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Abstract—Printed metallo-dielectric photonic bandgap (PBG) (design of unit cell) and crystal geometry. By appropriate design
materials are analyzed using an analytical approach based on of these parameters, one can achieve large transmission suppres-

multipole expansions for t.he scattered fields off individual scat- gions in specific frequency bands (PBG) and uninhibited trans-
terers and a transfer-matrix method for reconstructing the total o
mission in other bands.

scattered fields created by successive lattice planes of the artificial . ) . o
crystal. An effective description of the PBG medium is derived ~ Up until now, the most interesting characteristics of
and its correspondence withnatural crystals is further advanced these materials, namely their frequency response near the
through an analysis based on Lorentzian response functions, pandgaps, have been explored primarily by numerical methods.
which characterize natural crystals. The effective wave impedance These are typically finite-difference time-domain (FDTD)

and bulk reflection coefficient of the medium are provided and . -
their properties inside and outside the bandgaps are examined. codes [10]-[12] and hybrids of finite elements and method

The presented treatment for these effective response functions Of moments codes [13]-[16], or approaches based on the
extends far beyond the traditional effective medium theory (EMT) layer-Korringa—Kohn—Rostoker (KKR) method [17] and on a
limits. plane wave expansion [18], [19]. Despite the fact that these

Index Terms—Artificial crystals, frequency selective surfaces, codes can handle a variety of device-specific applications
photonic bandgap materials, synthetic materials, synthetic sub- incorporating such materials as well as provide dispersion
strates. diagrams for the materials themselves, the physical details of
electromagnetic propagation and scattering in these materials
remains untransparent, to say the least. This is especially true
for device-specific applications, where complicated excitations
I N RECENT years, photonic bandgap (PBG) materialgyg radiation properties of the primary device components

[1]-{3] have attracted a lot of attention in the engineeringyake any clear separation of the material properties almost
community because they are naturally suited for a VarieT%possibIe.
of antenna gain enhancement and radiation pattern shapin@ second disadvantage of a purely numerical case-by-case
applications [4]-{7], filtering applications (including frequency,pproach to these composite materials is the very long pro-
selective surfaces and space filters), highstructures [8], cessing time these codes require and the memory requirements
integrated circuits, and printed antenna substrates/superstrﬁ{ﬁﬁjsed on the corresponding machine. This makes any attempt
where filtering response of particular modes (e.g., surfaggsystematic parameter-space search and electromagnetic opti-
modes) is desired, as well as for the analysis and designQzation of these materials very time consuming, even within a
absorbing thin film structures [9]. large present-day computing environment.

These materials are composed of unit cells containing artifi- These two reasons motivate the present development of an an-
cial implants embedded within a host dielectric and periodicalyyﬂcm approach to a class of metallo-dielectric PBG materials
placed to form an artificial crystal lattice in one, two, or thregs|evant to engineering applications. We focus on a lattice of
dimensions. The scattering response of the implants is intendghted elements immersed into a low-loss host dielectric. This
to be very different than the surrounding dielectric host, crgs 5 class of structures that are easily and inexpensively fab-
ating significant electromagnetic interference between implaféated and are appropriate for monolithic integration. In Sec-
and host. This interference depends on both host and implggh |1, we present a transfer-matrix analysis of such geometries

for oblique TE plane wave incidence and derive closed analyt-
ical expressions for the reflection and transmission in terms of
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that these artificial media can be described by Lorentzian res
nances, much like the natural crystals in their guantum-mechse
ical interaction with the electromagnetic field.

We stress that our approach extends far beyond the validi
regime of standard effective medium theories (EMT’s). Th
latter are valid for wavelengths typically ten times longer thal
the characteristic electrical dimensions of the unit cell anc
almost by definition cannot provide any information on the
behavior near the first bandgap. Instead, our approach is va
typically for unit cell dimensions of the order of the free-spaci
wavelength and it will be shown that this regime typically
includes several bandgaps.

Il. TRANSFERMATRIX ANALYSIS OF PRINTED PGB
MATERIALS

We consider an orthogonal lattice of PEC disks embedde
in a homogeneous dielectric of complex relative permittivity
eq = €, — je,, and thicknessg, as shown in Fig. 1. The ma-
terial will be made by stacking an arbitrary numi@érof such rig. 1. PBG material made of PEC disks embedded in a dielectric host.
planar arrays and will be laterally infinite, but of a finite arbi-
trary thicknessy = Nc¢. We present closed analytical formulas
for the reflection and transmission coefficients of this material
under TE oblique plane wave incidence.

Consider the slab made up by stackiiNglayers of the cor-
responding two-dimensional (2-D) PBG medium and excited
by TE plane wave oblique incidence at anfléJsing standard
transfer matrix theory [21], we obtain for the transmission co- "

C

nx [H(zy) — H(z3)] =Y Eian(20) (4)

where

Y isthe surface admittance of the 2-D planar array of scat-
terers embedded within the host dielectric,

is the unit normal (along the-direction in this case),

efficient and . .
zp the position of the admittance plane.
Iy = Lo _ Sa1 These boundary conditions determine the transfer and prop-
Ry  Su agation matrices as follows:
— ROUt 1 : RO Rout _ —
IN="Ry Ts0 Wi <L0>_S< 0 ) @ 14t g T
< the ri . ude (wi Tou=i| T T
where Ry (Lg) is the right (left)-going wave amplitude (with ad =5 Mo Mo
respect to the stacking directian in the region of incidence 1- ﬁ_d 1+ ﬁ_d
andR,.; the final right-going wave amplitude in the region past 1/24Y v
the whole structure. Ty = 3 < v a_ Y)
The scattering matrixs is given in terms of the unit-cell .
transfer matrixt/ by P = <e”"‘ /2 0 ) )
c/2 0 eV /2 -
S = Ta,dUNTd,a (2)

_ ) o ~ Notice that while both kinds of transfer matrices obey their re-
whereT, 4 is the transfer matrix through an air-dielectric intergpective group propertieg, 47, . = 1 = Ty Ty, the material

face. The unit-cell matrix, on the other hand, may obviously Rfterface is described by a symmetric matrix, while the shunt
written as admittance interface by an antisymmetric matrix. The unit cell
transfer matrix is calculated to be
U= PC/QTY-PC/Q (3)

. . . . . . e (24Y) Y
whereP, /, is the propagation matrix through a dielectric region U=3 v cne2-Y) ) (6)
of thicknessz/2 and7%- is the transfer matrix through a planar

array of scatterers considered as a shunt admittenice scat- In the abovey;, 7, are the oblique propagation constants and

tering purposes. _ relative wave impedances, respectively, for material {a, d}
On material interfaces the transfer matrices may be Cak‘(\&-E air, d = dielectrig, namely

lated by imposing the usual boundary conditions onfhand
H fields. On the shunt admittance plane the correct boundary ik cosfe. T — 1
conditions are those of an electric current sheet set up by the Vi T RN COSTL, T = S,

voltage impressed h¥ across the admittance 1
cosb; =, [1— = sin?0, n; =+/6 7
n x E = continuous V" on? Ve (")
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where® = 6, is the incidence angle. Using the method outt is important to notice that the parameteasbove characterizes
lined above, we calculate the transmission coefficient througie corresponding PBG material that is infinite in thdirection

the structure to be (im N = o0). This can be shown by evaluating the Floquet
_ _ propagation constant along the stacking direction through the
Ty =4 { <1 + ﬁ—“) <1 + j—d> (UM eigenvalues of the unit cell matrix:
M Ma
7 7 2
+ <1 - @) <1 + @) (U™ emitre = O gy - (BOY (g
Uy Ta 2 2
+ <1 + ;—") <1 - %) (U™)12 Given thatDet(U) = 1, we have
d a
5 5 ] -1 Te(U)
+ <1 _ %) <1 _ %) (UN )22} ;) cos(kpc) = — = cos(kocng cos 84)

+sin(kocngcosby)(5Y/2)=7.  (14)

Similarly, the reflection coefficient off the structure is The bandgaps of the system are given by the inequiafity 1.

1 7 7 One ingredient that has to be supplied in the above formulas
Ty =-T 1—Ta) (14 2) q@n i in oredictions | :

N=3AN x B + = (U in order to obtain predictions is the shunt admittance of a planar
47 ‘7 array of scatterers. This calculation can be performed at various

+ <1 + @) <1 + @) (UM)ay degrees of difficulty and validity, depending on the order of the

M4 "la multipole expansion taken into account for the scattered field.

+ <1 _ &) <1 _ @) (UM )12 For the present, we will use (for the thin disk medium) the shunt

M4 MNa admittance that has been calculated analytically in [20].

+ <1 + %) <1 _ %) (UN)QQ} ) The result is
‘ ¢ Y =jB = j(Be — By),

The matrixU” has been calculated in closed analytical form in Be = 16 (7,)3 a a ngkoc 1
bccosly 1—a.C,

the Appendix. Substituting, we obtain the results 3 \a
8 /r\3 aa 1 1
Br=2 (L) % dnakoe (- — cosba ) T———
L3\, b cnd 0¢ <C0$9d o8 d) 1-—¢e,,C,,
, 1—¢N (15)
TN 1 ~ 1 + 51\‘ + (—5)2
[(1+ )] 9. /1 Y The fine structure provided by the electric and magnetic polar-
“\og izabilities and lattice interaction constarfts. C. , a,,C,,) can

_1 be readily calculated for a tetragonal lattice
16 /r\3 1.2 ra\3 ay3 2ra
n n n n Y = (- = () - = -
[(;—d+”—“>+<n—“—ﬁ—d> —} aCe= (3) |:7r (3) —&(3) KO( b )}

a3 [ () e ()

10
(10) - Ko <2WT“> — 4rK, <2lb>} (16)
a
[see (11) at the bottom of the page], where
where K is the modified Bessel function of the second kind.
U = jsin(kocng cos 64) + cos(kocng cos 64)(Y/2) In the rest of this section, for simplicity, we will use a square

= cos(kocn cos 8. + sin(koeny cos 0,)(1Y /2 transverse lattice = b, Ko(27) = 0.00091.
! (koeng dQ) (hocna Y/2) The range of validity of these formulasifia is derived from
= v (X ¢ = 1-¢ (12) @ Clausius-Mossotti argument, where the equivalent volume
B 20 ) 7 14+ filling fraction should be(4/3)7(r/a)® < 1/3 — r/a < 0.43.

- (D
FN1+5N+(12\I/5A3[<W+%>+<77QW>Y} (11)

v 2
2 1_<ﬁ)
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The much more important range of validity in frequency isde- [
rived from the requirement that the leading evanescent moc§
propagating in the longitudinal dimensierhave an amplitude

2 |
3 o8 .
that is at least as suppressecas, i.e.,ec~ "¢ < ¢~1. Using :1 [
=3 L
[20] ¢ 06 .
9 2 ) 172 2
™n . mm 2 3
FTWn = { <— + kond 51n9d> + (T) - (kond)Q} ﬁ 0.4 ]
¢ x Disk Medium
n=0,+1,---,m=0,1,.-- (17) b ol (I:nalytical)
*& | Patoh Medium _____
we find from the above inequality (setting= b) (18), shown & i a(cFE-IENIIl;m 3
at the bottom of the page, wherg = n’, — jn{,. The most ob—
stringent constraint of (18) arises when the right-hand side i 0 2 4 6 8

.. . . .C
minimum, which always happens o, m, 8) = (0,1,0) irre- ko
spective of the other parameters. Hence, we derive a CONSER@-2. Comparison between our analytical predictions and the FE-IEM code

tive range of validity of our analytical treatment of [16] for normal plane-wave incidence.
2
koc < i? (E) —1. (19) the host permittivity containing any amount of loss, it follows
g ¥ 2@ that|¢| < 1 anywhere. Therefore, from (11) we obtain

The present approach, by restricting itself to propagation of the
dominant modes only and, therefore, to the range of (19), wouldr_ = lim 'y

not be able to treat certain special cases. For example, the disks N=eo L B _
being placed on the air-host interface would have to be excluded 1 [(@ _ @) _ <@ + @) p}
because higher modes would have to be accounted for between ~ 2y/1—p% [\, T4 Mg o
that interface and the adjacent admittance plane. o 1+ 1 K@ 4 ﬁ_a> 4 Mo T }
.To'valldate our formulag, in Flg.' 2 we plot the power trans- 21— p2 Ta T Ta 7. p
mission through av = 2 disk medium for normal plane wave 21)
incidence, in the range of validity of our theory provided by (19).
We compare with results obtained from a finite element-integral
equation method (FE-IEM) approach of [16], where the scathere we have defined the function
terers are square patches of the same effective aperture whose
sided is given by [22] _Y B/2
13 P=5¢ = sin(kocng cos 04) + cos(kocng cos 64)(B/2)°
d_ <§> U (20) 22)
a 3 a

We see that within the range of validity of our theory, the agre®Ve will concentrate on analyzirlg., in the rest of this paper.
ment is excellent. In Fig. 3(a) we plot the bulk reflectivity off the semi-infinite
From the above equations we can derive the reflection coefiBG medium. We also plot the quantityl (12), providing the
cient for a semi-infinite PBG medium, filling up the half-spacéandgaps that are marked by the heavy line in the figure. We
z > 0. This is obviously obtained by taking the linflf — ~ observe that in the bandgaps the reflectivity is close to 100%.
in (11). One can observe numerically, and prove analytically) Fig. 3(b), we plot the real and imaginary parts of the bulk re-
that, for lossless dielectric host and PEC scatterers, the comglextion coefficient. Notice thatynlike in normal conducting or
function ¢ in (12) has a modulus equal to unity everywhere idielectric medial™_ is positive within half of each bandgap as
frequency, except in the bandgaps. The correct way to obtain thell as outside the corresponding band edge. At these frequen-
N — oo limit, is to introduce a small amount @hysicalloss cies, the medium looks like a magnetic conductor approaching
in either the host dielectric or the scatterers, or both. This loagperfect magnetic wall at the corresponding band edges. This
will not only provide a more accurate physical description of this very important since it implies that the incident and reflected
medium, but will also yield the correct semi-infinite limit. Withfields add in phase and the total tangential electric field near

2
. 9 N2 a2 mmc 2_ 2nme y | 2nTC
\/sm 6 + ((n7)* —sin” 6) [( . ) 1} +< . (nh)? + . sin 6

koc <
0¢ = (n7;)? — sin® 0

(18)
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Fig. 4. Real (solid) and imaginary (dotted) parts of the semi-infinite reflection

Fig. 3. (a) Reflectivity of the semi-infinite PBG medium (solid) afr L ’
(dotted). The bandgaps are the regions marked with the thick solid line a%oqeﬁlment in: (a) the first bandgap and (b) the second bandgap.

(b) real (solid) and imaginary (dotted) parts of the semi-infinite reflection
coefficient. . .
A. Effective Wave Impedance from Bulk Reflection

the PBG medium surface is not reduced (or close to zero), as inBy inspection, (21) can be rewritten as

normal media.

In Fig. 4 we expand the plots to show detail in the first and ne (1-p) na (1+p)
second bandgaps. Comparing the situation to that of a good con.  _ Ma \/1=p* 7 \/1-p?
ductor, we observe that the PBG medium creates a strong dis- ™ 9y (1-p) | 7o (1+p)
persive variation on the total tangential field, ranging from the Na \/T—p2  7a J1—p2
behavior of an electric wall (very good conductbf,, ~ —1 2
nodes onk,) to that of a magnetic wall, whedg., ~ +1 and Nd (1-p) _1 (1-p) _
E, become maximum. This phenomenon should be of consid- T /1 — p? K V1-p? fla
erable practical importance in applications relating to phase-ad- = 2 = (I—p) - (23
vance media. The bandgaps for the parameter values chosen, are d (1—p) +1 Na—r=—= *"a
of constant bandwidth of about 12%. Na /1 — p? V1-p

This formula is identical to the formula giving the bulk reflec-
tion coefficient for a macroscopically homogeneous medium of

I1l. EFFECTIVE WAVE IMPEDANCE OFPRINTED PBG MEDIA . . .
relative effective wave impedance

In this section, we provide the fundamentals for deriving the

effective response functions, confining ourselves to the semi-in- — (1—-p) (24)
- L ; . . Tett = Tld 5
finite case for normal incidence, which will provide a corre- v1=p

sponding effective wave impedance. We therefore drop the bars
from then’s for normal incidence in the rest of this paper.  wherep is given in (22).
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Fig. 5. (a) Real (solid) and imaginary (dotted) parts of relative effective wavFIg‘ 6. (a) Real (solid) and imaginary (dotted) parts of the bulk reflection

impedance of PBG medium and (b) same as in (a) in the first bandgap. IC:O ?gigntthge;ewn;rlztiencipbe)a:nrézlnt-I|ke Lorentzian permittivity and (b) same as

In Fig. 5, we plot the functiom.g for normal plane-wave in- - .
cidence. We observe that the impedance is completely resisff\/@. 5.(b)’ should Fesemb"? th‘f’lt of a point-like Lorentzian per-
outside the bandgaps and has strong resonant behavior insid fifivity. To establish that, in _F'g' 6 we s_hpw the f:orr_espondmg
bandgaps, becoming completely capacitive or inductive. At i ot; pro_duced by a Lorentzian permittivity, arbitrarily nor-
band edges, very strong resonances (of the order dRiAnks) malized in frequencyw, ) of the form
are produced.

=14 L(w)
B. Atrtificial versus Natural Crystals: Lorentzian Description )= (wp Jwn)? (25)

In advancing the effective description of PBG materials fur- T Wofwon)? — (@fwn) + j(@]wn) (v wn)
ther, we wish to explore the natural similarities these materials
shouldhave, with natural crystals. It has been shown that tighoosing the normalized width/w,, = 0.001, similar to the
latter are very well described by permittivity tensors that atess tangent of the PBG medium host dielectric, the resonance
driven by the oscillations of electrons bound to the lattice ions,/w, = 1, and the plasma frequaney,/w, = 0.5, we
[23]. Effectively, a quantum electrodynamics description of thebserve that the respose of the PBG medium at and around a
interactions between these bound electrons and the electrontzgidgap ivery similarto that of a single point-like Lorentzian
netic field yields the classical Lorentz oscillator model, whichrystal.
gives rise to these permittivity tensors [24], with the important Multiple bandgaps in the artificial crystal correspond to mul-
advantage being that it predicts the Lorentzian parameterstipie Lorentzians in the natural crystal. The latter are gener-
terms of a few fundamental physical constants. ated by absorption of the incident photon by the bound elec-

If our analogy with natural crystals is tenable beyond the olron, which is excited from an initial state > to a number of
vious similarity used up to now in the literature relating to thdifferent intermediate statel§: >}. Subsequently, the excited
periodic geometry, the behavior of the bulk reflection coefficiemlectron returns to a final stafle> by emmiting a photon. These
and wave impedance for the PBG medium, shown in Figs. 4@jcitations are distinguished by the spectrum of intermediate
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states{|: >} (determined by the nature of the crystal), whicl .
fixes the allowed resonant energies (frequencies) of the incide & 100 -
photon (field). In short, each bandgap of the artificial cryste §
corresponds to one Lorentzian excitation in the natural cryste zl

There are, of course, some differences between the arti
cial PBG medium and a natural crystal: In the former, the in &
duced currents and multipole moments are distributed on tl
whole surface (or volume, for dielectric implants) of the scat = i 1
terers, while in the latter the multipole moments are point-like f.’ -50 | 1
they arise from the “induced current” due to the motion of thi
point-like electron charge under the influence of the incider & 4 |
photon field. The multipole expansion of the scattered field of [

50 [ ]

the artificial implants corresponds in the natural crystal to e» 0 T 1 - 2 - 3 . 5 T 6
pectation values of tensor products of the electron momentu ko.c
(p) and position(r) operators between the electron initial and (@

final states. To be specific, there is the precise correspondence
(taking as an example spontaneous emission)

electric dipole transitions
= tlplo) — [ Iy (26)
electric quadrupole transitions
% (blrp + pri|a) < /[’I‘J(’r‘) + J(r)r] d>r (27)
magnetic dipole transitions

p:e=2.2 (1,10°%); r/a=0.40, a/c=0.35

%(berp—i—%am)ﬁ/rxJ(r)d?’T (28)
1.96 197 1.98 1.99 2 2.01
whereJ is the volume current density integrated over the sca. ko€
terer volume, whiler = {01, o2, o3} are the Pauli spin ma- (b)

trices given in the Appendix and m, h, v the electron charge, _ ) o ) .
, . . .Fig. 7. (a) Real (solid) and imaginary (dotted) parts of the generating function
mass, Planck’s constant, and speed oflight, respectively. NOtiG&y (1) same as in (a) in the first bandgap.

in particular, that the magnetic dipole term in (28) is generated

by two terms—the first relating to the angular momentum oper-

ator (which directly corresponds to the surface current density inln the following, we will fit this function with a correctly
the artificial crystal) and the second relating to the electron spifaled sum of Lorentzians. The Lorentzian behavior in the func-
which has no analogue in terms of current densities. In the art#fon p is produced by the resonant denominafor(22). For

cial crystal case, the multipole terms above have to be integrafdmal incidence, the frequency scale is introduced through the
over the scatterer volume, while in the natural crystal case th&/@iable

terms arise from operators evaluated between the electron states. kocng =x1 — jxo,

This and related differences result in the “distributed” nature of
the PBG medium versus the point-like behavior of the natural _ -
crystal, as shown in the comparison between Figs. 4(a) and 6(a). @2 =kocng tan §/2 (29)

tlt |?hes?ent|tgl t;notlcz thalnezrg lsazzc.)r;]r?tz!ar:r:hit getr)er- wheretan 6 is the loss tangent of the dielectric host. To accu-
ates the function§o, andrnes (23), (24); tis is the function rately calculate the resonant frequencies, we camrset 0.

p [see (22)], which is plotted in Fig. 7. We notice, in particty " s
ular, in the detailed plot of Fig. 7(b) (within the first bandgapy ' nd e Positive constant

— T
x1 =koeny

that the shape and relative normalizationp6f p* is exactly B

that of a Lorentzian permittivity function. It is of interest to ob- A= 2kocng (30)
serve that in the natural crystal, the Lorentzian permittivity re- ) ) o )

sults from the forward scattering amplitude through the use Bith B given by the first equality in (15), we obtain

the optical theorem. The scattering amplitude itself, to leading Az,

order in perturbation theory, results from the Kramers—Heisen- p= (31)

) " sinzy + Az cosxy
berg quantum-mechanical formula [24]. That formula allows LA !

for an one-to-one correspondence between the guantum-mdecaused is small, the poles of this function are located near
chanical Lorentzian and our generating functiofor the PBG  z1 ~ mm, wherem is an integer. To determine the resonant fre-
medium. guencies, we Writﬁgm) ~ mnr — em, €Xpand the denominator
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of (31) to leading order im,,,, and set the real part to zero. Thidn Fig. 8(a)—(c) we compare the functiopsand py, in the

gives us bandgaps. The agreement is perfect and the difference between
p andp;, cannot be distinguished in the plots.
€~ mr A (m) o M7 (32) It is important to notice that the various terms in the sum of
TT14A ' 1+A (33) are roughly the same Lorentzian function, scaled in fre-

guency by an integer multiple of the fundamental frequency of
the first bandgap, as indicated by the formula providing the res-
onant frequencies, (32). An alternative parametrization, which

We will write the Lorentzian fit covering the first three
bandgaps as

3 introduces the scaling of the shape in the Lorentzian width rather
ppp =po + Z (=)™ 1L, (33) than the plasma frequency, gives equally perfect agreement. In
m=1 this latter case
where we have (34), shown at the bottom of the page. w},’") 1144 40
In this equation, fine-tuning beyond the second decimal wé’") “m  or (40)

is achieved through the small parametefs ¢, ¢, which _ _ _ _
correspond to precision-adjustment of the effective p|asn_'{51e difference between these alter_natlves is form_al only, since
frequency, resonant frequency, and width. The congtgrin It would affect the sum rule (33) if the summation were to

(33) is obtained from the sum rule be extended to infinity. For the purposes of this paper, that
alternative would not be more useful than our current fit

lim p; = lim p= A (35) since we are pnly concerned with the range of vr?\lidity.of our

koe—0 koc—0 1+A theory, which is bounded by (19). For formal considerations of

and it fine-tunes the plateaus@butside the bandgaps. For Ourcf';\usality, however, this s_econd Qlternative would be preferaple
usual choice of lattice and scatterer size. we find since the Kramers—Kronig relations would need the behavior
' of the effective response functionswat— oo and one would
@ =008 @ =004 3 =_0.0266 have to extend the summation of the Lorentzians to infinity,
b oY oY even for proving causality within our finite range of validity. In

(1 _ () _ (3) _ . S
€ =0.00167, ¢ =0.00628, ¢ =0.01294 this case, the summation in (39) would be strongly convergent

el =0.025, 2 =0015, » =0015. (36) if (39) were used instead
We can now bring (34) in the form of (25), writing 0 w;)m) 2
m) ;o >, D" =
Lon(w) = Ln_fen) " .
m - m X 2 © _1ym
(7 i) = (02 + ) (0 ) Sy &)
(37) i m=1 m
1+ A)?
where = —%5(2)
w 2
“ ke, __Ax47 (41)
Wn 12
(rn
“p _ 2\/1 + gém) where the Riemann zeta functig(2) = =2 /6 has been used.
Wn g We will not explore the consequences of Lorentzian fit unique-
wé’") mmw (m) ness to causality any further in this paper.
= 1+¢ We will now show that each bandgap is driverimarily by

Wn 14+ An
(m) ( t: 6) ! A\ the corresponding Lorentzian in the sum of (33), despite the
LA, <7r_> (1+¢™) (38) complicated dependence bt andn.q on thesumof L.,

Wn 21y 1+4 v i.e., L, act like distributions. The above remark, coupled with
the agreement between the actual response of the PBG medium
[Fig. 4(a)] and the single Lorentzian medium [Fig. 6(a)], allows

while pq in (33) is given by

3 )\ 2 us to find a very simple formula giving the approximate position
Po = A + (=)™ “p (39) and size of a specific bandgap as driven by the corresponding
1+4 £~ wé’") single Lorentzian (37).

2 (m)
L= mdtey ) (34)

mr \° TA rA \ 7'
(75) @ -ateimm (1075 () ardm




KYRIAZIDOU et al: ARTIFICIAL VERSUS NATURAL CRYSTALS

103
T T T T T T T [T T T T T T T
| ] 50 |- -
& 100 | 1 38 - o] |
i I o) i i
o Q
K ®
< < [
Il 3 M [V o -
£ s 1 2
o 2 |
= < 50l .
~ ol 1 « !
[aY] o
4 )
a 7] a - o]
: ;100 [ .
& 50| 4 = I
| S NN TN WO (NN SN YT ST YN (NN UMY SN ST TN AT SN SN TN SO [T SN SO SN WO [N SRS WO SR WU | | IR PR WU W R ST PR [ S S SRR (N S T ST S N SN WS S B
197 1.975 1.98 1.985 1.99 1.995 2 3.95 3.96 3.97 3.98 3.99 4 4.01
ko.c ko.C
@ ()
- ——
100 | B
8 | [p] ]
1]
i |
®
< |
i
g 50_- B
e
o of i
o
fl
w
S
s 7] ]
50 ]
1 " 1 L 1 L " L 1 L n 1
5.96 5.98 6 6.02 6.04
ko.C o/on=Ko.C
© %)

Fig. 8. Comparison between the exact functiogsolid) and its Lorentzian approximatign, (dotted) in the (a) first, (b) second, and (c) third bandgap. (d) Real

(solid) and imaginary (dotted) parts of the effective bulk reflection coefficient generated from the Lorentzian fpnctind Lorentzian calculation of the band
edges (dashed lines).

For the Lorentzian of (25), the band edges are given at freystem

quencies (m)\ 2 m)\ 2 (m) \ 2
Wh Wh Wh

‘:_i; Re{c“(wy)} = 1+ Re{Ll(ws)} =0.  (42)

(m) 2 (m) 2
n 1 m | W ¥
2 2(—1) < o ) +< o )
In our case, the effective impedance (24) yields an equivalent () 2 )
. e m (m)
Lorentzian permittivity n { 1 2(—1)™ <wp ) N <’y )
2 Wn Wn,
1 1+ PL 2 2
= . 43 (m) (m)
(Net/na)®>  1—pr “3) - <’y ) <w0 )
Wn Wn
1/2
Therefore, the band edges of th¢h bandgap arapproximately wff”) 2 /
determined by the Lorentzian function (44), shown at the bottom + (D" = (45)
of the page. From (42) and (44) we derive the band edges of the "
1+ (D)™ L (1) 12(0f™ Jwn)?
T @

(8™ fwn)? = (=1 =Y (w§™ fwn)?] = (W /wn)? + j(w/wn) (7™ Jwy)
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and bandgap siz‘égg)G The o’s are the generators of the rotation group of two-com-
(m) (m) (m) ponent complex fields in three spatial dimensions [26] known
e _ Y+ w_

- (46) as SU(2). In our formulation, the layers transform the field am-
o Wn o Wno Wn plitudes{R, L} and these transformations constitute a group
wherew,, is given by the first equality in (38). containing SU(2).

InFig. 8(d), we plotthe realandimaginary parts ofthe effective | ot ;5 employ the summation convention that re-
bulk reflection co_efﬁcient generated_by the funptpgand the cated indices are summed over their range (e.g.,
gand edges prowded by the Lorentz_lan approximation (45).T e‘Blmk — %3, AuBuw). An important property of

greementwiththe exactresults of Fig. 3(a) |s,aga|n,excellenE go—’s is the algebra
should be pointed outthatan algebraic solution forthe band edges
throughthe exactequation = 1,7, givenby (14),isimpossible )
since this is a transendental equation. Instead, through the use of 0ioj = —jeijkon + dij1 (48)
Lorentzians, onetrivially arrives at the algebraic solution of (45).
wheree, ;; is the fully antisymmetric Levi—Civita tensor, spec-
ified in terms of even and odd permutatiof®. or P,) of its

IV. CONCLUSIONS

) . ~_indexes
We have approached composite electromagnetic media via an
analytical method based on multipole expansions and transfer- 11, if (ijk) = P.(123);
matrix theory for the observables of the system. We have also p =4 —1, if (ijk) = P,(123); (49)
shown that an effective description of these media is possible, ! 0 ’ otherwise ¢ ’

far beyond the confines of EMT, at the order of a unit-cell size
equal to the free-space wavelength. We have demonstratedéhgéij is the Kronecker delta. We can expand the matiin
effectiveness of our approach by deriving the effective wayg,ms of the set of matriced, o; }
impedance of a practical PBG medium, an orthogonal lattice of
thin PEC disks embedded in a lossy host dielectric. 2

We have found that the bulk reflection coefficient is dramati- U = %01 + zioi = z0(1 + Gia4), G = = (50)
cally dispersive as we cross the bandgaps of the medium ranging
approximately in values fror—1, 0) to (+1, 0). The system \yhere, by inspection
exhibits frequency-dependent electromagnetic transitions from
an electric wall to a magnetic wall, with corresponding nodes or 1 1
antinodes on the total electric field near the surface. The effec-  “° ~ §(U,11 ), 2=3(Ut+Ua)
tive wave impedance is similarly very dispersive, with a resistive 29 = — ‘7_((]12 — Uy), 2 = E(Un —Uy). (51)
part ranging from zero (inside the bandgaps) to 4Q0@ms (at 2 2
the band edges) and a complementary reactive part, which is al- . A
ternatively capacitive or inductive within successive bandgastg."’“S_'ng U to the Nth power wil |r_1volve even or odd

Finally, we have established a correspondence with natu%'i"““?fars Okaf{UZ \_Nh'Ch we write symbolically as
crystals, beyond mere geometrical analogies. Namely, we hagei)™ + (Gioi)=""". Notice that
shown that printed photonic crystals are effectively described by
Lorentzian functions that generate the wave impedance and bulk (Gioi)™ = (Goigoy)F. (52)
reflectivity in the same way that natural crystals are described by
Lorentzian functions resulting from the interactions of photongsing the algebra (48) and the fact that the contraction of a
with bound electrons in quantum electrodynamics. We have pisroduct of a symmetric and an antisymmetric tensor on a pair

vided a Lorentzian response function that accurately reproduggsndexes is zero, we get (from now on, we will suppress the
the effective impedance and bulk reflection coefficient. Thigatrix 1 from all equations)

Lorentzian approach also provides accurately the band edges of
the system in a simple closed algebraic form and readily lends e et N
itself to a circuit interpretation for PBG media since Lorentzians GioiCjoj = Cv,éjg 0;0; = G(i[—Jjeijron + 5721]

are oscillatory excitations made up of lumped circuit elements. =—jGGeiRon(=0) + GG =¢ (53)

APPENDIX which leads to
CALCULATION OF UN

(Go)™ = (), (Go)*H = Go(¢HE. (54)

Define a triplet of 2x 2 complex traceless matricés; } =

{o1,02,03}, known as the Pauli spin matrices [25] N ) ) )
<0 1 ) Hence[/* can be expanded through the binomial expansion as
Jg1 =

if ;o; were a number

1 0
(% N _ Nip. (/2 22
7= <—j 0) U™ =2z, [Po(C7) + GioiPL(CT)]
1o —.N | pé2 N L(S)
03:(0 _1>- (47) =2 PO(C)_Pl(C)+Uz—0 (55)
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where the polynomialg’, P are the even and odd binomial [15]
projections
; [16]
(14 z)Y = Py(2?) + 2P (2?) —

[N/2] N1
2y ' 2\ k.
Po(a™) = kzzo I — 2R ) [17]
[(N=1)/2]
N! [18]
2\ 2\k
Pie) = Lo (2k+1)!(N -2k - @) 59 1]

. . [20]
We may now sum up the polynomiald (¢?), Py(¢?). Denote
the “positive” square root (by “positive” we mean the one whosd?1l

real part is positive) of2 by ¢ = 1/{2. Then [22]

1+ )N = Po(¢?) £ ¢Pi(C?) (67) 123l
[24]
and, hence
[25]
Po(¢) =31+ ON +(1-ON [26]
P =50+0"-1-0".  @8)
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