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Abstract—Printed metallo-dielectric photonic bandgap (PBG)
materials are analyzed using an analytical approach based on
multipole expansions for the scattered fields off individual scat-
terers and a transfer-matrix method for reconstructing the total
scattered fields created by successive lattice planes of the artificial
crystal. An effective description of the PBG medium is derived
and its correspondence withnatural crystals is further advanced
through an analysis based on Lorentzian response functions,
which characterize natural crystals. The effective wave impedance
and bulk reflection coefficient of the medium are provided and
their properties inside and outside the bandgaps are examined.
The presented treatment for these effective response functions
extends far beyond the traditional effective medium theory (EMT)
limits.

Index Terms—Artificial crystals, frequency selective surfaces,
photonic bandgap materials, synthetic materials, synthetic sub-
strates.

I. INTRODUCTION

I N RECENT years, photonic bandgap (PBG) materials
[1]–[3] have attracted a lot of attention in the engineering

community because they are naturally suited for a variety
of antenna gain enhancement and radiation pattern shaping
applications [4]–[7], filtering applications (including frequency
selective surfaces and space filters), highstructures [8],
integrated circuits, and printed antenna substrates/superstrates
where filtering response of particular modes (e.g., surface
modes) is desired, as well as for the analysis and design of
absorbing thin film structures [9].

These materials are composed of unit cells containing artifi-
cial implants embedded within a host dielectric and periodically
placed to form an artificial crystal lattice in one, two, or three
dimensions. The scattering response of the implants is intended
to be very different than the surrounding dielectric host, cre-
ating significant electromagnetic interference between implant
and host. This interference depends on both host and implant
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(design of unit cell) and crystal geometry. By appropriate design
of these parameters, one can achieve large transmission suppres-
sions in specific frequency bands (PBG) and uninhibited trans-
mission in other bands.

Up until now, the most interesting characteristics of
these materials, namely their frequency response near the
bandgaps, have been explored primarily by numerical methods.
These are typically finite-difference time-domain (FDTD)
codes [10]–[12] and hybrids of finite elements and method
of moments codes [13]–[16], or approaches based on the
layer-Korringa–Kohn–Rostoker (KKR) method [17] and on a
plane wave expansion [18], [19]. Despite the fact that these
codes can handle a variety of device-specific applications
incorporating such materials as well as provide dispersion
diagrams for the materials themselves, the physical details of
electromagnetic propagation and scattering in these materials
remains untransparent, to say the least. This is especially true
for device-specific applications, where complicated excitations
and radiation properties of the primary device components
make any clear separation of the material properties almost
impossible.

A second disadvantage of a purely numerical case-by-case
approach to these composite materials is the very long pro-
cessing time these codes require and the memory requirements
imposed on the corresponding machine. This makes any attempt
of systematic parameter-space search and electromagnetic opti-
mization of these materials very time consuming, even within a
large present-day computing environment.

These two reasons motivate the present development of an an-
alytical approach to a class of metallo-dielectric PBG materials
relevant to engineering applications. We focus on a lattice of
printed elements immersed into a low-loss host dielectric. This
is a class of structures that are easily and inexpensively fab-
ricated and are appropriate for monolithic integration. In Sec-
tion II, we present a transfer-matrix analysis of such geometries
for oblique TE plane wave incidence and derive closed analyt-
ical expressions for the reflection and transmission in terms of
the shunt susceptance of a planar array of printed elements. The
shunt susceptance itself is analytically calculable for a variety
of printed shapes [20], but in this paper we consider printed
disks. We demonstrate the existence of photonic bandgaps for
this structure, for normal incidence and point out that it can op-
erate as a magnetic wall. In Section III, we provide a derivation
for the effective wave impedance at normal incidence, which
fully describes the bulk reflectivity of the structure. This leads
us to establishing a correspondence between this type of arti-
ficial (photonic) crystals and natural (atomic) crystals. We find
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that these artificial media can be described by Lorentzian reso-
nances, much like the natural crystals in their quantum-mechan-
ical interaction with the electromagnetic field.

We stress that our approach extends far beyond the validity
regime of standard effective medium theories (EMT’s). The
latter are valid for wavelengths typically ten times longer than
the characteristic electrical dimensions of the unit cell and,
almost by definition, cannot provide any information on the
behavior near the first bandgap. Instead, our approach is valid
typically for unit cell dimensions of the order of the free-space
wavelength and it will be shown that this regime typically
includes several bandgaps.

II. TRANSFER-MATRIX ANALYSIS OF PRINTED PGB
MATERIALS

We consider an orthogonal lattice of PEC disks embedded
in a homogeneous dielectric of complex relative permittivity

and thickness, as shown in Fig. 1. The ma-
terial will be made by stacking an arbitrary numberof such
planar arrays and will be laterally infinite, but of a finite arbi-
trary thickness . We present closed analytical formulas
for the reflection and transmission coefficients of this material
under TE oblique plane wave incidence.

Consider the slab made up by stackinglayers of the cor-
responding two-dimensional (2-D) PBG medium and excited
by TE plane wave oblique incidence at angle. Using standard
transfer matrix theory [21], we obtain for the transmission co-
efficient

with (1)

where is the right (left)-going wave amplitude (with
respect to the stacking direction) in the region of incidence
and the final right-going wave amplitude in the region past
the whole structure.

The scattering matrix is given in terms of the unit-cell
transfer matrix by

(2)

where is the transfer matrix through an air-dielectric inter-
face. The unit-cell matrix, on the other hand, may obviously be
written as

(3)

where is the propagation matrix through a dielectric region
of thickness and is the transfer matrix through a planar
array of scatterers considered as a shunt admittancefor scat-
tering purposes.

On material interfaces the transfer matrices may be calcu-
lated by imposing the usual boundary conditions on theand

fields. On the shunt admittance plane the correct boundary
conditions are those of an electric current sheet set up by the
voltage impressed by across the admittance

continuous

Fig. 1. PBG material made of PEC disks embedded in a dielectric host.

(4)

where
is the surface admittance of the 2-D planar array of scat-
terers embedded within the host dielectric,
is the unit normal (along the-direction in this case),
and
the position of the admittance plane.

These boundary conditions determine the transfer and prop-
agation matrices as follows:

(5)

Notice that while both kinds of transfer matrices obey their re-
spective group properties , the material
interface is described by a symmetric matrix, while the shunt
admittance interface by an antisymmetric matrix. The unit cell
transfer matrix is calculated to be

(6)

In the above, are the oblique propagation constants and
relative wave impedances, respectively, for material

air, dielectric , namely

(7)
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where is the incidence angle. Using the method out-
lined above, we calculate the transmission coefficient through
the structure to be

(8)

Similarly, the reflection coefficient off the structure is

(9)

The matrix has been calculated in closed analytical form in
the Appendix. Substituting, we obtain the results

(10)

[see (11) at the bottom of the page], where

(12)

It is important to notice that the parameterabove characterizes
the corresponding PBG material that is infinite in the-direction

. This can be shown by evaluating the Floquet
propagation constant along the stacking direction through the
eigenvalues of the unit cell matrix:

(13)

Given that , we have

(14)

The bandgaps of the system are given by the inequality .
One ingredient that has to be supplied in the above formulas

in order to obtain predictions is the shunt admittance of a planar
array of scatterers. This calculation can be performed at various
degrees of difficulty and validity, depending on the order of the
multipole expansion taken into account for the scattered field.
For the present, we will use (for the thin disk medium) the shunt
admittance that has been calculated analytically in [20].

The result is

(15)

The fine structure provided by the electric and magnetic polar-
izabilities and lattice interaction constants can
be readily calculated for a tetragonal lattice

(16)

where is the modified Bessel function of the second kind.
In the rest of this section, for simplicity, we will use a square
transverse lattice .

The range of validity of these formulas in is derived from
a Clausius–Mossotti argument, where the equivalent volume
filling fraction should be .

(11)
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The much more important range of validity in frequency is de-
rived from the requirement that the leading evanescent mode
propagating in the longitudinal dimensionhave an amplitude
that is at least as suppressed as, i.e., . Using
[20]

(17)

we find from the above inequality (setting ) (18), shown
at the bottom of the page, where . The most
stringent constraint of (18) arises when the right-hand side is
minimum, which always happens for irre-
spective of the other parameters. Hence, we derive a conserva-
tive range of validity of our analytical treatment

(19)

The present approach, by restricting itself to propagation of the
dominant modes only and, therefore, to the range of (19), would
not be able to treat certain special cases. For example, the disks
being placed on the air-host interface would have to be excluded
because higher modes would have to be accounted for between
that interface and the adjacent admittance plane.

To validate our formulas, in Fig. 2 we plot the power trans-
mission through an disk medium for normal plane wave
incidence, in the range of validity of our theory provided by (19).
We compare with results obtained from a finite element-integral
equation method (FE-IEM) approach of [16], where the scat-
terers are square patches of the same effective aperture whose
side is given by [22]

(20)

We see that within the range of validity of our theory, the agree-
ment is excellent.

From the above equations we can derive the reflection coeffi-
cient for a semi-infinite PBG medium, filling up the half-space

. This is obviously obtained by taking the limit
in (11). One can observe numerically, and prove analytically,
that, for lossless dielectric host and PEC scatterers, the complex
function in (12) has a modulus equal to unity everywhere in
frequency, except in the bandgaps. The correct way to obtain the

limit, is to introduce a small amount ofphysicalloss
in either the host dielectric or the scatterers, or both. This loss
will not only provide a more accurate physical description of the
medium, but will also yield the correct semi-infinite limit. With

Fig. 2. Comparison between our analytical predictions and the FE-IEM code
of [16] for normal plane-wave incidence.

the host permittivity containing any amount of loss, it follows
that anywhere. Therefore, from (11) we obtain

(21)

where we have defined the function

(22)

We will concentrate on analyzing in the rest of this paper.
In Fig. 3(a) we plot the bulk reflectivity off the semi-infinite

PBG medium. We also plot the quantity (12), providing the
bandgaps that are marked by the heavy line in the figure. We
observe that in the bandgaps the reflectivity is close to 100%.
In Fig. 3(b), we plot the real and imaginary parts of the bulk re-
flection coefficient. Notice that,unlike in normal conducting or
dielectric media, is positive within half of each bandgap as
well as outside the corresponding band edge. At these frequen-
cies, the medium looks like a magnetic conductor approaching
a perfect magnetic wall at the corresponding band edges. This
is very important since it implies that the incident and reflected
fields add in phase and the total tangential electric field near

(18)
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(a)

(b)

Fig. 3. (a) Reflectivity of the semi-infinite PBG medium (solid) andj� j
(dotted). The bandgaps are the regions marked with the thick solid line and
(b) real (solid) and imaginary (dotted) parts of the semi-infinite reflection
coefficient.

the PBG medium surface is not reduced (or close to zero), as in
normal media.

In Fig. 4 we expand the plots to show detail in the first and
second bandgaps. Comparing the situation to that of a good con-
ductor, we observe that the PBG medium creates a strong dis-
persive variation on the total tangential field, ranging from the
behavior of an electric wall (very good conductor,
nodes on ) to that of a magnetic wall, where and

become maximum. This phenomenon should be of consid-
erable practical importance in applications relating to phase-ad-
vance media. The bandgaps for the parameter values chosen, are
of constant bandwidth of about 12%.

III. EFFECTIVEWAVE IMPEDANCE OFPRINTED PBG MEDIA

In this section, we provide the fundamentals for deriving the
effective response functions, confining ourselves to the semi-in-
finite case for normal incidence, which will provide a corre-
sponding effective wave impedance. We therefore drop the bars
from the ’s for normal incidence in the rest of this paper.

(a)

(b)

Fig. 4. Real (solid) and imaginary (dotted) parts of the semi-infinite reflection
coefficient in: (a) the first bandgap and (b) the second bandgap.

A. Effective Wave Impedance from Bulk Reflection

By inspection, (21) can be rewritten as

(23)

This formula is identical to the formula giving the bulk reflec-
tion coefficient for a macroscopically homogeneous medium of
relative effective wave impedance

(24)

where is given in (22).
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(a)

(b)

Fig. 5. (a) Real (solid) and imaginary (dotted) parts of relative effective wave
impedance of PBG medium and (b) same as in (a) in the first bandgap.

In Fig. 5, we plot the function for normal plane-wave in-
cidence. We observe that the impedance is completely resistive
outside the bandgaps and has strong resonant behavior inside the
bandgaps, becoming completely capacitive or inductive. At the
band edges, very strong resonances (of the order of 4 Khms)
are produced.

B. Artificial versus Natural Crystals: Lorentzian Description

In advancing the effective description of PBG materials fur-
ther, we wish to explore the natural similarities these materials
shouldhave, with natural crystals. It has been shown that the
latter are very well described by permittivity tensors that are
driven by the oscillations of electrons bound to the lattice ions
[23]. Effectively, a quantum electrodynamics description of the
interactions between these bound electrons and the electromag-
netic field yields the classical Lorentz oscillator model, which
gives rise to these permittivity tensors [24], with the important
advantage being that it predicts the Lorentzian parameters in
terms of a few fundamental physical constants.

If our analogy with natural crystals is tenable beyond the ob-
vious similarity used up to now in the literature relating to the
periodic geometry, the behavior of the bulk reflection coefficient
and wave impedance for the PBG medium, shown in Figs. 4(a)

(a)

(b)

Fig. 6. (a) Real (solid) and imaginary (dotted) parts of the bulk reflection
coefficient generated by a point-like Lorentzian permittivity and (b) same as
in (a) for the wave impedance.

and 5(b), should resemble that of a point-like Lorentzian per-
mittivity. To establish that, in Fig. 6 we show the corresponding
plots produced by a Lorentzian permittivity, arbitrarily nor-
malized in frequency of the form

(25)

Choosing the normalized width , similar to the
loss tangent of the PBG medium host dielectric, the resonance

, and the plasma frequancy , we
observe that the respose of the PBG medium at and around a
bandgap isvery similarto that of a single point-like Lorentzian
crystal.

Multiple bandgaps in the artificial crystal correspond to mul-
tiple Lorentzians in the natural crystal. The latter are gener-
ated by absorption of the incident photon by the bound elec-
tron, which is excited from an initial state to a number of
different intermediate states . Subsequently, the excited
electron returns to a final state by emmiting a photon. These
excitations are distinguished by the spectrum of intermediate
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states (determined by the nature of the crystal), which
fixes the allowed resonant energies (frequencies) of the incident
photon (field). In short, each bandgap of the artificial crystal
corresponds to one Lorentzian excitation in the natural crystal.

There are, of course, some differences between the artifi-
cial PBG medium and a natural crystal: In the former, the in-
duced currents and multipole moments are distributed on the
whole surface (or volume, for dielectric implants) of the scat-
terers, while in the latter the multipole moments are point-like:
they arise from the “induced current” due to the motion of the
point-like electron charge under the influence of the incident
photon field. The multipole expansion of the scattered field off
the artificial implants corresponds in the natural crystal to ex-
pectation values of tensor products of the electron momentum

and position operators between the electron initial and
final states. To be specific, there is the precise correspondence
(taking as an example spontaneous emission)

electric dipole transitions

(26)

electric quadrupole transitions

(27)

magnetic dipole transitions

(28)

where is the volume current density integrated over the scat-
terer volume, while are the Pauli spin ma-
trices given in the Appendix and the electron charge,
mass, Planck’s constant, and speed of light, respectively. Notice,
in particular, that the magnetic dipole term in (28) is generated
by two terms—the first relating to the angular momentum oper-
ator (which directly corresponds to the surface current density in
the artificial crystal) and the second relating to the electron spin,
which has no analogue in terms of current densities. In the artifi-
cial crystal case, the multipole terms above have to be integrated
over the scatterer volume, while in the natural crystal case these
terms arise from operators evaluated between the electron states.
This and related differences result in the “distributed” nature of
the PBG medium versus the point-like behavior of the natural
crystal, as shown in the comparison between Figs. 4(a) and 6(a).

It is essential to notice thatthere isa Lorentzian that gener-
ates the functions and (23), (24); this is the function

[see (22)], which is plotted in Fig. 7. We notice, in partic-
ular, in the detailed plot of Fig. 7(b) (within the first bandgap)
that the shape and relative normalization of, is exactly
that of a Lorentzian permittivity function. It is of interest to ob-
serve that in the natural crystal, the Lorentzian permittivity re-
sults from the forward scattering amplitude through the use of
the optical theorem. The scattering amplitude itself, to leading
order in perturbation theory, results from the Kramers–Heisen-
berg quantum-mechanical formula [24]. That formula allows
for an one-to-one correspondence between the quantum-me-
chanical Lorentzian and our generating functionfor the PBG
medium.

(a)

(b)

Fig. 7. (a) Real (solid) and imaginary (dotted) parts of the generating function
p and (b) same as in (a) in the first bandgap.

In the following, we will fit this function with a correctly
scaled sum of Lorentzians. The Lorentzian behavior in the func-
tion is produced by the resonant denominator(22). For
normal incidence, the frequency scale is introduced through the
variable

(29)

where is the loss tangent of the dielectric host. To accu-
rately calculate the resonant frequencies, we can set .
Defining the positive constant

(30)

with given by the first equality in (15), we obtain

(31)

Because is small, the poles of this function are located near
, where is an integer. To determine the resonant fre-

quencies, we write , expand the denominator
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of (31) to leading order in , and set the real part to zero. This
gives us

(32)

We will write the Lorentzian fit covering the first three
bandgaps as

(33)

where we have (34), shown at the bottom of the page.
In this equation, fine-tuning beyond the second decimal

is achieved through the small parameters , which
correspond to precision-adjustment of the effective plasma
frequency, resonant frequency, and width. The constantin
(33) is obtained from the sum rule

(35)

and it fine-tunes the plateaus ofoutside the bandgaps. For our
usual choice of lattice and scatterer size, we find

(36)

We can now bring (34) in the form of (25), writing

(37)

where

(38)

while in (33) is given by

(39)

In Fig. 8(a)–(c) we compare the functionsand in the
bandgaps. The agreement is perfect and the difference between

and cannot be distinguished in the plots.
It is important to notice that the various terms in the sum of

(33) are roughly the same Lorentzian function, scaled in fre-
quency by an integer multiple of the fundamental frequency of
the first bandgap, as indicated by the formula providing the res-
onant frequencies, (32). An alternative parametrization, which
introduces the scaling of the shape in the Lorentzian width rather
than the plasma frequency, gives equally perfect agreement. In
this latter case

(40)

The difference between these alternatives is formal only, since
it would affect the sum rule (33) if the summation were to
be extended to infinity. For the purposes of this paper, that
alternative would not be more useful than our current fit
since we are only concerned with the range of validity of our
theory, which is bounded by (19). For formal considerations of
causality, however, this second alternative would be preferable
since the Kramers–Kronig relations would need the behavior
of the effective response functions at and one would
have to extend the summation of the Lorentzians to infinity,
even for proving causality within our finite range of validity. In
this case, the summation in (39) would be strongly convergent
if (39) were used instead

(41)

where the Riemann zeta function has been used.
We will not explore the consequences of Lorentzian fit unique-
ness to causality any further in this paper.

We will now show that each bandgap is drivenprimarily by
the corresponding Lorentzian in the sum of (33), despite the
complicated dependence of and on thesumof ,
i.e., act like distributions. The above remark, coupled with
the agreement between the actual response of the PBG medium
[Fig. 4(a)] and the single Lorentzian medium [Fig. 6(a)], allows
us to find a very simple formula giving the approximate position
and size of a specific bandgap as driven by the corresponding
single Lorentzian (37).

(34)
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(a) (b)

(c) (d)

Fig. 8. Comparison between the exact functionp (solid) and its Lorentzian approximationp (dotted) in the (a) first, (b) second, and (c) third bandgap. (d) Real
(solid) and imaginary (dotted) parts of the effective bulk reflection coefficient generated from the Lorentzian functionp and Lorentzian calculation of the band
edges (dashed lines).

For the Lorentzian of (25), the band edges are given at fre-
quencies

(42)

In our case, the effective impedance (24) yields an equivalent
Lorentzian permittivity

(43)

Therefore, the band edges of theth bandgap areapproximately
determined by the Lorentzian function (44), shown at the bottom
of the page. From (42) and (44) we derive the band edges of the

system

(45)

(44)
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and bandgap size

(46)

where is given by the first equality in (38).
InFig. 8(d),weplot therealand imaginarypartsof theeffective

bulk reflection coefficient generated by the functionand the
band edges provided by the Lorentzian approximation (45). The
agreementwith theexact resultsofFig. 3(a) is,again,excellent. It
shouldbepointedout thatanalgebraicsolution for thebandedges
throughtheexactequation , ,givenby(14), is impossible
since this is a transendental equation. Instead, through the use of
Lorentzians,onetriviallyarrivesat thealgebraicsolutionof (45).

IV. CONCLUSIONS

We have approached composite electromagnetic media via an
analytical method based on multipole expansions and transfer-
matrix theory for the observables of the system. We have also
shown that an effective description of these media is possible,
far beyond the confines of EMT, at the order of a unit-cell size
equal to the free-space wavelength. We have demonstrated the
effectiveness of our approach by deriving the effective wave
impedance of a practical PBG medium, an orthogonal lattice of
thin PEC disks embedded in a lossy host dielectric.

We have found that the bulk reflection coefficient is dramati-
cally dispersive as we cross the bandgaps of the medium ranging
approximately in values from to . The system
exhibits frequency-dependent electromagnetic transitions from
an electric wall to a magnetic wall, with corresponding nodes or
antinodes on the total electric field near the surface. The effec-
tive wave impedance is similarly very dispersive, with a resistive
part ranging from zero (inside the bandgaps) to 4000hms (at
the band edges) and a complementary reactive part, which is al-
ternatively capacitive or inductive within successive bandgaps.

Finally, we have established a correspondence with natural
crystals, beyond mere geometrical analogies. Namely, we have
shown that printed photonic crystals are effectively described by
Lorentzian functions that generate the wave impedance and bulk
reflectivity in the same way that natural crystals are described by
Lorentzian functions resulting from the interactions of photons
with bound electrons in quantum electrodynamics. We have pro-
vided a Lorentzian response function that accurately reproduces
the effective impedance and bulk reflection coefficient. This
Lorentzian approach also provides accurately the band edges of
the system in a simple closed algebraic form and readily lends
itself to a circuit interpretation for PBG media since Lorentzians
are oscillatory excitations made up of lumped circuit elements.

APPENDIX

CALCULATION OF

Define a triplet of 2 2 complex traceless matrices
, known as the Pauli spin matrices [25]

(47)

The ’s are the generators of the rotation group of two-com-
ponent complex fields in three spatial dimensions [26] known
as SU(2). In our formulation, the layers transform the field am-
plitudes and these transformations constitute a group
containing SU(2).

Let us employ the summation convention that re-
peated indices are summed over their range (e.g.,

). An important property of
the ’s is the algebra

(48)

where is the fully antisymmetric Levi–Civita tensor, spec-
ified in terms of even and odd permutations or of its
indexes

if
if
otherwise

(49)

and is the Kronecker delta. We can expand the matrixin
terms of the set of matrices

(50)

where, by inspection

(51)

Raising to the th power will involve even or odd
multilinears of , which we write symbolically as

. Notice that

(52)

Using the algebra (48) and the fact that the contraction of a
product of a symmetric and an antisymmetric tensor on a pair
of indexes is zero, we get (from now on, we will suppress the
matrix from all equations)

(53)

which leads to

(54)

Hence, can be expanded through the binomial expansion as
if were a number

(55)
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where the polynomials , are the even and odd binomial
projections

(56)

We may now sum up the polynomials . Denote
the “positive” square root (by “positive” we mean the one whose

real part is positive) of by . Then

(57)

and, hence

(58)
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