the Appendix [see (31)], the transition region has again an
elliptical shape but with the second focus in the-direction. In-
creasing (and, thus, ), the diffracted contribution be-
comes more radially evanescent and the ellipticity of the transi-
tion regions increases as well. However, for increasing
becomes insignificant due to its strong radial attenuation.

IV. CUTOFF TRANSITIONS

In this section, we discuss the phenomenology of the dif-
fracted rays for the cases in which the exciting FW’s undergo
transition from propagating to evanescent, as may occur during
beam scanning. Furthermore, we discuss the cutoff transition

for diffracted waves from the conical propagating to the radi-
ally evanescent regime.

A. Diffracted Ray Behavior During FW Transitions

From (2), it is apparent that in each FW contribution ,
a factor appears in the denominator; thus, the field
becomes singular at its cutoff condition

(21)

This conditions is equivalent to

(22)

which means that the phase velocity of the FW at grazing
matches the speed of light. Consequently, the fields radiated
collectively by the source array superimpose coherently along
the array plane, thus establishing a kind of global resonance.
For the present case, since an infinite number of sources are fed
by enforced currents, the field at the cut-off diverges. In actual
antennas, at the beam-pointing angle where a Floquet wave is
at cutoff, the active input impedances become strongly reactive,
and an abrupt impedance mismatch occurs; this phenomenon is
known as scan blindness.

The cutoff condition also implies that . This
means that the azimuthal angle defined by both (11) and
(15) is

or (23a, b)

for positive or negative , respectively. The two cutoff condi-
tions in (23) describe different phenomenologies.

Consider first a situation when the th truncated FW ap-
proaches the condition [Fig. 3(a)], thus implying from
(11) that . The FW just emerges from the evanescent
to the propagating regime and exists in a relatively small region
of space and near the array
surface, as seen from (1). The first term inside the braces of the
diffracted field in (3) is finite and well behaved far from the
shadow boundary. In the-sum of (3), contain a van-
ishing term in the denominator [1, eq. (24)]. However,
because and the quantity

(24)

is finite and well behaved everywhere far from the shadow
boundary. Near the shadow boundary ( ), only the term
in (3) that contains the relevant transition function becomes
large, as it must be in order to compensate for the disconti-
nuity of the FW as stated in (14) or (19), for PFW or EFW,
respectively.

Consider now the case when the truncated FWapproaches
the condition , implying from (11) that . The
domain of existence of this FW is all of space, as can be verified
from (1) [Fig. 3(b)]. Near the cutoff condition , this
FW exists almost everywhere with an amplitude, which tends to
infinity. However, this apparently unphysical behavior does not
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occur when applying the present formulation to an array of fi-
nite size, which contains a second edge. In this case indeed, the
existence range of the FW is constrained to a very small angular
region of space by the shadow boundary of the opposite edge of
the array [Fig. 3(c)]. Now, far from the shadow boundary, the
diffracted field due to both edges is finite and well behaved;
in particular, the expression in (24) when is again
finite since and . In ray-optical terms,
when and simultaneously, the grazing
diffracted ray at edge 1 [see Fig. 3(c)], after being excited by
the FW, propagates phase matched to the FW at the speed of
light due to the close-to-cutoff condition. Consequently, when
the same FW excites the diffracted field at edge 2, the latter is
in phase with the diffracted ray from edge 1. Since the excita-
tion coefficient at edge 2 is equal in magnitude but opposite in
sign with respect to that at edge 1, the individual diffracted ray
singularities cancel also for this limiting case.

B. Cutoff Transition Behavior of Diffracted Rays

The transition from propagating to evanescent diffracted rays
is defined by the cutoff condition . From (3) one

notes that the diffracted field is singular when
or, alternatively, when . In this lim-
iting case, the diffraction point moves toward infinity and
the aperture of the diffraction cone tends to zero or. As al-
ready noted in connection with (7), the scattering behavior is
similar to that of radiation from a traveling wave-line source
whose phase velocity at cutoff is equal to the speed of light;
the coherent confinement of the field energy to the vicinity of
the -axis causes the amplitude to diverge. However, the dif-
fracted field due to an edge of finite length is bounded by
two shadow boundary cones arising from the two end-points of
the edge. When , the field again collapses to the
vicinity of the edge but is radiated into space by the end-point
contributions (tip diffracted fields). This will be the subject of a
separate investigation.

V. FAR-FIELD LIMIT

Using the FW-modulated aperture distribution model, the far-
field pattern of a strip-type array can be treated by the superpo-
sition of the nonuniform diffracted rays from the two parallel
edges. For each edge, the nonuniform contribution at infinite
distance from the array is given by the dominating diffractive
term in (3) when the Fresnel transition function tends to unity

(25)

The diffraction pattern contains singularities at theth
shadow boundary of the PFW[1, eq. (17)].

For a strip array with dipoles in the direction, the trun-
cated FW is confined between two parallel shadow boundary
planes. On the plane orthogonal to the edges, at a distance
greater than (where ), using the far-field
limit, the angular region, where each propagating FW exists

vanishes and the direct FW contribution does not contribute
to the total field. The far-field pattern is then provided by the
combination of the diffracted fields from the two edges, as oc-
curs for GTD scattering by a metallic strip. In this combination,
the singularities of the diffracted rays at the shadow boundaries
cancel, thus providing a well-behaved field everywhere. The
total far-field from the strip array may be obtained see
[1, eq. (17)] as

(26)

where the summation overincludes only the propagating dif-
fracted fields, is defined in [1, eq. (13)] and

(27)

is generated by the interference of the patterns appro-
priate to and weighted by the initial phase at the two edges.
Equation (27), which yields essentially the array factor of the
FW-excited array, has maxima at ,
i.e., for with real. This confirms the well-known
connection between antenna theory and FW theory, whereby the
pattern maxima line up with the SB’s of the synthesizing FW’s.

VI. I LLUSTRATIVE EXAMPLES

Numerical calculations have been carried out to test the accu-
racy and effectiveness of the asymptotic solution (1), as well as
to highlight the effects of the various transitions between wave
species. A reference solution is constructed via the element by
element summation of the individual dipole source contribu-
tions in [1, eq. (2)], which necessarily have to be truncated. Our
truncated reference arrays contain elements along and
, respectively. Because the finite array is intended to simulate

the semi-infinite array of dipoles, all field evaluations are refer-
enced to one of the-oriented edges (the-axis in our case) and
the dimensions and of the array should be chosen so
as to render the contribution from the other edges (and there-
fore also from the corners) small enough to be negligible. Ra-
dial field scans are then conducted around the point on
the -axis in the center of the truncated section [see inset of
Fig. 4(a)]. For one special case (the first example in Fig. 4(a)
with ), we have successfully calibrated
the asymptotics for the semi-infinite array against the reference
solution because the additional edge contributions can truly be
ignored from an array of this size. However, because of the ex-
cessive computation times required for this reference solution,
we have chosen arrays with and (Figs. 4(b)
and 5) or (Figs. 6–8) for the other numerical exam-
ples (Figs. 4(b)–8). The choice ensures that for obser-
vations taken along circular arcs centered at on the -axis,
the field from the other -directed edge is small in comparison
but not entirely negligible. Therefore, the curves in Figs. 4(b)–8
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(a)

(b)

Fig. 4. Amplitude ofz-component of electric field versus� at radial distance
� = 2� from the z-axis.M = 3000; d = 1:4�; d = 0:5�; 
 =

0:7� ; 
 = 0 (~k in (4) points in the direction� = 90 ; � = 83:6 ).
Truncated FW contribution [first sum in (1)]: dashed curve; high-frequency
expression of the total field in (1): solid curve; element-by-element summation:
dots. (a)N = 1000. (b) Comparison betweenN = 100 andN = 1000.

calculated by our asymptotic algorithm also include the diffrac-
tion contribution from the -edge , thus modeling a
strip array.

We now discuss these examples in detail. Fig. 4(a) shows re-
sults for a near field scan at radial distance from the
-axis. In this example, and is chosen as

noted above so as to render the contribution from the other edge
negligible. The periodicity is , and the
interelement array phasing is chosen so
that the PFW array vector in (4) points along the direction

.The three curves in Fig. 4(a) represent the
component of the electric field since all other components are

zero in this case. The continuous curve is obtained by the asymp-
totic high-frequency solution in (1), whereas the dashed curve
is obtained by the FW contributions [first summation in (1)].
The dots represent the reference solution (element-by-element
summation in [1, eq. (2)]. In both cases, only a finite number
of FW’s have been included, namely those with indexes

and from 3 to 3; all others can be neglected because of
their exponential decay along thedirection. Similarly, only
diffracted field contributions , with index from 3 to 3
are retained in the summation (1) because all others can be ne-
glected due to their exponential decay along thedirection. The
excellent agreement in Fig. 4(a) between the asymptotic solu-
tion in (1) and the reference solution validates the series trunca-
tions; both solutions coincide on the scale of the drawing. In fact,
even a smaller number of terms would have been adequate. The
periodicity along the coordinate is large enough
to permit three PFW’s to propagate away from the array. The
propagating FW fields are and and their

region of existence is (see Fig. 2); the shadow bound-
aries SB are here located at
and . The FW field is discontinuous at each SB,
and the diffracted field , arising from the diffraction point

at , compensates for the three discontinuities so as to
provide a continuous total radiated field. Every other diffracted
field with becomes negligible sufficiently far from
the edge because of its exponential decay [see (10)]. Actually,
the diffracted fields compensate for discontinuities at the
shadow boundaries of the EFW’s. However, these discontinu-
ities are small due to the EFW exponential decay alongand
are practically invisible for the case in Fig. 4(a)

Fig. 4(b) compares the total field obtained from the present
technique (continuous curve) for and ; the
dots again represent the reference solution. All other parameters
are the same as in Fig. 4(a). For , the contributions
from both -edges are included. It is evident that the diffraction
effect due to the far parallel edge is small compared to that of
the edge under investigation. Thus, in the remaining examples,

will be considered sufficient to essentially highlight
the effect of the diffracted field from an isolated edge, although
we retain the second edge contribution in order to confirm the
accuracy of the algorithm when comparing with the reference
strip array.

In Fig. 5, the near-field scan is at from the -axis
and the periodicity is . The interele-
ment array phasing is chosen
so that the array vector in (4) points along the direc-
tion . The -component of the elec-
tric field is shown in Fig. 5(a), whereas theand compo-
nents are shown in Fig. 5(b). The high-frequency solution [solid
curve, (1)] is in excellent agreement with the reference solu-
tion (dotted curve) and significantly differs from the FW con-
tributions alone (first summation in (1), dashed curve). As be-
fore, the FW contributions and the diffracted fields are
taken over the indexes because all the other
FW’s and diffracted waves can be neglected due to their expo-
nential decay along theand directions, respectively. Again,
excellent agreement is found between solution in (1) and the ref-
erence solution. For these parameters, three PFW’s propagate
away from the array: and , with domains

and and .
The FW fields are discontinuous along these directions and the
diffracted fields and compensate for the discon-
tinuities at SB , SB , and SB , respectively. It is impor-
tant to note that, due to the different choice of periodicity, we
have three propagating diffracted fields with three different-in-
dexes, while in the previous example, only one propagating dif-
fracted field ( ) occurs even though both examples have
three propagating FW’s. Now, the three diffracted fields arise
from three different diffraction points identified as
and in Section III-A and they propagate along three different
diffraction cones with semi-angles
and given by (9) [see also Fig. 1(a)]. Every other dif-
fracted field can be neglected sufficiently far from the truncation
because of its exponential decay along(this is the case here for

). Again, as before, the diffracted field compensation
for the exponentially small EFW discontinuities at their SB’s
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(a)

(b)

Fig. 5. Amplitude of (a)z-component and (b)�- and�-components of electric
field versus� at radial distance� = 2:2� from thez-axis.M = 2000; N =

100; d = 0:5�; d = 1:1�; 
 = �0:9� ; 
 = 0:5� (~k in
(4) points in the direction� = 85:4 ; � = 98:3 ). FW contribution (dashed
curve); FW plus diffracted field (continuous curve); element-by-element
summation (dots).

cannot be detected in the plots of Fig. 5. Note that in the present
case, the diffracted field is stronger than the other two
due to the rather small , which appears in the de-
nominator of (3); the other two modes have
and .

In Fig. 6, we examine a case that is almost the same as in
Fig. 5. Nevertheless the difference is the now slightly smaller
value of , which leads to quite different be-
havior: two propagating FW’s and one non-
propagating , which decays away from the array. How-
ever, the three corresponding diffracted fields and

all propagate away from the truncation edge. The SB’s lie
along and , re-
spectively, and delimits the region of existence of
that is close to itscutoff condition (21)–(23); indeed, we have

and . At a distance
is not negligible because it is close to cutoff. At

a greater distance, its contribution is negligible whereas the dif-
fracted field that compensates for its disappearance is prop-
agating and, thus, cannot be ignored. In fact,is strongest in
amplitude among the three propagating diffracted FW’s because

is smaller than and . Fig. 6 highlights
the important role of the diffracted field. Note that the FW con-
tribution alone overestimates the field by about 10 dB due to
the closeness of one FW to its cutoff. Under these critical con-
ditions in which there is a quasi-grazing EFW propagating close
to grazing, the diffracted field (3) compensates for the disconti-
nuity of the EFW remarkably well and the total field predicted
by (1) is in excellent agreement with the reference solution.

(a)

(b)

Fig. 6. As in Fig. 5, except for
 = �0:945� .

Fig. 7. Amplitude ofz-component of electric field versus� at radial distance
� = 0:3� from the z-axis.M = 3000; N = 100; d = 0:5�; d =

0:8�; 
 = �0:3� ; 
 = 1:57� (~k in (4) points in the direction
� = 75:5 ; � = 93 ). FW contribution (dashed curve); FW plus diffracted
field (continuous curve); element-by-element summation (dots).

In Fig. 7, representing the electric field-component, the
near-field scan at from the -axis
is intended to demonstrate compensation, by an evanescent
diffracted field ( ) of an SB discontinuity due to
the disappearance of an EFW contribution. The periodicity
is , with the interelement phasing

chosen to have the array
vector in (4) along the direction .
All designations pertaining to Figs. 4(b)–6 apply, as do the
comments pertaining to the number of retained FWand
diffracted contributions. Rather good agreement is found
between the asymptotic solution in (1) and the reference
solution, the small difference between the two curves being
due to the closeness of the observation point with respect to
the edge; the asymptotic evaluation loses its accuracy there.
For the above parameters, only propagates away from
the array, while is close to its cutoff condition. Fig. 7
depicts the SB’s of these two FW’s, at the azimuthal angles
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Fig. 8. Amplitude ofz-component of electric field versus� at � = 160 .
The curves denoted by (a), (b), (c), and (d), refer to the cases treated in
Figs. 4(a), and 5–7, respectively. FW plus diffracted field (continuous curve);
element-by-element summation (dots).

, respectively. Note that is
given by (20) because is imaginary. The
FW fields are discontinuous along these directions and the
diffracted fields and compensate for the SB and
SB discontinuities, respectively. Note that in this case the
diffracted field is evanescent while is propagating.
Also, is very close to the cutoff for the diffracted
field. The small discontinuity at is due to the disap-
pearing field and is well compensated by the evanescent
diffracted field. The combination of small and small

near the cutoff has made it
possible to highlight the compensation mechanism.

Finally, the scan along thedirection in Fig. 8 demonstrates
the convergence of the asymptotic solution even close to the
edge and close to the cutoff condition of the diffracted field.
The scan is performed withranging between and at a
fixed angle . At greater distances, the asymptotic re-
sult in (3) is more accurate than in the proximity of the edge and
its accuracy is thus not analyzed there. The four cases shown,
denoted by (a), (b), (c), and (d), refer to the cases treated in
Figs. 4(b)–7, respectively. Again, solid curves refer to our solu-
tion in (1), while dots refer to the reference solution. The agree-
ment between the two solutions is fairly good even close to the
edge. The solid and dotted solutions agree well for .
Case (c) refers to the quasi-cutoff FW; nevertheless the conver-
gence of the asymptotic solution is good even in proximity to
the edge.

VII. CONCLUSIONS

In this two-part sequence of papers, we have examined the
formal structure and the detailed phenomenologies pertaining
to semi-infinite linearly phased planar periodic arrays of par-
allel current dipole radiators or, equivalently, to oblique plane
wave scattering by parallel short-wire elements arranged into a
planar periodic array. By collective treatment of the effects due
to the individual radiators or scatterers, the problem has been
rephrased in terms of a superposition of truncated FW’s and the
associated FW-excited edge diffractions. We have explored all
possible combinations of propagating and evanescent FW-(dif-
fracted wave) interactions and have structured the rigorous anal-
ysis in [1] in such a form as to permit efficient asymptotic eval-

uation in the high-frequency range. This formal asymptotic so-
lution has been interpreted in the present paper (Part II) in terms
of ray-optical constructs that generalize the methodology of uni-
form GTD for radiation from smooth linearly phased truncated
plane aperture distributions to the methodology of periodicity-
modulated truncated aperture distributions. Each of the gener-
alized effects due to bulk radiation from the truncated aperture
and the associated edge diffractions has been compared (where
relevant) to the simpler effects encountered in the smooth con-
ventional case. These canonical studies can now be extended to
nonuniformly excited arrays. When a smooth slowly varying ta-
pering function modifies the excitation of the elements over the
entire domain of the array, the asymptotic field is modified adi-
abatically by invoking the local nature of high-frequency phe-
nomena [3]. When the tapering function vanishes at the edge,
significant slope diffraction contributions may arise, which are
presently under investigation.

Summarizing the particulars of this paper, we have estab-
lished that the periodicity-modulated diffracted rays arise from
diffraction points on the edge (-axis) and propagate from there
along the surface of diffraction cones according to GTD. The
aperture of these cones and the position of the diffraction points
are intimately related to the-component of the propaga-
tion vector associated with each exciting FW. The diffracted
waves are radially propagating or evanescent depending
on whether is smaller or greater than the free-space
wavenumber . Under the latter condition, the nonradiating
diffracted fields behave like waves excited by an equivalent
slowly phased-line current propagating along the edge, with
radial decay, storing reactive energy in the vicinity of the edge
dipoles. Apart from this pleasing physical interpretation of
the edge-centered diffraction processes, the radially attenuated
diffracted waves, which are negligible sufficiently far from the
edge, furnish a simple criterion for truncating the diffracted
wave series similar to that for truncating the FW series. Thus,
except for calculations of fields very close to the array, our
asymptotic formulation is substantially more efficient than the
ordinary element by element summation (the estimated gain in
computing time is about two or three orders of magnitude for
the examples in Section IV). Numerical examples have demon-
strated that our high-frequency algorithm is uniformly valid
through a variety of shadow boundaries and cutoff transitions
for the truncated FW’s and their associated edge diffractions
and that good accuracy prevails even relatively near the edge
(down to about in our examples).

The results obtained and the physical insight gained from this
prototype problem form the basis for extension to more gen-
eral truncated periodic and quasi-periodic arrays. It should be
noted that the active periodic Green’s function of an array of
sources is the basic building block for construction of a method
of moment (MoM) solution for large array antennas, which may
overcome problems of large matrix inversion typical for an ele-
ment-by-element approach; the field representation in terms of
FW diffracted rays can be usefully employed to expand the un-
known currents of the integral equation pertinent to the array
problem. This leads to the hybrid asymptotic MoM method for
large arrays described in [4], which is being further developed.
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APPENDIX

DIFFRACTED RAY-TRANSITION REGIONS

The transition region can be analytically defined as
, where is a small arbitrarily chosen positive number.

Due to the regular and continuous behavior of the transition
function in [1, eq. (29)], which tends to unity for large magni-
tude of its argument and vanishes for small arguments, the above
relation can be equivalently expressed as , where is
such that [5]. Referring to [1, eq. (30)] and (7),
this implies that

(28)

Since (28) does not involve the observation coordinate, the
transition regions are cylinders with axes parallel to the array
edge. It can also be inferred from (28) that the two transition
regions associated with have the same cross section and
can be obtained one from the other by mirror reflection with
respect to the array plane. The cross-section shape of each pair
of cylinders corresponding to in (28) depends on the relevant
FW wavenumbers.

1) Propagating FW’s: In this case, both and are
real, where both and are real. Equation (28) leads
to

(29)

The inequality defines the regions inside the upper and
lower parabolas in Fig. 2(a), with axes along the SB’s,
coincident foci on the edge of the array, and vertices at a focal
distance of .

2) Evanescent FW’s with Propagating Diffracted Waves:In
this case, is still real but is imaginary, where is real
and is complex (cf. [1, eq. (38) and fig. 3(a)]). Noting that

is real and is purely imaginary, (28) is rewritten
as

(30)
or

(31)

The inequality in (31) defines two coincident transition regions,
which occupy the interior of an ellipse with major axis along the

-axis, one focus at the edge of the array and the other focus at
distance on the axis; the eccentricity
(the ratio between the interfocal distance and the major axis) is

[Fig. 2(b)]. Since [see (15)],
the shadow boundary intersects the ellipse at the top apex [5].

3) Evanescent FW’s with Evanescent Diffracted Wave:In
this case, both and are imaginary, where both and

are complex (cf. [1, eq. (39) and fig. 3(b)]). Now, is
imaginary, is real and greater than 1, and (28) is rewritten
as

(32)
or

(33)

The transition regions are again elliptical but the major axes
lie on the -axis. One focus of each ellipse still coincides with
the edge of the array; the other focus is on the relevant shadow
boundary, which coincides with the positive or negative-axis
for or , respectively [Fig. 2(c)]. The interfocal distance
is and the eccentricity is .
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