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Two-Grid Method in Conjunction with the
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Abstract—Bistatic electromagnetic wave scattering from a two-
dimensional (2-D) lossy dielectric random rough surfaces [three-
dimensional (3-D) scattering problem] with large permittivity is
studied. For media with large permittivities, the fields can vary
rapidly on the surface. Thus, a dense discretization of the surface
is required to implement the method of moment (MoM) for the
surface integral equations. Such a dense discretization is also re-
quired to ensure that the emissivity can be calculated to the re-
quired accuracy of 0.01 for passive remote sensing applications.
We have developed a physics-based two-grid method (PBTG) that
can give the accurate results of the surface fields on the dense grid
and also the emissivities. The PBTG consists of using two grids on
the surface, the coarse grid and the required dense grid. The PBTG
only requires moderate increase in central processing unit (CPU)
and memory. In this paper, the numerical results are calculated by
using the PBTG in conjunction with the sparse-matrix canonical
grid (SMCG) method. The computational complexity and memory
requirement for the present algorithm are ( log( )) and

( ), respectively, where is the number of grid points
on the coarse grid. Numerical simulations are illustrated for root
mean square (rms) height of 0.3 wavelengths and correlation length
of 1.0 wavelength. The relative permittivity used is as high as (17+
2 ). The numerical results are compared with that of the second-
order small perturbation method (SPM). The comparisons show
that a large difference in brightness temperature exists between
the SPM and numerical simulation results for cases with moderate
rms slope.

Index Terms—Electromagnetic scattering by rough surfaces,
radar scattering.

I. INTRODUCTION

T HE problem of electromagnetic wave scattering from
random rough surfaces continues to attract research

interest because of its broad applications. Classical analytic
approaches are limited in regimes of validity. With the advent
of modern computers and the development of fast numerical
methods, Monte-Carlo simulations of the wave scattering

Manuscript received February 17, 1999; revised August 15, 1999. This work
was supported in part by the National Science Foundation (ECS-9423861) and
the Office of Navy Research.

Q. Li and L. Tsang are with the Department of Electrical Engineering, Uni-
versity of Washington, Seattle, WA 98195-2500 USA.

K. S. Pak is with the Jet Propulsion Laboratory, California Institute of Tech-
nology, Pasadena, CA 91109-8099 USA.

C. H. Chan is with the Department of Electrical Engineering, City University
of Hong Kong, Kowloon, Hong Kong.

Publisher Item Identifier S 0018-926X(00)01266-7.

problem have become an attractive approach. The most
common method that has been used in numerical simulations is
the surface integral equation method [1]–[6] and its solution by
the method of moments (MoM). Conventional implementation
of the MoM requires an operation and an
computer memory storage. Fast numerical methods have been
developed for one-dimensional (1-D) random rough surface
[two-dimensional (2-D) scattering problem] [7]–[11] and 2-D
random rough surfaces [three-dimensional (3-D) scattering
problem] [12]–[17]. However, for 2-D random rough surfaces
of 3-D scattering problem, only two fast numerical methods
have been used and they are the sparse matrix canonical grid
method (SMCG) [12]–[15] and the fast multipole method
(FMM) [16], [17]. Both methods have been applied to perfect
electric conducting (PEC) surfaces and dielectric surfaces.

Recently, we studied the scattering of electromagnetic waves
by lossy dielectric surfaces with large permittivity [18], [19]
which has broad applications in natural media. For wet soil, the
relative permittivity can be as high as 17 2.0 at 1.4 GHz. For
ocean surfaces, the permittivity can be as high as 39.740.2
at 14 GHz. In the application of MoM to PEC rough surface
scattering problem, only free-space Green’s function is needed
because the wave cannot penetrate into the lower medium. A
common implementation of MoM is to use a grid of eight to
ten points per wavelength to discretize the surface. We shall
call such a gridding a single coarse grid (SCG). For the wave
scattering from metallic surfaces with very large permittivity,
impedance boundary condition could be used because the wave
in the medium cannot propagate to the other points. However,
for lossy dielectric rough surfaces with high permittivity, there
can be rapid spatial variations of the dielectric medium Green’s
function and surface fields. Thus, a dense grid is needed. Also,
one of the applications of scattering by lossy dielectric surfaces
is the calculation of emissivity for applications in passive mi-
crowave remote sensing. The calculation of emissivity has to
be calculated to within 0.01, which corresponds to a brightness
temperature difference of about 3. This means that the surface
fields have to be calculated accurately.

Two alternatives were used to treat lossy dielectric surfaces.
The first alternative is to use impedance boundary condition [8].
The impedanceboundarycondition ignores thepropagation from
one point to all other points through the dielectric medium. Thus,
the disadvantage of this method is that an approximation is used
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in the problem without anyerror estimate. Theerror can affect the
accuracy of emissivity, which has an required accuracy of 0.01.
The second alternative is to use a dense grid with a large number
ofpoints (say16 to20points)perwavelength.Weshall call sucha
griddingasingledensegrid (SDG).Thedisadvantageof thisSDG
isthat there isa largeincreaseincentralprocessingunit (CPU)and
requiredmemory.Recently,wehavedevelopedthephysics-based
two-grid(PBTG)method[18], [19]. It isan improvementover the
past two alternatives in that it has the same accuracy as the SDG
and yet has CPU comparable with that of the SCG. The PBTG
method can calculate the emissivity accurately. In PBTG, two
grids are used: a dense grid and a sparse grid. The sparse grid is
that of the usual eight to ten points per wavelength. The dense
grid ranges from 16 or higher number of points per wavelength
depending on the relative permittivity of the lossy dielectric
medium.Thesurface fieldsarecalculatedon thedensegrid. In the
formulation of the surface integral equations, two Green’s func-
tions are used. The free-space Green’s function and the Green’s
function of the lossy dielectric medium. The PBTG is based on
two observations: 1) the Green’s function of the lossy dielectric
is attenuative (spatial limited) and 2) the Green’s function of
free-space is slowly varying on the dense grid (spatial frequency
limited). Because of Kramer–Kronig’s relation, a large real part
of dielectric constant is usually associated with a large imaginary
part at high frequency. The first observation results in a sparse
matrix for the Green’s function of the lossy dielectric. When this
Green’s function acts on the surface fields on the dense grid, it
will be just the product of a sparse matrix and a column vector.
The second observation allows us, when using the free-space
Green’s function to act on the surface fields of dense grid to first
average the values of surface unknowns on the dense grid and
then place them on the coarse grid. Thus, the PBTG speeds up the
CPU and yet preserves the accuracy of the solution. It needs to
be mentioned that the PBTG is different from multigrid method.
Themultigridmethod [20], [21] tries to facilitate theconvergence
of iteration in iterative techniques. The present method is based
on scattering physics. The purpose of PBTG is to speed up the
matrix-vector product that corresponds to the convolution of two
Green’s functionswith thesurface fieldson thedensegrid.

In the previous papers [18], [19], the PBTG method was
implemented for 1-D surface (2-D scattering problem). In this
paper, we: 1) extend the PBTG to 2-D rough surface (3-D
scattering problem); 2) combine the PBTG method with the
sparse matrix canonical grid method (SMCG) for improving
CPU and memory requirements; and 3) study bistatic scattering
coefficients and emissivity for wave scattering from 2-D dielec-
tric rough surface with high permittivity. We use two grids—a
dense grid and a coarse grid. The wave interaction in the
rough surface is divided into: 1) very near field of distance of
separation less than half wavelength; 2) near field of separation
between half wavelength and wavelengths; and 3) nonnear
field beyond wavelengths. For very near-field interactions,
we use the usual product of sparse matrix and column vector.
For near-field and nonnear field interactions, the free-space
Green’s function is slowly varying on the dense grid. We first
average the fields on the dense grid to get fields on the coarse
grid. For the nonnear field interactions, we further expand
free-space Green’s function on a canonical grid of a horizontal

surface so that the fast Fourier transform (FFT) can be applied
[sparse-matrix canonical grid (SMCG)]. In the lower medium,
the nonnear field interactions are neglected because of lossy
properties of the lower medium. The approach is denoted as
PBTG/SMCG. The computational complexity and the memory
requirements for the algorithm are and

, respectively, where is the number of grid
points on the coarse grid. Using this approach, we illustrate
numerical results of wave scattering from 2-D rough surface
with permittivity as high as . Also, the numerical
results of emissivity are compared with that of approximately
analytic solutions. The common analytic method to emissivity
is the small perturbation method (SPM) [22], [23] because
it obeys energy conservation. For example, the second-order
SPM obeys energy conservation to order of the location of
the rms height. Furthermore, the SPM agrees with the small
slope approximation of emissivity calculation [24], [25] for
half-space case. It is to be emphasized that to apply SPM, the
slope has to be small. But for many natural surfaces, including
band limited fractal surfaces [26], the slopes are not small.
Thus, comparisons of emissivities are made with that of the
second-order small perturbation method (SPM).

InSectionII, theformulationof theproblemofwaveimpinging
upon a 2-D dielectric surface (3-D scattering problem) is given
in terms of surface integral equations. Then the surface integral
equations are converted into a matrix equation using a single
grid discretization. In Section III, we describe the physics-based
two-grid algorithm and combine it with the sparse matrix canon-
ical grid method. In Section IV, the mathematical expressions of
the bistatic scattering coefficients and the emissivity are given. In
Section V, the numerical results are illustrated.

II. FORMULATION AND SINGLE-GRID IMPLEMENTATION

Consider an electromagnetic wave and , with
a time dependence of impinging upon a 2-D dielectric
rough surface with a random height profile . It is
tapered so that the illuminated rough surface can be confined to
the surface area [15]. The direction of incident wave
is . The incident
fields are given as

(1)

(2)

For TE wave incidence

(3)

(4)
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and for TM wave incidence

(5)

(6)

with and . In the above,
and are the wavenumber and wave impedance of free-space,
respectively. The spectrum of the incident wave is
given as

(7)

where and

(8)

(9)

(10)

The parameter controls the tapering of the incident wave. Let
denote a source point and

denote a field point on the rough surface.
Then the fields satisfy the following surface integral equations
[15]:

(11)

(12)

(13)

(14)

where the integral denotes a Cauchy integral and and
are the 3-D Green’s functions of free-space and the lower

dielectric medium, respectively. They are given by

(15)

where
and is the wavenumber of the lower medium. The unit normal
vector refers to primed coordinate and points away from the
second medium. Applying the boundary conditions

and

we have

(16)

(17)

(18)

(19)
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We change (16) and (18) into scalar equations by projecting the
vector into and directions, respectively. The MoM is used to
discretize the integral equation. The resulting matrix equations
are

(20)

for which correspond the surface integral equa-
tion when approaching the surface from free-space and for

when approaching the surface from the lower medium.
The quantities of are zero for where

(21)

(22)

(23)

(24)

(25)

(26)

are surface unknowns and

The are the impedance elements and are determined by the
free-space Green’s function and the dielectric medium Green’s
function. The parameter is the number of points we use to
discretize the rough surface.

In the past, we have used the SMCG method to solve large
matrix equations. The computational complexity is of the order

[15], where is the number of grid points. We
used the SMCG to solve the problem of wave scattering from
dielectric rough surface with relative permittivity up to seven
[15]. The rough surface was sampled by taking eight points per
free-space wavelength. We call such a sampling an SCG. If the
lower medium has a high permittivity, say , the sam-
pling frequency needs to be higher than that of coarse grid. We
call this an SDG. The computational operations of SMCG is

, where is the number of grid points
on the dense grid. Next, we describe the PBTG that is as ac-
curate as SDG and yet can reduce the computational steps to

, where is the number of grid points on
the coarse grid.

III. PHYSICS-BASED TWO-GRID METHOD

In this section, we describe the physics-based two-grid
method. We assume that the upper medium is the free space
and the lower medium is lossy with large permittivity

(27)

where stands for loss tangent. Let and represent the
wavelength of the wave in the free-space and the lower medium,
respectively, and

integer (28)

Then, the relationship between and can be expressed ap-
proximately by

(29)

The number of sampling points needed in the lower medium
should be times that of the free-space.

In the physics-based two-grid method, we use two grids with
samplings per wavelength of (coarse grid) and (dense
grid), respectively. Let and be, respectively, the total
number of points on the dense grid and the coarse grid

(30)

(31)

For example and We first rewrite (20)
using the dense grid

(32)

The Roman numeral subscripts, denote indexing with the
dense grid. Note that in the method of PBTG, the surface fields
on the dense grid are calculated. To reduce the calculation, we
make the following three observations.

1) The Green’s function in the lower region is heavily attenu-
ative. A medium with a large real part of dielectric constant
is normally associated with a large imaginary part at high
frequency because of Kramer–Kronig’s relation. Let be
the imaginary part of . If , where is a con-
stant, then the field interaction between theth and the th
point is vanishingly small. We can define a distance limit as
dictated by dissipative loss

(33)

outside of which the lower medium Green’s function can
be set equal to zero. Based on comparisons with the results
from SMCG,C is fixed at 1.5 in this paper. Based on this
observation, we calculate the left-hand sides of (32) for

as follows by approximating

(34)

where is the distance between theth point and the th
point on the dense grid. Thus, are sparse
matrices and (32) for becomes

(35)
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2) For nonnear-field interaction, Green’s function for the upper
medium is slowly varying on the dense grid. Thus, when
performing matrix and column vector multiplication on the
dense grid, as indicated in (32), the Green’s function of the
upper medium is essentially constant over an area of
points on the dense grid. Thus, we can write

(36)

where and the points with indexes
and are the central point of the dense grid points of

, and ,
respectively. What is performed in (36) is that the surface
fields on the dense grid are first averaged before multiplied
by the upper medium Green’s function.

3) The slowly varying nature of Green’s function of the upper
medium only applies to nonnear-field interaction. For near-
field interaction, Green’s functions and have similar
rate of variation. Thus, we separate out a distance, say,
outside of which is much more rapidly varying than .
Based on the observations above, we decompose the upper
medium Green’s function into near field and nonnear-field
interactions

(37)

where and are determined by

(38)

(39)

Thus, is the distance outside which the Green’s function
of the lower medium is fast varying compared with that of
free-space Green’s function.

Let and denote the coarse grid indexes. The coarse
grid has surface unknowns , which are averages of the
dense grid surface unknowns. Thus, if is centered in the
group of the dense grid points of ,
we have

(40)

The Green’s function of the upper medium on the coarse
grid is represented by . Then (32) for be-
comes

(41)

Fig. 1. Illustration of physics-based two-grid method.

Note in (41) that includes
values of on the dense grid,
while only has values of

on the coarse grid. Thus, we first
compute . Then we use linear interpola-
tion of on the coarse grid to find
values on the dense grid. In (41), we use subscript
to represent that interpolation. Thus the computational
steps for matrix-vector multiplication are associated with
the number of surface unknowns on the coarse grid. The
algorithm is pictorially described in Fig. 1. Note that the
surface field is obtained with the dense grid but the CPU
time depends on the coarse grid. The PBTG is also used
in conjunction with the SMCG that was previously used
in computing scattering from 2-D rough surfaces. The
computational complexity of the combined algorithm of
PBTG/SMCG is .

IV. BISTATIC SCATTERING COEFFICIENT ANDEMISSIVITY

The numerical simulation results are presented in terms of the
bistatic scattering coefficients normalized by the incident power.
For an incident wave with a polarization, we have

(42)

The incident power is

(43)

where . The horizontal and vertical polarized

scattered components of are, respectively,

(44)
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(45)

where
. For scattering by a dielectric surface, the

emissivity of the rough surface at incident angle (obser-
vation angle in emission because of reciprocity) is

(46)

Thus, the emissivity is a measure of energy conservation in a
scattering calculation. A rigorous derivation of this result can be
found from [27]. Because of reciprocity, emissivity is the same
as absorptivity, the amount of power absorbed by the dielectric
in a scattering problem. In passive remote sensing, the bright-
ness temperature of the medium is measured at observation
angle . The brightness temperature is

(47)

where is the physical temperature of the medium in degrees
Kelvin. The brightness temperature is commonly measured by
the instrument mounted on satellites and aircrafts. The bright-
ness temperature will be measured in the new generation of re-
mote sensing satellites of EOS, ADEOS II, and WINDSAT, etc.
The brightness temperatures can be measured to an accuracy of
1 K. For example, for the case of K, an error of calcu-
lation in the emissivity of 0.03 gives an error of 9 K in brightness
temperature and will not be acceptable. It is important that the
scattering calculation obey energy conservation to less than 0.01
so that the error in brightness temperature is limited to less than
3 K.

V. NUMERICAL RESULTS AND DISCUSSION

In this section, we illustrate the numerical simulation results
of wave scattering from 2-D lossy dielectric rough surface
(3-D scattering problem). Simulations are based on Gaussian
random rough surfaces with Gaussian correlation functions. All
the cases are computed with the relative dielectric constants of

and , surface area of eight free-space wave-
lengths by eight free-space wavelengths, rms height from 0.05
to 0.3 wavelengths, and correlation length of 1.0 wavelength.

The results of three methods will be shown: 1) SCG of eight
points per free-space wavelength with SMCG (SCG/SMCG);
2) SDG of 16 points per free-space wavelength with SMCG
(SDG/SMCG); and 3) PBTG/SMCG. Based on the experience
of 1-D dielectric rough surfaces [19], the sampling density of

16 points per wavelength for the permittivity of gives
convergent results. Thus, we regard 2) as accurate results. We
will show that 3) is as accurate as 2) and takes much less CPU
time. First, we compare the bistatic scattering coefficients for
one realization based on different methods. Next, the emissivi-
ties and CPU are compared. The results show that the dense grid
is required for the case with large dielectric constant. Then the
variation of brightness temperatures with observation angles is
illustrated and compared with the second-order small perturba-
tion method. Finally, the brightness temperature as a function
of rms height is shown for different observation angles. We use

Kelvin as the physical temperature. All the numerical
results were computed on a DEC ALPHA workstation.

A. Comparisons of Bistatic Scattering Coefficients Computed
by Various Methods

In Fig. 2(a) and (b) , the comparisons of bistatic scattering
coefficients in the plane of incidence , , and
180 of a single realization of rough surface obtained by the
SCG/SMCG, SDG/SMCG, and PBTG/SMCG are shown. Fig.
2(a) is for copolarization and Fig. 2(b) for cross polarization.
The incidence wave is TE wave with the incidence angle of 10
and the rms height is 0.3 free-space wavelength. The relative
permittivity of lower medium is . There are some small
differences among three results. That means it is not strictly
necessary to use dense grid for the calculation of the bistatic
scattering coefficients for this case of TE incidence. But the
PBTG/SMCG can give better results than the SCG/SMCG. In
Fig. 3(a) and (b) , the results are shown for TM wave incidence.
It is seen that the coarse grid leads to a larger error for TM wave
than for TE wave. Comparing the results of Figs. 2 and 3 in-
dicates that the PBTG/SMCG can give better results than the
SCG/SMCG, particularly for the cross-polarization component.

B. Comparisons of Emissivities and CPU Requirements from
Various Methods

In Table I, the emissivities obtained by various methods are
shown for one realization. The input parameters of rough sur-
face are the same as before. The difference of emissivities be-
tween the SDG/SMCG and the SCG/SMCG for TE wave inci-
dence is 0.0447. It will lead to a difference of 13.41K in bright-
ness temperature and is unacceptable in passive remote sensing
applications. The emissivities obtained by the PBTG/SMCG
are also shown. The difference between the SDG/SMCG and
the PBTG/SMCG is only 0.003 316. That will give a small dif-
ference of 0.99K in brightness temperature. The emissivities
for TM wave incidence are also shown in Table I. It is seen
that the PBTG/SMCG can give almost the same results as the
SDG/SMCG while the SCG/SMCG cannot. The CPU require-
ments for various methods are also shown in Table I. It is clear
that the SDG/SMCG requires the most CPU. On the other hand,
the PBTG/SMCG is five times faster than the SDG/SMCG and
takes even less CPU than the SCG/SMCG. The fact that the
PBTG/SMCG requires less CPU than SCG/SMCG is because
the former requires less number of conjugate gradient iterations.
Thus, PBTG/SMCG can obtain the accurate results and require
much less CPU than that of the SDG.
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(a)

(b)

Fig. 2. Comparison of the bistatic scattering coefficients between the
SDG/SMCG (solid lines), SCG/SMCG (dash-dot lines), and PBTG/SMCG
(dashed lines) for the TE wave incidence. The case is with rms height of 0.3
wavelengths, correlation lengths of one wavelength, surface lengths of 8� 8
wavelengths, and relative permittivity of17 + 2i at incidence angle of 10�. (a)
Copolarization. (b) Cross-polarization.

C. Variation of Brightness Temperature with Observation
Angles and Comparison with Results from the Second-Order
Small Perturbation Method

The brightness temperature results based on averaging over
5 realizations are shown in Fig. 4(a) and (b) for horizontal and
vertical polarization, respectively. The rough surface is with rms
height of 0.3 wavelengths and correlation length of 1.0 wave-
length. The observation angles are varied from 10to 50 . The
relative permittivities is . We note that in the sim-
ulation of emissivity in passive remote sensing, only a small
number of realizations are required. This is because in passive
remote sensing an integration of scattered angles is used and that
has built-in smoothing. For the case of permittivity of at
the observation angle of 10, the horizontal emissivity averaged
over 10 realizations is 0.699 and is 0.701 for averaging over five
realizations. The difference between them is 0.002. That means

(a)

(b)

Fig. 3. Same as Fig. 2 except for TM wave incidence. (a) Copolarization. (b)
Cross polarization.

that averaging over five realizations can give accurate results.
Fig. 4(a) is for TE wave and Fig. 4(b) for TM wave. The bright-
nesslid line is from the second-order small perturbation method
(SPM) [23], in a dash–dot line is from a flat surface and in a
circle is from the numerical simulation results. It is shown that
surface roughness increases the brightness temperature over flat
surface for horizontal polarization. It can increase or decrease
the brightness temperature for vertical polarization depending
on observation angles. Although it is known that the SPM cannot
give the correct results of emissivities for moderate to large rms
slope, nevertheless the SPM is often used beyond the limit of
validity because the results satisfy energy conservation. tem-
perature shown in so Thus, it is useful to demonstrate the dif-
ference between the SPM and numerical simulations. For TE
wave, the numerical results show that the brightness temperature
decreases with observation angles. On the other hand the SPM
results show that brightness temperature increases with obser-
vation angles. That means that the SPM cannot give the correct
result for the brightness temperature for this case. The bright-
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TABLE I
COMPARISON OFEMISSIVITIES AND CPU BASED ON DIFFERENTMETHODS

(a)

(b)

Fig. 4. The brightness temperature of Monte-Carlo simulation averaged over
five realizations as a function of observation angles and comparisons with that
from the second-order small perturbation method and flat surface. The case
is with rms height of 0.3 wavelengths, correlation lengths of 1.0 wavelength,
relative permittivities of17+ i2:0 (dash-dot line is from flat surface, solid line
is from SPM, and circle is from PMTG/SMCG) and4:06+ i0:3 (dashed line is
from flat surface, dotted line is from SPM, and square is from PBTG/SMCG),
and physical temperature of 300�K. (a) TE wave. (b) TM wave.

(a)

(b)

Fig. 5. The brightness temperature of Monte-Carlo simulation averaged over
5 realizations as a function of rms heights and comparisons with that from
the second order small perturbation method. The rms height of zero means
flat surface. The case is with correlation lengths of 1.0 wavelength, relative
permittivity of17+2i, and physical temperature of 300�K at observation angles
of 10� (circle is numerical result, star is SPM result), 30� (square is numerical
result, cross is SPM result), and 50�(diamond is numerical result, plus is SPM
result). (a) TE wave. (b) TM wave.
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TABLE II
THE BRIGHTNESSTEMPERATURES OFFIG. 4

ness temperature for the permittivity of is also plotted
in the figures. Similar features are exhibited in this case. It can
be seen that surface roughness has a larger influence in bright-
ness temperature for large permittivity than for the small permit-
tivity. For horizontal polarization, more energy is reflected with
the increase of incident angles. Thus, the brightness temperature
decreases with the observation angles. For vertical polarization,
more energy is transmitted into lower medium with the increase
of incident angles if angle is less than the Brewster angle. Thus,
the brightness temperature increases with the observation an-
gles.

D. Variation of Brightness Temperatures with RMS Height
and Comparison with that from the Second-Order Small
Perturbation Method

The brightness temperatures as functions of rms height are
plotted in Fig. 5(a) for horizontal polarization and in Fig. 5(b)
for vertical polarization for the observation angles of 10, 30 ,
and 50, respectively. The correlation length is one wavelength
and the permittivity is . We also show the results from the
second-order SPM. The numerical results are averaged over five
realizations. For the small rms height, the two results are in good
agreement. It illustrates that the algorithm can give the correct
emissivity calculations. For the case of flat surface, one needs
to use many angles in integrating near the specular direction to
give correct emissivity. With the increase of rms height, the dif-
ferences between them get large, especially for the observation
angles of 10and 50. Because the numerical results and SPM
results cross each other around the observation angle of 30, as
shown in Fig. 4, the differences between them is small. For the
rms height of 0.3 wavelength, the difference between SPM and

numerical simulation in horizontal polarization can be as large
as 30 K in the brightness temperatures at the observation angle
of 50 . Thus, the SPM results have to be modified in emissivity
calculation for the moderate to large rms height/large slope. An-
other feature shown in the figures is that the surface roughness
increases the brightness temperature for all the cases except for
the vertical polarization at observation angle of 50. The reason
is that the observation angle of 50is close to the Brewster angle.
At the Brewster angle, the emissivity of flat surface is the max-
imum for vertical polarization. Thus surface roughness will lead
to decrease the emissivity.

E. Comparisons with Empirical Formula

In passive remote sensing with soil, an empirical formula,
which has been used for many years, is as follows [28]:

(48)

(49)

where and are brightness temperatures for vertical and
horizontal polarizations, respectively,is physical temperature
of dielectric medium, and and are empirical constants that
are used to fit the data. The parametersand are the flat
surface Fresnel reflectivity of vertical and horizontal polarized
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waves, respectively. The empirical parametersrepresents cou-
pling between polarizations and represents depletion of re-
flectivity. Both are assumed to be constants.

In Table II, we tabulate the brightness temperatures of Fig. 4
based on numerical simulations for the permittivity of
and also use the simulated results to computeand parame-
ters from (48) and (49). The table shows thatand are actu-
ally functions of observation angles. In the original proposal,
is supposed to be where is the rms height. For this case,

. From the table, is much smaller. The table
shows that and are empirical parameters that are deprived
of physical meaning.

VI. CONCLUSIONS

In this paper, we have extended the PBTG method from
1-D dielectric rough surfaces to 2-D dielectric rough surfaces
and combined it with the SMCG. The method saves both CPU
and memory while satisfying the accuracy requirement for
wave scattering from lossy dielectric rough surface with large
permittivity. We have shown that the PBTG/SMCG gives accu-
rate results for the emissivities. The computational complexity
and the memory requirements of the present algorithm are

and , respectively, where is
the number of grid points for the coarse grid. The method can
be used for extensive calculations of emissivities of rough
surfaces of soils, ocean, and snow/ground interfaces.
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