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Bistatic Scattering and Emissivities of Random Rough
Dielectric Lossy Surfaces with the Physics-Based
Two-Grid Method in Conjunction with the
Sparse-Matrix Canonical Grid Method

Qin Li, Leung TsangFellow, IEEE Kyung S. Pak, and Chi Hou Chan

Abstract—Bistatic electromagnetic wave scattering from a two- problem have become an attractive approach. The most
dimensional (2-D) lossy dielectric random rough surfaces [three- common method that has been used in numerical simulations is
dimensional (3-D) scattering problem] with large permittivity is  {ha syrface integral equation method [1]-[6] and its solution by

studied. For media with large permittivities, the fields can vary ; . .
rapidly on the surface. Thus, a dense discretization of the surface the method of moments (MoM). Conventional implementation

is required to implement the method of moment (MoM) for the Of the MoM requires anO(N?) operation and arO(N?)
surface integral equations. Such a dense discretization is also re-computer memory storage. Fast numerical methods have been
quired to ensure that the emissivity can be calculated to the re- developed for one-dimensional (1-D) random rough surface

quired accuracy of 0.01 for passive remote sensing applications. two-dimensional (2-D) scattering problem] [71=[11] and 2-D
We have developed a physics-based two-grid method (PBTG) that Eandom rough sérfac)es [three-?jifnension]ag ](3[-D)] scatterin
can give the accurate results of the surface fields on the dense grid 9 g

and also the emissivities. The PBTG consists of using two grids on Problem] [12]-[17]. However, for 2-D random rough surfaces
the surface, the coarse grid and the required dense grid. The PBTG of 3-D scattering problem, only two fast numerical methods
only requires moderate increase in central processing unit (CPU) have been used and they are the sparse matrix canonical grid
and memory. In this paper, the numerical results are calculated by method (SMCG) [12]-[15] and the fast multipole method
using the PBTG in conjunction with the sparse-matrix canonical )

grid (SMCG) method. The computational complexity and memory (FMM_) [16], [17]_' Both methods have begn app_hed to perfect
requirement for the present a|gorithm are O(Nscg |Og(Nscg)) and electric Conduct|ng (PEC) surfaces and dielectric surfaces.
O(N.cq), respectively, where N4 is the number of grid points Recently, we studied the scattering of electromagnetic waves
on the coarse grid. Numerical simulations are illustrated for root py |ossy dielectric surfaces with large permittivity [18], [19]
mean square (rms) height of 0.3 wavelengths and correlationlength \hich has broad applications in natural media. For wet soil, the

of 1.0 wavelength. The relative permittivity used is as high as (1 . e . .
21). The numerical results are compared with that of the second- relative permittivity can be as high as 37:2.0 at 1.4 GHz. For

order small perturbation method (SPM). The comparisons show 0cean surfaces, the permittivity can be as high as 39:40.2
that a large difference in brightness temperature exists between at 14 GHz. In the application of MoM to PEC rough surface
the SPM and numerical simulation results for cases with moderate scattering problem, only free-space Green’s function is needed
rms slope. because the wave cannot penetrate into the lower medium. A
Index Terms—Electromagnetic scattering by rough surfaces, common implementation of MoM is to use a grid of eight to
radar scattering. ten points per wavelength to discretize the surface. We shall
call such a gridding a single coarse grid (SCG). For the wave
|. INTRODUCTION §cattering from metallic su.n.‘aces with very large permittivity,
impedance boundary condition could be used because the wave
T HE problem of electromagnetic wave scattering frony, the medium cannot propagate to the other points. However,
random rough surfaces continues to attract reseangf |ossy dielectric rough surfaces with high permittivity, there
interest because of its broad applications. Classical analydign pe rapid spatial variations of the dielectric medium Green’s
approaches are limited in regimes of validity. With the adveRinction and surface fields. Thus, a dense grid is needed. Also,
of modern computers and the development of fast numerigie of the applications of scattering by lossy dielectric surfaces
methods, Monte-Carlo simulations of the wave scattering the calculation of emissivity for applications in passive mi-

crowave remote sensing. The calculation of emissivity has to
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inthe problem without any error estimate. The error can affecttharface so that the fast Fourier transform (FFT) can be applied
accuracy of emissivity, which has an required accuracy of 0.J$parse-matrix canonical grid (SMCG)]. In the lower medium,
The second alternative is to use a dense grid with a large numtier nonnear field interactions are neglected because of lossy
of points (say 16 to 20 points) per wavelength. We shall call sucpeoperties of the lower medium. The approach is denoted as
griddingasingledense grid (SDG). The disadvantage ofthis SIBTG/SMCG. The computational complexity and the memory
isthatthereisalargeincreaseincentral processing unit(CPU) aaduirements for the algorithm a®@(N,,, log(N..,)) and
required memory. Recently, we have developedthe physics-bag¥av,.,), respectively, whereV,., is the number of grid
two-grid (PBTG) method[18],[19]. Itisanimprovementoverth@oints on the coarse grid. Using this approach, we illustrate
past two alternatives in that it has the same accuracy as the SRBnerical results of wave scattering from 2-D rough surface
and yet has CPU comparable with that of the SCG. The PBMBth permittivity as high asl7 + 2:. Also, the numerical
method can calculate the emissivity accurately. In PBTG, twesults of emissivity are compared with that of approximately
grids are used: a dense grid and a sparse grid. The sparse grashaytic solutions. The common analytic method to emissivity
that of the usual eight to ten points per wavelength. The derisethe small perturbation method (SPM) [22], [23] because
grid ranges from 16 or higher number of points per wavelengithobeys energy conservation. For example, the second-order
depending on the relative permittivity of the lossy dielectriSPM obeys energy conservation to order of the location of
medium. The surfacefields are calculated onthe dense grid. Inthe rms height. Furthermore, the SPM agrees with the small
formulation of the surface integral equations, two Green'’s funslope approximation of emissivity calculation [24], [25] for
tions are used. The free-space Green’s function and the Gredra#f-space case. It is to be emphasized that to apply SPM, the
function of the lossy dielectric medium. The PBTG is based @tope has to be small. But for many natural surfaces, including
two observations: 1) the Green'’s function of the lossy dielectrimmnd limited fractal surfaces [26], the slopes are not small.
is attenuative (spatial limited) and 2) the Green'’s function dfhus, comparisons of emissivities are made with that of the
free-space is slowly varying on the dense grid (spatial frequersgcond-order small perturbation method (SPM).
limited). Because of Kramer—Kronig's relation, a large real part In Sectionl, the formulation ofthe problem of wave impinging
of dielectric constantis usually associated with a large imaginargon a 2-D dielectric surface (3-D scattering problem) is given
part at high frequency. The first observation results in a spaisegerms of surface integral equations. Then the surface integral
matrix for the Green'’s function of the lossy dielectric. When thisquations are converted into a matrix equation using a single
Green'’s function acts on the surface fields on the dense gridgitd discretization. In Section I, we describe the physics-based
will be just the product of a sparse matrix and a column vectdwo-grid algorithm and combine it with the sparse matrix canon-
The second observation allows us, when using the free-spaa grid method. In Section IV, the mathematical expressions of
Green's function to act on the surface fields of dense grid to firdte bistatic scattering coefficients and the emissivity are given. In
average the values of surface unknowns on the dense grid &sattion V, the numerical results are illustrated.
then place them onthe coarse grid. Thus, the PBTG speeds up the
CPU and yet preserves the accuracy of the solution. It needs toll. FORMULATION AND SINGLE-GRID IMPLEMENTATION
be mentioned that the PBTG is different from multigrid method. . . — —_
- . o Consider an electromagnetic wa¥g (7) and H;(7), with
The multigrid method [20], [21] tries to facilitate the convergence .. ot . .
of iteration in iterative techniques. The present method is basaeéIrne depender_wce of” 'mpinging upon a 2D d|elec_tr|c
on scattering physics. The purpoée of PBTG is to speed up {ﬁugh surface with a rar_1dom height profile= f(z, y). It 1S
matrix-vector roduct.that corresponds to the convolution of agered s that the illuminated roug_h surface gan_be confined to
, p ) pe X w\fﬂe surface areé, x L, [15]. The direction of incident wave
Green’sfunctions with the surface fields onthe dense grid.

In the previous papers [18], [19], the PBTG method was ]ré = sinf; cos ¢;& +sinf; sin ¢;j — cosf;z. The incident
implemented for 1-D surface (2-D scattering problem). In thig 0> are given as
paper, we: 1) extend the PBTG to 2-D rough surface (3-D__ +o0 +oo
scattering problem); 2) combine the PBTG method with thelsi(7) = / dkz /
sparse matrix canonical grid method (SMCG) for improving
CPU and memory requirements; and 3) study bistatic scattering
coefficients and emissivity for wave scattering from 2-D dielec-
tric rough surface with high permittivity. We use two grids—a oo oo
dense grid and a coarse grid. The wave interaction in thyzji 7) :_i dk, / dk
rough surface is divided into: 1) very near field of distance of m J o —o0
separation less than half wavelength; 2) near field of separation -exp(ikya + ikyy — ik, 2) E(k, ky)fz(—kz). 2)
between half wavelength ang wavelengths; and 3) nonnear

field beyondr,; wavelengths. For very near-field interactionsf-or TE wave incidence

we use the usual product of sparse matrix and column vector. 1

For near-field and nonnear field interactions, the free-space &(—k:) = T (2ky — Gkz) 3)
Green’s function is slowly varying on the dense grid. We first o
average the fields on the dense grid to get fields on the coarse
grid. For the nonnear field interactions, we further expand
free-space Green’s function on a canonical grid of a horizontal

dk,

-exp(tkyx 4+ ikyy — tho2)E(ky, ky)e(—=k2) (1)

Y
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and for TM wave incidence

. H,(7) - A
h(~k.) = —ki (iky — Gka) (5) T T { / = X Ea(7 )iwes Gy dS’
4
+ P / [(ﬁ/ X FQ(F/)) X V/GQ
. k. . . k, . _

where the integraP [ denotes a Cauchy integral ag{ and

; _ 2 _ 12 — 2 2
with k. = y/ky — k7 andk, & + k- In the abovel, (G, are the 3-D Green’s functions of free-space and the lower
andr; are the wavenumber and wave impedance of free'Spaﬁ%lectric medium, respectively. They are given by
respectively. The spectrum of the incident waék,, k) is ' exp(ik1 2 R)

. 1,21t

iven as G
¢ 1.2 4R

B 1 0 o0 ) . WhereR:{x—a:’2+ y—y’2+fa?,y —fa?’,y’ 2}1/2
Blks, ky) = 4r? /_Oo de /_Oo dy exp(=iky = ikyy) andk, isthe'\(/vavenl)meérofth)eIovv[er(me()jium.(The 3]nit normal
-expli(kizx + kiyy) (1 + w)] exp(—t) ) vectorn’ refers to primed coordinate and points away from the
second medium. Applying the boundary conditions
wheret = ¢, +t, = (22 + y?)/¢* and —

(15)

‘ ‘ gin di)2
b= (cosb; cos (/);a: —i—(23029Z sin ¢;y) (®) H (7) 4 b ’ )
g% cos? b; A Ey(F) == - E(7) = = a-E(F), and
€2 €2
n-Hi(7)=n-HF)=n-H(7F)
—sin ¢;x + )2
b= (—sin ¢;x ! cos ¢;y) ©9)  we have
g AxHF) T ’
— X (—tw)d' x E(F )e1Gy dS
1 2t, —1 2t, —1 Nl T
v K <92 cos? 0; * 22 ) ' (10) r / (A7 HG)) > VG
The parameteg controls the tapering of the incident wave. Let + 7 - H(F)V'Gy] dS’} =n X ch(F)
7 = &2’ + 9y + 2f(2',y') denote a source point and =
Zx + gy + Zf(x,y) denote a field point on the rough surface. (16)
Then the fields satisfy the following surface integral equations
15]: h-E(F _
[ ]_ n 2(7)—7%.{/ 7 x H(T YiwuGy dS’
EL (7 —
ﬂ — {/ 7' x Hi(7)iopGy dS’ T
2 +P / (7 x E(7)) x V'Gy
+P / p! X E 7 X V/G — —inc
(A7 B2 (7)) : + 7 - EF)V Q] dS’}:ﬁ E"(r)
+ - B (7)V'GY] dS’} =E™F (1) 17)
nx B(F) R
— / (—iw)i' x E1(7)e1 G dS
. +P / [(ﬁ’ x E(7)) x V'Ga
=+ P / [(7A’L/ X Hl(F/)) X V/G1
- —inc +ﬁ/'EF/ F—IV’G} dS/}IO
+ i H(7)V'Gy] ds'} =H™(m (12 g Ve
(18)
E _ o a0 F 3 J—
- _22(7) = { / (i) x Ho(7')uGs dS’ — D . { / =i x E(7"Yiwer Gz dS’
+P / (7" x Ea(7)) x V'Ga +P / (7" x H(#)) x V'Ga

+ i Eo(7)V' Gl dS’} =0 (13) + 0/ H(T') VG dS’} =0. (19)
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We change (16) and (18) into scalar equations by projecting tberetan ¢ stands for loss tangent. L&t and. represent the
vector intox andy directions, respectively. The MoM is used tovavelength of the wave in the free-space and the lower medium,
discretize the integral equation. The resulting matrix equatiorespectively, and

are N ny = integer(y/). (28)
S zn IV + ze2 1P + Z83 18 + Z8 1Y Then, the relationship between and, can be expressed ap-
n=1 proximately by

+ 28 I + 250, 10 = L (20) A
Do & 2L (29)
for p = 1,2,3, which correspond the surface integral equa- na

tion when approaching the surface from free-space and for e nymper of sampling points needed in the lower medium
4,5,6 when approaching the surface from the lower mediurghould ben, times that of the free-space

it (p)ine _ 4
The quantities of ;""" are zero fop —i’ 5,6 where In the physics-based two-grid method, we use two grids with
IV = Fu(F) = Spy(Fu)[i x H(T)] - & (21) samplings per wavelength af.,, (coarse grid) and ., (dense
grid), respectively. LetV,4, and N;., be, respectively, the total
_77(12) = F(F) = Suy (7)[ x H7)] i (22) number of points on the dense grid and the coarse grid
L, L,
N@d(] = | Nsdyg )\_1 Nsdg )\_1 (30)
I® = L(F) = Suy(F)it - E(7) (23)
w) ()
— N@c =\ Ngeyg Nseg v | - (31)
I® = I(7) = Suy(Fo)[ x E(7y)] - & (24) ! < ‘N !
For examplen,., = 8 andnsq, = 8na. We first rewrite (20)
5 _ N N using the dense grid
1P = 1,(7) = Sy (F) x EF)) -9 (25) 09 g
ST ZLID + 2202 + 25,1 + 25, 10
I’r(LG) = Fn(7) = Say(Tn) - H(7n) (26) n=1
+ ZQID + 215,19) = 1P (32
are surface unknowns and ) ) , )
y oy 1/2 The Roman numeral subscripts,n denote indexing with the
s 14 af (z, ) n af (z, ) dense grid. Note that in the method of PBTG, the surface fields
Y Jz ay ' on the dense grid are calculated. To reduce the calculation, we

make the following three observations.
mn e

free-space Green’s function and the dielectric medium Greerté 1€ Green's function in the lower region is heavily attenu-
function. The parameteN is the number of points we use to ative. A medium with a large real part of dielectric constant
discretize the rough surface is normally associated with a large imaginary part at high

In the past, we have used the SMCG method to solve large [Féduency because of Kramer—Kronig's relation. k& be
matrix equations. The computational complexity is of the order th€imaginary part oks. If s > ', whereC'is a con-
O(N log N) [15], whereN is the number of grid points. We stqnt,_then t_he_ﬂeld interaction betwee_zn thih _and thez_th_
used the SMCG to solve the problem of wave scattering from pplnt IS vanls_hln_gly _small. We can define a distance limit as
dielectric rough surface with relative permittivity up to seven dictated by dissipative loss

TheZ?4 are the impedance elements and are determined by

[15]. The rough surface was sampled by taking eight points per e = ¢ (33)
free-space wavelength. We call such a sampling an SCG. If the k"2
lower medium has a high permittivity, say + 2¢, the sam- outside of which the lower medium Green’s function can

pling frequency needs to be higher than that of coarse grid. We be set equal to zero. Based on comparisons with the results
call this an SDG. The computational operations of SMCG is from SMCG,C is fixed at 1.5 in this paper. Based on this
O(Nsag log Nsag), WhereN,q, is the number of grid points  observation, we calculate the left-hand sides of (32)fer

on the dense grid. Next, we describe the PBTG that is as ac- 4, 5,6 as follows by approximating

curate as SDG and yet can reduce the computational steps to . 7 o <1

O(N,.y log N..,), whereN,., is the number of grid points on Zh, = 2N, = {O’m"” S (34)

Trn,n —
the coarse grid. ) ) )
wherer,,,, is the distance between theth point and the:th

point on the dense grid. Thug2?, (p = 4, 5,6) are sparse
matrices and (32) fop = 4, 5,6 becomes

In this section, we describe the physics-based two-grid
method. We assume that the upper medium is the free space Z [zel 1D 4 zr2 1) 4 zv3 () 4 ged (4
and the lower medium is lossy with large permittivity 1

€2 = eh(1+4 tan &) (27) + 203 1) 4 215 (9] = 0 (35)

Ill. PHYSICS-BASED TWO-GRID METHOD
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2)

3)

For nonnear-field interaction, Green’s function for the upper NWG U —FDod A=l 2, = N
medium is slowly varying on the dense grid. Thus, when =R S LA 'Y T e
performing matrix and column vector multiplication on the
dense gridz as .indicated. in (32), the Green'’s function of the g;’;‘;se Dense Grid
upper medium is essentially constant over an area afn
points on the dense grid. Thus, we can write
" " Interpolate from Average from dense grid to
Z ng“rp)(nﬂ) Ir(zzl ~ Zﬁglpnn}, Z Ir(zzl coarse grid to coarség g grid gbefore
=1 =1 dense grid after convolution
n2 convolution
=3280 | D0 1, (36)
e =1 Fig. 1. lllustration of physics-based two-grid method.
wherel’ = 1,2,---,n3 and the points with indexes.,,,, N
andn,,,, are the central point of the? dense grid points of ~ Note in (41) that ¥, *7 ZE I includes N.q,
m+1,m+2- m+ndandn+1,n+2 -, n+n values o[m = 1,2,---,Ns,gy on the dense grid,
respectively. What is performed in (36) is that the surface while 27  Z24") [0 only has N,., values of
fields on the dense grid are first averaged before multiplied = = 1,2,.--,N,., on the coarse grid. Thus, we first
by the upper medium Green’s function. computex 2>y 224" [0 Then we use linear interpola-
The slowly varying nature of Green’s function of the upper tion of 22 224" ) on the coarse grid to findv,q,
medium only applies to nonnear-field interaction. For near- values on the dense grid. In (41), we use subsdripp
field interaction, Green’s function§; andG- have similar to represent that interpolation. Thus the computational
rate of variation. Thus, we separate out a distancelsay  steps for matrix-vector multiplication are associated with
outside of which7; is much more rapidly varying tha@; . the number of surface unknowns on the coarse grid. The
Based on the observations above, we decompose the uppeflgorithm is pictorially described in Fig. 1. Note that the
medium Green’s function into near field and nonnear-field surface field is obtained with the dense grid but the CPU
interactions time depends on the coarse grid. The PBTG is also used
Naag Naag Nadg in conjunction with the SMCG that was previously used
Z Zﬁ?nfr(],q) - Z Zgﬁ,gs)l,(,?) + Z Zﬁfrg,"s)frg?) (37) in computing scattering from 2-D rough surfaces. The
=1 =1 =1 computational complexity of the combined algorithm of

PBTG/SMCG isO(N,., log(N,.,)).
where Z2%*) and Z24"*) are determined by (Nseg 10g(Nscy))

bpq - -
ZP(I(W) — { Z'rnn? Tmn E Tr (38) IV. BISTATIC SCATTERING COEFFICIENT AND EMISSIVITY
mn - -

) Tmn Z Tf

The numerical simulation results are presented in terms of the
bistatic scattering coefficients normalized by the incident power.

gpa(ns) _ {%pq T'mn E s (39) For anincident wave with a polarizatigh we have
mn mn) Tmn Z Tf'
E? 2
Thus,r is the distance outside which the Green’s function Yas(0s, Ps:0i,0i) = 2| ;,'mc (42)
of the lower medium is fast varying compared with that of Mmts
free-space Green'’s function. The incident power is
Letm andn denote the coarse grid indexes. The coarse o2 i

grid has surface unknown§?, which are averages of the ~ pinc — =7 dley diy|E(ky, k)2 =2 (43)
dense grid surface unknowns. Thusrifis centered in the ' Mo Jk, <k k

roup of then? dense grid points of+1,n+2, - - -, n+n3, ) ) )
\?ve hFr:\ve 2 grnap 2 wherek, = ,/kZ + k2. The horizontal and vertical polarized

ttered components &F are, respectively,
@ 4@ 4L @ sca N
o _ i1 Tdpfo+ ot n+n§. (40) ik
n n3 E; = o / dz’ dy' exp(—ikf3’)
ds’
The Green’s function of the upper medium on the coarse . . _
grid is represented by?% . Then (32) forp = 1,2,3 be- '{Ix(x,y) cos 05 cos ¢s + I, (z',y') cos O sin @,
comes oy 8f(a:’,y’) - o 8f(a:’,y’)
6 Nsag 6 Nseg - Ix(x 7y) T sin 65 — Iy(x 7y) T
S Y arn ey |z '
=1 n=1 =1 |a=1 i p - sinf; — [Fp(2',y') sings — Fy(a',y) cos </)S]}

= [(p)inc, (41) (44)
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16 points per wavelength for the permittivity of + 2.0 gives

ik convergent results. Thus, we regard 2) as accurate results. We
Eo= | dx’ dy' exp(—ikp') will show that 3) is as accurate as 2) and takes much less CPU
ds time. First, we compare the bistatic scattering coefficients for
. {I,;(a:’, y') sing, — I,(z',y') cos ¢, one realization based on different methods. Next, the emissivi-
ties and CPU are compared. The results show that the dense grid
+n[Fe (@', y')cos Bscos s +Fy (2, y')cos Osin ¢, is required for the case with large dielectric constant. Then the
7ol o2y variation of brightness temperatures with observation angles is
- T(x’y)i siné, . -
oz’ illustrated and compared with the second-order small perturba-
_ B y,)af(a;/’y/) i H (45) tion meth_od. I_:inally, the bri_ghtness tempergture as a function
v oy’ § of rms height is shown for different observation angles. We use
where ' = o' sin, cosg, + 3 sinf, sing, + T = 300 Kelvin as the physical temperature. All the numerical

f(«',y') cosf,. For scattering by a dielectric surface, thereSUItS were computed on a DEC ALPHA workstation.

emissivity of the rough surface at incident an¢ftep;) (obser-

vation angle in emission because of reciprocity) is A. Comparisons of Bistatic Scattering Coefficients Computed

by Various Methods

es(bi, ¢i) =1 — L //[’Vh,a(%,(/)s; 0:, ¢i) In Fig. 2(a) and (b) , the comparisons of bistatic scattering
47 _ . e
coefficients in the plane of incidengg = 0°, ¢, = 0°, and
+ vu5(0s, 0530, ;)] siné, dfs dos. (46) 180 of a single realization of rough surface obtained by the
o . .SCG/SMCG, SDG/SMCG, and PBTG/SMCG are shown. Fig.
Thus, the emissivity is a measure of energy conservation ing,) js for copolarization and Fig. 2(b) for cross polarization.
scattering calculation. A rigorous derivation of this result can b&,e incidence wave is TE wave with the incidence angle 6f 10
found from [27]. Because of reciprocity, emissivity is the samg,q the rms height is 0.3 free-space wavelength. The relative
as absorptivity, the amount of power absorbed by the dielectfg mittivity of lower medium isl7 + 2. There are some smal
in a scattering problem. In passive remote sensing, the br_iggfﬁerences among three results. That means it is not strictly
ness temperatufEp of the medium is measured at observatiofgcessary to use dense grid for the calculation of the bistatic
angle(6;, ¢;). The brightness temperature is scattering coefficients for this case of TE incidence. But the
To(6:, ¢:) = es(6:, ¢3)T (47) P_BTG/SMCG can give better results than the SCG/_SI\/!CG. In
Fig. 3(a) and (b) , the results are shown for TM wave incidence.
whereT is the physical temperature of the medium in degrediss seen that the coarse grid leads to a larger error for TM wave
Kelvin. The brightness temperature is commonly measured than for TE wave. Comparing the results of Figs. 2 and 3 in-
the instrument mounted on satellites and aircrafts. The brighicates that the PBTG/SMCG can give better results than the
ness temperature will be measured in the new generation of 8G/SMCG, particularly for the cross-polarization component.
mote sensing satellites of EOS, ADEOS Il, and WINDSAT, etc.
The brightness temperatures can be measured to an accura@y, o€ omparisons of Emissivities and CPU Requirements from
1°K. For example, for the case &f = 300 K, an error of calcu- \/arious Methods
lation in the emissivity of 0.03 gives an error of 9 Kiin brightness In Table I th . btained b . hod
temperature and will not be acceptable. It is important that th h Table |, the emissivities obtained by various methods are

scattering calculation obey energy conservation to less than Of gvgrgotrh(;n:arne]zl'azsatg;?(')rzhE_‘\I_Lnepgg[ﬁ%?;irg:tgfrser%fisrgitj/ﬁg sSllJare
gglt(hat the error in brightness temperature is limited to less tht%vgeen the SDG/SMCG and the SCG/SMCG for TE wave inci-
| dence is 0.0447. It will lead to a difference of 137Klin bright-
ness temperature and is unacceptable in passive remote sensing
applications. The emissivities obtained by the PBTG/SMCG
are also shown. The difference between the SDG/SMCG and
In this section, we illustrate the numerical simulation resultte PBTG/SMCG is only 0.003 316. That will give a small dif-
of wave scattering from 2-D lossy dielectric rough surfackerence of 0.99K in brightness temperature. The emissivities
(3-D scattering problem). Simulations are based on Gaussfan TM wave incidence are also shown in Table I. It is seen
random rough surfaces with Gaussian correlation functions. Aftlat the PBTG/SMCG can give almost the same results as the
the cases are computed with the relative dielectric constantsSi8G/SMCG while the SCG/SMCG cannot. The CPU require-
17 + 42 and4.06 + 0.3, surface area of eight free-space wavanents for various methods are also shown in Table I. It is clear
lengths by eight free-space wavelengths, rms height from 0.0t the SDG/SMCG requires the most CPU. On the other hand,
to 0.3 wavelengths, and correlation length of 1.0 wavelengththe PBTG/SMCG is five times faster than the SDG/SMCG and
The results of three methods will be shown: 1) SCG of eighdkes even less CPU than the SCG/SMCG. The fact that the
points per free-space wavelength with SMCG (SCG/SMCGEPBTG/SMCG requires less CPU than SCG/SMCG is because
2) SDG of 16 points per free-space wavelength with SMCthe former requires less number of conjugate gradient iterations.
(SDG/SMCG); and 3) PBTG/SMCG. Based on the experiend@dus, PBTG/SMCG can obtain the accurate results and require
of 1-D dielectric rough surfaces [19], the sampling density eshuch less CPU than that of the SDG.

V. NUMERICAL RESULTS AND DISCUSSION
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Fig. 2. Comparison of the bistatic scattering coefficients between tihég. 3. Same as Fig. 2 except for TM wave incidence. (a) Copolarization. (b)
SDG/SMCG (solid lines), SCG/SMCG (dash-dot lines), and PBTG/SMCGross polarization.

(dashed lines) for the TE wave incidence. The case is with rms height of 0.3

wavelengths, correlation lengths of one wavelength, surface lengths<o8 8
wavelengths, and relative permittivity df + 2: at incidence angle of £0(a)

gths ittivi that averaging over five realizations can give accurate results.
Copolarization. (b) Cross-polarization.

Fig. 4(a) is for TE wave and Fig. 4(b) for TM wave. The bright-

o ) ) ) nesslid line is from the second-order small perturbation method
C. Variation of Brightness Temperature with Observation (SPM) [23], in a dash—dot line is from a flat surface and in a

Angles and Comparison with Results from the Second-Ordeg;yc|e is from the numerical simulation results. It is shown that

Small Perturbation Method surface roughness increases the brightness temperature over flat

The brightness temperature results based on averaging auaface for horizontal polarization. It can increase or decrease
5 realizations are shown in Fig. 4(a) and (b) for horizontal arttle brightness temperature for vertical polarization depending
vertical polarization, respectively. The rough surface is with rnts observation angles. Although itis known that the SPM cannot
height of 0.3 wavelengths and correlation length of 1.0 wavgive the correct results of emissivities for moderate to large rms
length. The observation angles are varied fromtb®C. The slope, nevertheless the SPM is often used beyond the limit of
relative permittivities is17.0 4 42.0. We note that in the sim- validity because the results satisfy energy conservation. tem-
ulation of emissivity in passive remote sensing, only a smalerature shown in so Thus, it is useful to demonstrate the dif-
number of realizations are required. This is because in passi@ence between the SPM and numerical simulations. For TE
remote sensing an integration of scattered angles is used andweate, the numerical results show that the brightness temperature
has built-in smoothing. For the case of permittivitylGf+-:2 at decreases with observation angles. On the other hand the SPM
the observation angle of 1he horizontal emissivity averagedresults show that brightness temperature increases with obser-
over 10 realizations is 0.699 and is 0.701 for averaging over fivation angles. That means that the SPM cannot give the correct
realizations. The difference between them is 0.002. That meaasult for the brightness temperature for this case. The bright-
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TABLE |
COMPARISON OFEMISSIVITIES AND CPU BASED ON DIFFERENT METHODS

Incidence | CPU time Difference of Difference of
Method Wave (hours) Emissivity emissivity' Brightness
Temperature
SDG/SMCG TE 45.05 0.6612
SCG/SMCG TE 9.11 0.6165 -0.044 13.4
PBTG/SMCG TE 8.48 0.6645 0.0033 0.99
SDG/SMCG ™ 48.83 0.6690
SCG/SMCG ™ 10.16 0.6224 -0.046 13.97
PBTG/SMCG ™ 8.68 0.6729 0.0039 1.17
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Fig. 4. The brightness temperature of Monte-Carlo simulation averaged oygg. 5. The brightness temperature of Monte-Carlo simulation averaged over
five realizations as a function of observation angles and comparisons with tBafealizations as a function of rms heights and comparisons with that from

from the second-order small perturbation method and flat surface. The c@s€ second order small perturbation method. The rms height of zero means
is with rms height of 0.3 wavelengths, correlation lengths of 1.0 wavelengtitat surface. The case is with correlation lengths of 1.0 wavelength, relative

!’elatlve pel’mltthItIe‘S Oﬂ7 + 2.0 (dash-dot line is from ﬂat surface, SO.Ild |!ne permittivity of 17+24, and physical temperature of 30K at observation angles

is from SPM, and circle is from PMTG/SMCG) ad)6 + i0.3 (dashed lineis of 1¢° (circle is numerical result, star is SPM result)°38quare is numerical

from flat surface, dotted line is from SPM, and square is from PBTG/SMCGpesult, cross is SPM result), and*g@iamond is numerical result, plus is SPM
and physical temperature of 30K. (a) TE wave. (b) TM wave.

result). (a) TE wave. (b) TM wave.
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TABLE I
THE BRIGHTNESSTEMPERATURES OFFIG. 4

Observation Flat Surface SPM PBTG/SMCG Q* H*

angle (degrees)
TE 186.2 188.4 2104

10 ™ 189.6 190.7 204.4 1.5997 | 0.1971
TE 184.1 188.9 205.7

15 ™ 191.7 1943 205.2 0.5362 | 0.1825
TE 181.1 190.1 203.7

20 ™ 194.7 199.3 206.9 0.3592 | 0.1907
TE 177.2 192.8 2023

25 ™ 198.7 205.8 208.8 0.3198 | 0.2081
TE 172.3 197.7 200.2

30 ™ 203.7 2139 211.1 0.2943 | 0.2284
TE 166.3 204.5 193.6

35 ™ 209.8 221.1 2139 0.2287 | 0.2242
TE 159.2 2123 192.7

40 ™ 217.3 224 .4 217.2 0.2519 | 0.2759
TE 141.1 2253 185.1

50 ™ 236.3 2182 225.7 0.2497 | 0.3927

ness temperature for the permittivity466+:0.3 is also plotted numerical simulation in horizontal polarization can be as large
in the figures. Similar features are exhibited in this case. It cais 30°K in the brightness temperatures at the observation angle
be seen that surface roughness has a larger influence in brighits(°. Thus, the SPM results have to be modified in emissivity
ness temperature for large permittivity than for the small permitalculation for the moderate to large rms height/large slope. An-
tivity. For horizontal polarization, more energy is reflected witlother feature shown in the figures is that the surface roughness
the increase of incident angles. Thus, the brightness temperataoeeases the brightness temperature for all the cases except for
decreases with the observation angles. For vertical polarizatitime vertical polarization at observation angle of.5the reason
more energy is transmitted into lower medium with the increagethat the observation angle of56 close to the Brewster angle.

of incident angles if angle is less than the Brewster angle. Thég,the Brewster angle, the emissivity of flat surface is the max-
the brightness temperature increases with the observation iamam for vertical polarization. Thus surface roughness will lead
gles. to decrease the emissivity.

D. Variation of Brightness Temperatures with RMS Height E. Comparisons with Empirical Formula

and Comparison with that from the Second-Order Small In passive remote sensing with soil, an empirical formula,
Perturbation Method which has been used for many years, is as follows [28]:

The brightness temperatures as functions of rms height are
plotted in Fig. 5(a) for horizontal polarization and in Fig. 5(b)
for vertical polarization for the observation angles of,130°, Tro(0i; pi) ={1 = [rvo(8i, i) (1 - @)
and 50, respectively. The correlation length is one wavelength + 7rho(6i, 0:)Qle cos” 8; YT (48)
and the permittivity i 7+ 2. We also show the results from the
second-order SPM. The numerical results are averaged over five

realizations. Fprthe small rms height, t_he two resglts are in good Ten(6i,0:) = {1 — [rro(6i, 0:)(1 — Q)
agreement. It illustrates that the algorithm can give the correct e 6,
emissivity calculations. For the case of flat surface, one needs +ro0(6i, @) Qle o (49)

to use many angles in integrating near the specular direction to

give correct emissivity. With the increase of rms height, the dif-

ferences between them get large, especially for the observatidmere?’s,, andZ’s;, are brightness temperatures for vertical and
angles of 10and 50. Because the numerical results and SPMorizontal polarizations, respectively,is physical temperature
results cross each other around the observation angle’ca80 of dielectric medium, and and H are empirical constants that
shown in Fig. 4, the differences between them is small. For thee used to fit the data. The parametersandr;,, are the flat
rms height of 0.3 wavelength, the difference between SPM asdrface Fresnel reflectivity of vertical and horizontal polarized
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waves, respectively. The empirical parameégrepresents cou-

pling between polarizations ard represents depletion of re-
flectivity. Both are assumed to be constants.

In Table II, we tabulate the brightness temperatures of Fig. 412]
based on numerical simulations for the permittivitylGf- 2.0
and also use the simulated results to comgtndH parame-
ters from (48) and (49). The table shows thednd H are actu-
ally functions of observation angles. In the original propo&al,
is supposed to b#k:2h? whereh is the rms height. For this case,
4k?h? = 14.19. From the tableH is much smaller. The table
shows that) and H are empirical parameters that are deprived14]
of physical meaning.

VI. CONCLUSIONS

(11]

(23]

(15]

In this paper, we have extended the PBTG method fronl6]
1-D dielectric rough surfaces to 2-D dielectric rough surfaces
and combined it with the SMCG. The method saves both CPU
and memory while satisfying the accuracy requirement fofl7]

wave scattering from lossy dielectric rough surface with large

permittivity. We have shown that the PBTG/SMCG gives accuq{1g]
rate results for the emissivities. The computational complexity

and the memory requirements of the present algorithm argg
O(Nyey log(Naeq)) andO(N,.,), respectively, wherev,,is
the number of grid points for the coarse grid. The method can

be used for extensive calculations of emissivities of roungo]
surfaces of soils, ocean, and snow/ground interfaces.

(20]
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