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Diffraction from a Truncated Grounded Dielectric
Slab: A Comparative Full-Wave/Physical-Optics
Analysis

Stefano Magi Senior Member, IEEH_eonardo BorselliMember, IEEEand Andrea Cucurachi

Abstract—The problem of diffraction at the edge of a semi-in- timating the propagation constant of surface waves (SW's) and,
finite grounded dielectric slab excited by a line source is investi- when included in the description, of leaky waves (LW's). Fur-
gated. This canonical problem may be used as a reference S°|Ut'°nthermore, for source placed in proximity of the surface or near

in the high-frequency regime for patch antennas radiating from a - o . . .
finite grounded slab. Both physical optics (PO) and integral equa- to the edges, the applicability of approximate BC's is question-

tion (IE) approaches are used and compared. The PO formulation @ble also for thin substrates, because they intrinsically assume
is cast in a convenient asymptotic form that neatly describes the a local plane wave as incident field, thus leading to possible in-

diffraction processes associated with the various wave species. Theaccuracy in predicting the SW excitation coefficients. Although
IE, solved by the method of moments, is formulated by enforcing pg jg |acking in the fringe field description, it does not suffer

the continuity of the electric field on an infinite aperture orthog- f the ab limitati being based th t G ,
onal to the slab. This allows a drastic reduction of unknowns, pro- rom the above limitations, béing based on the exact Green's

vided that appropriate entire domain basis functions are used that function of the infinite dielectric slab.
are shaped to match the asymptotic behavior of the aperture field. ~ The application of PO to grounded slab structures was first

Com_parison between th_e_PO and IE solutions is presented to de- introduced in [3] for patch antenna pr0b|emsl where the calcu-
termine the range of validity of PO. lation of both the PO current and its radiation integral was per-
Index Terms—Dielectric slabs, electromagnetic diffraction, formed numerically. In [7], a PO high-frequency formulation is
physical optics. applied to the case of an electric dipole placed at the interface
of a truncated semi-infinite grounded dielectric slab. The same

formulation was applied in [8] to find the radiation pattern of
patch antennas on a finite ground plane. There, via comparison
T HE description of diffraction mechanisms at the edges @fith experimental data, the effectiveness of the PO approach
agrounded dielectric slab is important in practical antenigys verified for certain substrate thicknesses and dielectric con-
and scattering problems, in particular for the prediction of padiants, but no investigation on the range of validity of PO was
tern distortion for patch antennas on finite substrates [1]-{3}resented. This investigation is the main purpose of this paper.
The typical values of thicknesses and dielectric constants use¢h, grder to isolate the diffraction phenomena relevant to only
in these antennas suggest the effective use of a physical gRe truncation, a canonical configuration has been chosen,
tics (PO) approximation. For the present problem, PO meagfijch consists of a semi-infinite grounded dielectric slab ex-
that the dielectric polarization currents and the surface groupged by a line source placed at the dielectric/air interface. This
plane currents pertinent to the truncated structure are estimaﬁ%bm is studied here first by an asymptotic PO formulation
like those produced in the infinite grounded slab by the actughq next, for comparison, by a full-wave integral equation
source. Although this approach of PO for grounded slab cognalysis. Note that the full-wave analysis for the present
figurations does not accpunt for the ggided wave reflection Sltoblem cannot be easily carried out by the conventional sur-
the open end and the fringe deformation of the currents clogge/olume formulations of the electric field integral equation
to the edge, it contains the basic physical information for neaijge that presented in [9] for the analysis of printed antennas
describing the various wave diffraction phenomena. For certajf finite substrate, owing to the large number of unknowns
aspects PO seems to be more adequate with respectto aIternﬁﬂﬁsed by the semi-infinite extension of the integration
formulations, i.e., those based on the exact solutions of wedggsnain. Consequently, a different and rather unconventional
with impedance boundary conditions (IBC) [4], [5] or generaly||.wave method is suggested in this paper, which is based on
ized impedance boundary conditions (GIBC) [6]. The solutiongeriving the integral equation by enforcing the continuity of the
derived from the GIBC, although more general and complefgngent electric field on an infinite aperture orthogonal to the
than those from IBC, equally fail for increasing substrate thickjap, Semi-infinite domain basis functions are used to expand
nesses and decreasing dielectric constants (i.e., for the casg,8f ;nknown aperture field that are shaped according to the
patch antenna). In general, approximate BC'’s cause errors in;%%?mptotic behavior of the field diffracted at the edge.
In order to show the kind of contributions that are not pre-
dicted by PO so as to simplify the interpretation of the compar-

|I. INTRODUCTION
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Fig. 1. Geometry of the truncated grounded dielectric slab illuminated by
line source.

Il. RAY DESCRIPTION b)

The geometry we are dealing with is shown in Fig. 1, an
consists of a semi-infinite grounded dielectric slab with diele
tric constant,. and thicknesg, which is fed by a line electric \

source with unit current, located at the air-dielectric interfac
at a distancd. from the upper edge of the truncation. A rectan
gular coordinate systefr:, y, ») and its relevant cylindrical one
(p, ¢) are introduced, with their origin at the upper edge. The c)

SB
axis is perpendicular to the interface, thaxis is along the in- & o SB ..
terface, and the axis is along the upper edge of the truncatior : % .......
Fig. 2 is a schematic presentation of the ray contributions i > o 2 2
volved in the excitation and diffraction of various wave specie 0,<6er /////'\\ /// \\ / \ Lw

\ i <Oer 6 \\\\,0:::{{// \\\. /// \ | Y

. =
A. Space Wave and Relevant Diffracted Rays

The GO rays are those excited by the slab-modulated SoquGB 2.' Diffracted_ ray contribqtions. Ray despription of excitation and
feld in absence of truncaion [Fig. 2(a). For siab problems, tfffecion mechaniens for vaous weve cpccies, Longer oue ercte
summation of the GO ray contributions in the external region igys. (b) Surface wave and relevant diffracted rays (parallel arrows inside
often referred to aspace wavéo distinguish it from surface and the dielectric denote a homogeneous plane wave propagating by successive
leaky waves. The GO rays include the incident ray and the rd ?ctlons wnh_mmdence angle greater than the critical angle. (c) Le_aky wave
. - T nd relevant diffracted rays (decreasing number of parallel arrows inside the
incoherently reflected between the dielectric interface and thglectric denote an inhomogeneous plane wave propagating by successive
ground plane. These rays may be attributed to direct contribygflections; the incidence angle of the real part of the vector wavenumber is
tions from an infinite series of image sources vertically alignegfs than the critical angle).
into a homogeneous dielectric half-space [10]. (Note that these
sources cannot be rigorously interpreted as line electric current internal GO rays, arise from the lower edge of the trunca-
but the above interpretation help the physical understandingan. An approximation of this latter contribution is provided by
The rays launched by the source and its images with an ingie PO approach. Conversely, PO does not describe: a) multiple
dence angl®; less than the critical angk, = sin~'(1/,/c;) diffraction mechanisms between the two edges and b) the GO
[Fig. 2(a)] penetrate into the free-space and contribute to thg/s excited back into the slab.
space wave. The multiple reflected rays exactly incidert.at
[only one of them IS dep_|cted n F'g'. 2(2)] propagatg in th . Surface Waves and Relevant Diffracted Rays
free-space region at grazing aspect with the speed of light. The
total summation of these grazing rays provides a total grazingThe GO rays which impinge witld; > 6., may en-
field of asymptotic ordel /z+/z, thus obtaining a field that is counter—starting from a certain cutoff frequency—a condition
not purely optical in its asymptotic regime. [Conditions may bfor which the various transmitteg-evanescent grazing rays
found for TM case [11] in which the decay of this space wav&uperimpose coherently in the-direction. This creates in
grazing field is ofl /z3\/z type,x—* for the three-dimensional the external region a totaj-evanescent wave which does not
case]. The asymptotit/z+/z-behavior at grazing aspect leadsittenuate along: [surface wave (SW)]. Because the SW is
to a rapid variation of the field in the direction normal to the inattenuated iry, to satisfy the wave equation it travels along
terface, thus producing a significant slope-diffraction effects aftith phase velocity lower than the free-space speed of light.
the slab truncation. Fig. 2(a) depicts the diffracted rays excitéd the slab-region, the SW can be seen as a homogeneous
by the grazing space wave, longer arrows denoting stronger mgne wave which undergoes successive subcriizat> 6., )
amplitudes. The PO approach correctly describe this behawvieflections (Fig. 2(b)). In the free-space region, the SW exists
since it is based on the exact grounded slab Green's functibalow a shadow boundary (SB) that starts at the source (when
In the far-field regime, the diffracted rays provide continuity tohis latter is placedon the slab). In a uniform asymptotic
the space-wave derivative when the observation point crosseslysis, the space wave excited by the source must have there
the plane¢ = =« and allow for the illumination of the region an opposite discontinuity to compensate for that of the SW
below the ground plane. Additional diffracted rays, excited bgt the SB. At the truncation, the SW produces diffracted rays
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at both the lower and the upper edge, which exhibit stronger a) Imxx

amplitude near the paraxiép = ) direction. In the near zone J (improper sheet)

of observation, the SW exhibits a second SB arising from the SWPsy _ SOP 4 %

upper edge, parallel to the previous one. The compensation : SWPs Re Ky

of the SW discontinuity at this second SB is provided by the ‘ |

SW-induced diffracted-wave in a way similar at all to that b)

mentioned for the space wave. e {I’n} g |
Due to the evanescence of the SW, its discontinuity at both e YooaTvEs

SB’s asymptotically vanishes. Thus, both the space wave and ferey e Rea

the SW-induced diffracted wave have to be discontinuous only Yo \}\n\ud :prs'

in transition regions of finite extension localized close to the | . |

source and close to the edge, respectively. Therefore, in the

far zone both the space wave and the SW-induced diffractéd. 3. (a) Complex:. -plane. (b) Complex:-plane.

wave exhibit a regular behavior (i.e., they do not have either

discontinuity nor singularity). We note that the space-wave ethe free-space wavenumber argl is the k-normalized spec-
cited diffracted rays may have discontinuity versus frequenayal wavenumber (the time dependerss(jwt) has been as-
Indeed, the SW-excited diffracted rays appear in the far zopemed and suppressed). The electriield £, (p, ¢) radiated
only for frequencies higher than the cutoff frequency of the peat large distance is provided by the radiation integraiét on
tinent SW. In a frequency scan, this may produce an unphyke semi-infinite extent > 0, i.e.,

ical discontinuity of the relevant diffracted ray contributions.

The desired uniform description of these rays is provided by the g - _ ;¢
space-wave excited diffracted rays [Fig. 2(a)], which exhibits an (6:9) kC\/jQ\/ 2mkp
appropriate frequency transition close to cutoff. This phenomz,qre

enon is well described by the asymptotic PO solution presented o oo

in Section Ill. Note that the diffracted rays can also excite re- _ PO jk(z cos p+y sin g

flected SW’s, which are not depicted in Fig. 2(b) and are not ald) = [h/() i@y ( Hedy. @)
described by PO.

—jkp

(a(¢) +FEe=?) (1)

Note that the second term in (1) represents the direct contribu-
tion from the unit source. Using the same method as in [7], the

C. Leaky Wave and Relevant Diffracted Rays integral in (2) may be rewritten as

A coherence condition can also occur fomhomogeneous -
plane wave, which reflects inside the dielectric with< 6. a($) = L/ —J(kz, @) L 3)
In the external region, the continuity of the tangential field is 21j J—oo (Kx +cos @)
ensured by an inhomogeneous plane wave [leaky wave (LW)] 0 1o o )
which grows up along positive [Fig. 2(c)]. The existance re- wﬁere_.](/%, ¢) = [7p, J7%(ka, y) exp(jy sin ¢)dy. The in-
gion of LW is restricted in the space below an SB, where it eegral in (3) can be seen as a spgctral convolution calculated at
hibits attenuation mooving away from the source. The sourdé» = —cos ¢ between the Fourier transform of the PO cur-
excited space wave provides there the compensation of its fifiits (this latter preconditioned by the integratiog)rand the
discontinuity. The LW propagates alomgvith a phase velocity Fourier transforni /.. of a unit spatial-step function that pro-
greater then the speed of light, while exhibiting an exponentidf€s the PO windowing of the radiation integral. The integrand
« attenuation. The subsequent diffraction mechanism provid8s(3) exhibits a pole ak, = —cos ¢ (optical pole, OP) de-
then a weak field contribution compared with the one associatéred clockwise by the integration path. Fig. 3(a) shows the
to space wave or SW's. An exception is when the dielectric sugRMPIeXr.-plane. The branch-cut associatedsto = +1 is
port is properly stratified in order to enhance the LW propag&h0sen in such a way thai(,/1 — x2) < 0 on the top Rie-
tion phenomenon [12]. The LW-induced diffraction mechanisff@nn sheet; the integration contour in (3) detours the branch
can be described in a PO framework and it will be included f&ints—1 and +1 in counterclockwise and clockwise sense, re-
completeness in our asymptotic formulation, even though tBECtively. Similarly, surface-wave poles (SWPIS)Y (n =

LW diffraction effect is often negligible in the case of a singld»2 - - ) are located on the real axis, wherg) is the &-nor-
dielectric layer. malized propagation constants of thia SW excited in the in-

finite dielectric slab. The integration poles are detoured in ei-
ther the counterclockwise or the clockwise sense, respectively
[Fig. 2(a)]; they are located on the intervals 1, —/¢.) or

By invoking the equivalence principle, the dielectric and thél, | /<,-), which implies SW phase velocities between the speed
ground plane are replaced by polarization (volumetric) currerdst light in free-space and in the dielectric. The complex so-
and conductive (surface) currents, respectively. By resortingltgions of the dispersion equation [leaky-wave poles (LWP)]
the PO approximation, these currents®(x, %) may be esti- x5V m = 1,2--.) are located on the improper Riemann sheet
mated from those of the corresponding infinite grounded dieledm( /1 — x2) > 0).
tric slab and may be expressed by the spectral Fourier represem steepest descent path (SDP) deformation is applied next
tation J7O (k. y) exp(—jkr, L) (see Appendix A) wher& is  (Section I1I-A) to obtain a ray representation of (3); the SDP

I1l. PO FORMULATION
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integration is evaluated asymptotically for large valueg:bf —1, so that (6) implies:%° vanishes in the lower half-space

(Section 111-B) to obtain a closed-form solution. (¢ > ). This is expected since for the infinite slab the ra-
) o diation of the ground and volumetric currents must cancel the
A. Space-Wave and Diffracted-Wave Contributions contribution from the unit line source. A compact expression of
It is convenient to introduce the change of variakle = this contribution is
cos a with /1 — k2 = sin « S0 that (3) becomes ,
) a®® = U(m — ¢)p(¢)e’* ¢ 9)
a(g) = / Aa)eRLeosa g, o ,
2ny Je, wherep(¢) is given in Appendix A, (21). Note that(¢) van-

ishes at the limitp — =~ as anticipated in Section II-A; thus,

in which A(a) = —(J(cos @, ¢)sinar)/(cos @ + cos ¢). The only a slope-type contribution of space-wave diffraction is ex-

%, complex plane is mapped into the comptexplane shown in pected.

H GW i W _
Fig. 3(b). The poles:,;™" are mapped into the poleg™ (G = The phase-exponential factor in (7) and (8) leads to interpret

L, S). A couple of OP’s are located at= +(7 — ¢) (the pole LW : . - :
atw — ¢ corresponds to the OP on the top Rieman sheet of the ﬁ\’;\l/,sae?(iﬁg d if\ltso ttT]Z csj:z[)a[cst;nlzciogtrzl?g)tlgg do(fc;h?ei\/\elzstiezﬁl]
plane). The integration contou€%, = (—joo, ™ + joo) maps gs- » Fesp Y-

axis of ther,-plane; it detours the imaginary pola" in the The SW diffraction gives the most significant contribution, par-

. . . ticularly at grazing aspects. As mentioned earlier, the LW-in-
clockwise and counterclockwise sense for the portiegic, 0) . o o
. . . duced diffraction is negligible in most cases. Note that the SW
and(w, 7 + joo), respectively. The OP located jpn, =] is

always detoured in counterclockwise sense. and LW direct field contribution do not appear in the far zone

To evaluate asymptotically the integral in (4) for largg, representation (5), being exponentially attenuated along

a i . . 2
the integration contour is deformed into the SDP through it%The terma can be mterpr_eted as the dl_ffracnon C(_)ntnbut_lon

. : . . of the space wave. As mentioned in Section II-A, this contribu-
pertinent saddle point of the integrandaat= 0. This defor-

mation is allowed only fod, > &, becaused(a) behaves like tion is intended to provide the required uniform continuity to the

exp(jkh cos «) for large positive value of the immaginary partGO field when the observation point approachies = and also

of . In this deformation, OP’s, SW poles, or LW poles may ba uniform description of the SW and LW excitation phenomena

captured and their residue accounted for, thus leading to when a freqqency \(/ia_riation occur around the cutoff. The asymp-
totic evaluation ofz* is performed next.
a($) + cIRLeos? = ggo 4 gd 4 Z aSWod 4 Z a4 (5) Before proceeding further, we note thaf«) and the rel-
— - evant derived quantities can be decomposed in the two terms
associated to the first and second term of Appendix A, (18);

wherea® is defined as in (4), but with integration on the SD since the second term of such an equation exhibits a phase factor

and the other terms derive from the residue contributions (fé’;rqp(—jkh sin ¢), all the diffracted ray deriving from it can be

homogeneity of notation, the teraxp(jkL cos ¢) associated jniernreted as coming from the the lower edge of the truncation
to the incident field is incorporated in the contributi@$?, de- (see Fig. 2)

noting the GO field)
af® = IFLeos o 4 r8U(r — ¢) + r°U(=(x — ¢))] (6) B. Asymptotic Evaluation of the Space Wave Diffracted Field

The asymptotic evaluation of the SDP integral which defines
the space-wave diffracted field is performed via the Van der
aSWod = SW kL cos ™ 1y (~Im ( azxx7)) @) Waerd_en (VdW) method [7], [13]. Th(_a as_ymptoti_c evalu_a_ltion
is dominated by the saddle-point contribution, but is sensitive to
and (8), shown at the bottom of the page, whefe is the whether the poles is near the SDP and/or are crossed by the SDP.
residue ofA(a) at+(r — ¢) andr&W is the residue ofi(«)  If the pole and the SDP are distinct, each can be evaluated sep-
atatW (G = S, L). Moreover,U(n) is the heavyside unit step arately from the other. When the SDP and pole are contiguous,
functions ¢/ = 1 forn > 0 andU = 0 for » < 0), and in (8), the asymptotics must be refined, i.e., made uniform, to account
Re(aSWY) € [0,7/2). simultaneously for both. Note that the L/SW poles and the OP

By inspection of the phase terms, the various contributionsigrate in the complex plane depending on different parame-
in (6)—(8) can be interpreted in terms of rays, which are thosers, that is, on the observation angle and on the frequency (slab
schematized in Fig. 2. thickness and permittivity being fixed), respectively. In partic-

In the upper half-spacg) < =) a®° is the GO (space-wave) ular, the OP approaches the saddle point when the observer ap-
contribution. It consists of the contribution from the source fieldroaches the grazing aspégt = =), while the SW poles do
modulated by the presence of the infinite grounded slab as pttee same when the frequency is close to the relevant cutoff fre-
sented in Fig. 2(a). In Appendix A, it is demonstrated #f8t= quency that defines the excitation condition of each SW. The

IW,d _ IW _jkLRe(x!V) —kLIm(x!¥Y) 1 LW
a =7, e mmle am/J | ——————=— — cos(Re« 8
m m cosh(Im (alW)) ( m ) ®
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VdW procedure for the present case is as follows. After substi-
tutingcos a = 1—js? inthea integral, the ternmi(«) in the in-
tegrand is transformed infB(s) = —J(1—js2, ¢)2s/(s?—s2),
wheres, = /2/j cos((1/2)#), while the SDP contour trans-
forms in the real axis of the plane. Each pole aB(s) is indi-
vidually extracted from the spectral integrand

780 GW

s ,
— + - § : i
Bls) = s — S0 *3 + 50 * —~ 5 — sV +1 (10

BE@

thereby isolating the pole contribution from the re- ¢ :
sulting regularizing remaindefI’(s). In (10), s&V = @ 2
V2/7sin((1/2)(a$W)NG = S,L) where of" are both

LW and SW poles in the complex plane that possesses re@al 4. (a) Application of the equivalence principle to the actual problem. On
part between—7/2 and 7/2 [see Fig. 2(b)]. The regular the surface, the profile of the basis functions used in the MoM are depicted.
functionT’(s) is then approximated by the first two terms of itér?])agglg‘rﬁgmepr()blems for the regions 1, 2, and 3 obtained by applying the
Taylor expansions at the saddle point. Finally, a term-by-term '

closed-form integration is carried out, thus leading to (1

PEREEEELEENEE
'

1% - .
. . tructure, the surface for defining equivalent unknown currents
shown at the bottom of the page, wheffty) is the transition must be infinite, thus requiring basis functions which extent to

function of the Uniform Theory of Diffraction (UTD), defined infinity. For penetrable objects of finite extension, the continuity

i - “SW LW
W'tg —3m/4 <tr?rg(\/§) < Wt/h4 Es_e? [?j’ eqa(é.llb)?])"i g i 4 (& the tangential fields is usually applied to the external profile
an p((/;_) alre The same a?_ a lnlrlo _ucle dm (th)' (val and ég} the object itself. For the present infinite configuration, this

respectively. The summation in (11) includes the an onventional approach may cause difficulties. Indeed, when the

poles close to the saddle po@ = 0) and not necegsarlly SW’s are excited, undamped unknown currents need to be dis-
correspond to those captured in the SDP deformation. Ee}?

term of thei-indexed sum in (11) provide a uniform description Luted along the direction, thus implying truncation errors or,

) when using entire domain basis functions, yielding poor conver-
of the f'elq when the freqqency crosses the cutoff frequency nce of the reaction integrals. Although these latter difficulties
the associate SW or LW (i.e., Wh?,n asWoralw polt_'-} Cross Say be overcome by using the method described in [14], close
the SDP). Furthermor@,(.o) andT (0) (the second de.rlva'uve. to the excitation condition of surface waves still remain open
of T'(s) ats = 0) are easily obtained from (10). By using their

explicit expressions, which can be easily obtained setting) problems. In order to avoid the above difficulties, we enforce
_ ' h ial fiel inui h -
in (10), (11) can be rearranged as (12), shown at the bottt e tangential field continuity across the aperture surface

feident with they-z plane; indeed, on this surface, the SW's
of the page, wher&(z) = 1 — F(z) — 1/(2jz) is such that . ! ’ ’ e
S(z) ~ (3/4)2~2 for z large. The explicit expression & (0) are exponentially attenuated so that the asymptotic field is only

A ) X . S due to the GO and to the space-wave diffracted contributions
is given in Appendix A. Equation (12) highlights well the SIOp(?hat exhibit a known asymptotic behavior. The surfacis the
nature of the space-wave diffracted ray. Indeed, for ldrfe '

and far from transitions (i.e., far from — 0 and far from the same as that used in [15] for estimating the surface wave PO

toff T f surf th totic domi di[ffraction at the edge of an impedance half-plane.
cutoff frequency of surface waves) the asymptotic dominan The surfaces divides the space in three regions, denoted by

i 1" i i .TV—3/2
term is that relevant t&3”(0), which is of order(kL) V(x> 0,y > —h);2) (x> 0,y < —h); and 3)(z < 0),

(S_'Q?Qe S(@) - (3/4)272). Th's agrees with the antlglpated espectively [Fig. 4(a)]. By invoking the equivalence principle
t spreading of the grazing space-wave (see Section II-A t.S electric and magnetic equivalent unknown currents are dis-
tributed on the two sheets = 0T andz = 0~, which are in-
finitely close to the surface = 0. Next, an infinitesimally thin

In order to provide a reference solution for the problem iperfectly magnetic conductor (PMC) is placed between these
Fig. 1, an integral equation is formulated and then solved véheets so that the magnetic currents do not radiate and can be
a method of moments (MoM). Due to the infinite extent of theuppressed. As a consequence, the problem is purely TM with

IV. INTEGRAL EQUATION AND MOM SOLUTION

' . swy2
a M F (jkLs3) ,GWM _ ()
. 7\ 2
L et 3 (jkLs? @R (5)) By

a

~
~ p($) ), oW al , (12)
2jVrkL 50 —~ sEW 4kL
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respect toz and the electric current on the aperture are directed

along z and denoted by/* for z = 0*. The continuity of

the tangential magnetic field implies that these electric currents

have equal amplitudes and opposite signs on the two sides of
the surface$ [i.e., J = —J_ = J_, Fig. 4(a)]. The continuity

of the tangential electric field is then enforced to obtain the in- |
tegral equation o %

30pws - ---
100 pws

Amplitude (dB)

380

180
scan angle {(degrees)

[E,Z. + E~(]~)] =0t — EZ(_']Z)H:O* (13) Fig. 5. Far field of a line source placed on a half-plane witl 50\q, L =
0.1Ag andh = 0.5\,. Exact solution (marks); MoM solutial¥ = 30 (dashed

whereE! is thez-directed field of the impressed line source antie): MoM solution " = 100 (continuous line).
E.(+.].) is thez-directed field radiated by-.J, in the proper
region. By applying the image principle, the field in each region
can be calculated by using the equivalent problems depicted in
Fig. 4(b). Each one of them can be treated by using standard
Green's functions; in particular, in region 1, the problem reduces
to an infinite grounded slab illuminated by two line sources
placed at symmetric distances frafnand from2./.(y > —h) ;
implying the use of the Green's function of the infinite slab. In o %

Amplitude (dB)

3 . scan ar:g?lg(degrees) 70 %0
regions 2 and 3, the problems reduce to sheets of currents radi-
ating in free-space. Fig.6. Normalized far field for thin grounded sléb = 0.1.A) with e, = 2.2

The unknown equivalent electric curreft is expanded in for two different positions of the sourcd.(= 0.2\ andL = 0.1A). MoM
. . . solution (continuous line); PO numerical integration (marks); PO asymptotic

terms of basis functiond,,(y)(n = 0, N) weighted by un- s, iion (dashed line). In the inset: comparison between the normalized field
known coeficientsl,, to be determined via a MoM schemefrom a line source illumination [two-dimensional (2-D), continuous line] and
In particular, forn = 1, N — 1, symmetric piecewise sinu- from a dipole illumination (3-D), dotted line].
soidal (PWS) basis functions are used to cover the portion of
S neary = 0 [Fig. 4(a)]. The firstN; PWS are those for define the mutual impedance and the forcing term, are calcu-
y > 0 (n = N, corresponds to that with its maximum afated in the spectral domain for all the three regions. Since re-
the origin). Moreover, two additional entire domain basis fun@ions 2 and 3 involve ordinary free-space Green's function, their
tions (EDBF's) are used for describing the far-out region of thealculation is straightforward. In region 1, which involves the
aperture. The appropriate asymptotic behavior of the EDBRRinite slab Green's function, the strategy for the calculation of
can be deduced by observing that in the far zone, the domin#i reaction integral is described in Appendix B.
contribution of the magnetic field on the aperture must be di-
rected alonge. This means that the magnetic field component V. NUMERICAL RESULTS

alongy, which is responsible for the electric currents alang | this section, comparison between PO and MoM results will

possessesap(—jky)/y,/y asymptotic behavior. This occurspe presented, with an objective to find the range of validity of

for both the space-wave field and the diffracted rays excited gye po approximation. The plots in Figs. 6—10 represenfthe

all the slab-modulated incident waves. Then, the EDBF’s &fig|d in the far zone normalized with respect to the same far-

expressed via their spectral Fourier representatioh@$) = field component radiated by an electric line source in free-space;

f(y) andJn(y) = f(—y — h), where for the PO formulation presented here, this corresponds to the
Ve ity patterna(¢) + exp(jkL cos ¢) in (1). For the MoM solution,
Fly) =22 ¢ ~dk, (14) PWS withd/2 = 0.05) is used.
P (Vk—Fky, +VE-K) In order to validate the numerical procedure, a preliminary

example is presented for the case= 1, which corresponds

in which K = kh/+/h? + L? and the branch cut is defined sao a line source above a perfectly electric conducting half-plane
asarg(\/k — ky) € (—n/4,37/4) in the top Riemann sheet; (Fig. 5). For this case, the available exact solution has been com-
the integration contour detours the branch pdipt= % in a pared with the MoM results. In particular, the field at distance
clockwise sense. It can be demonstrated that (14) exhibits fhe- 50X for L = 0.1Ag andh = 0.5)¢ is calculated by our
expectedexp(—jky)/(y+/y) asymptotic behavior. Moreover, technique using two different number of PWS. The curve of the
Jordan's lemma shows théfy) vanishes for < 0; as a conse- exact solution almost superimposes to that from MoM for the
quence,Jo(y) and.Jx(y) are dropped to zero andh, respec- caseN = 100 (N, = 75). Using the above geometry for dif-
tively. It is worth noting that the complex constafit may be ferent values of. and/ allowed us to calibrate the number of
chosen with a certain degree of freedom to regulate the dista3&'S to be used; fok andh less thard.5Ag, no more than 100
atwhichf(y) reaches the asymptotic regime. However, its valu@e needed.
has a little influence on the convergence rate of the MoM solu-In Figs. 6-9, the PO results are obtained from (5) by calcu-
tion. lating the space-wave diffracted field contributieth both via

The MoM solution of the integral equation is obtained byumerical integration on the SDP (marks) and via the asymp-
using PWS weighting functions. The reaction integrals, whidbtic expression (11) (dashed line). The MoM results are always
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Fig. 9. Normalized far-field pattern fof. = 0.7A, with h = 0.5\

§ ande., = 4. Two SW's are excitedSW(with lower cutoff frequency
5 fi = c¢/(4hye. —1)) and SW, (with higher cutoff frequency
h f2 = 3c¢/(4hy/e. —1)). MoOM solution (dotted line); PO asymptotic

solution (continuous line); PO witholW, diffraction (dashed line); PO
withoutSW,, andSW, diffraction (dash-dotted line).

Fig. 7. Normalized far-field pattern for a sourcelat= 0.5), from the edge formulation (unless in théi-plane, where the diffraction con-
for various thicknesses of a slab with= 2.2; the cutoff frequency of th&'E,  tribution of the dominant TM SW is weaker). We emphasize
mtoe%?aoticocn“r(;fgﬁ(s; %és;\g)',Mgt?tiioé‘gﬁft?ofc(’gggﬁggSIi22?};(5;0 S_gg‘fg"ca' again that the application of the 3-D formulation to patch an-
B o= 0.25X. (b)h = 0.40)0, h = 0.50\o. tenna problems on a finite rectangular substrate is presented in
[8].
The same dielectric constat. = 2.2) as that in Fig. 6, with

a) 1 a different source locatioflL. = 0.5X0) is considered in Fig. 7
for increasing substrate thicknesses in terms of a wavelength.
In particular, Fig. 7(a) presents two slightly different situations:
h = 0.22)y andh = 0.25X9, Which correspond to whether
or not the first SW is excited (the cutoff frequency occurs for
h = 0.228)¢). This example is intended to check the validity

Amplitude (dB)

- - o 2,0\“ ;60 of the asymptotic PO solution inside the transition of the space
sean anglo (degrees) wave diffracted field, which must ensure continuity to the SW
by diffraction contribution [this corresponds to a SW pole crossing

the saddle point, see Fig. 3(b)]. When the thickness further in-
creases/f = 0.4, 0.5, Fig. 7(b)], the SW diffraction con-
tribution gradually assumes relevance, observable by the pres-
ence of a second radiation lobe close to the paraxial direction
(¢ = 180°). The agreement between PO and MoM results is
excellent for the cases of Fig. 8(a) and satisfactory for those of
270 360 Fig. 7(b). In the latter cases, the curves corresponding to PO
and MoM start to deviate one from the other at 22f8is may
Fig. 8. Normalized far-field pattern for a sourcelat= 0.5\, from the edge be attributed to the inability of PO in recovering the boundary

for various permittivities and thicknesses of the slab. MoM solution (continuo@onditions of the perfectly conducting ground plane (vanishing
line); PO numerical integration (marks); PO asymptotic solution (dashed ling);__field for ¢ = 3600).
@h =0.2X0, 6, =22,¢6. =4.(b)h = 0.1Ag, ¢, = 7, ¢, = 10. ?

Amplitude (dB)

180
scan angle (degrees)

The example in Fig. 8 shows the efficacy of PO in describing
cases with high values of dielectric constants. Two different
presented by a continuous line. In all the cases, the curvegshitknesses are chosel £ 0.2\, Fig. 8(a), andi = 0.1,
the numerical PO calculation and its relevant asymptotics d&#. 9(b)); for each of them two permittivities are considered
almost superimposed, thus demonstrating the robustness of[the= 2.2, ¢, = 4, Fig. 8(a);e,, = 7,¢,. = 10, Fig. 8(b)]. For
asymptotic solution also for moderate valueg:af each pair, the lower and higher correspond to SW below or

Fig. 6 shows the effectiveness of the PO approximation foradove the cutoff, respectively. Note that the paraxial lobe due
small thickness of the substrdte= 0.1.), for alow dielectric to the SW diffraction is dominant in both the cases when the
constante,. = 2.2), and for small distances between the sourc@W’s are excited and more pronounced than that in Fig. 7(b)
and the edgéL = 0.2)\, and0.4)). In the inset of Fig. 6, due to the larger amplitude of the SW excitation coefficient. The
the same results are compared with those obtained by usingdlyjeeement is again satisfactory, but a discrepancy occurs in the
formulation in [7], which is based on the same PO approadlggion from 45 to 9C¢°. This may be attributed to a nonnegli-
but using an elementary dipole as a source. This allows to evgible diffraction contribution from the edge excited SW trav-
uate how close this 2-D formulation is to the correspondent 3&ing backward, which is neglected in the PO approach.
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Fig. 9 corresponds td. = 0.7Xy,h = 0.5 ande, = 4. 1) POis not accurate in predicting the far-field pattern close
For this case, two SW's are excited in the dielectric. We denote  to ¢ = 360°. This is attributed to the failing to meet the
by SW; and SW,, the one having lower (higher) cutoff fre- boundary condition of the perfectly electric conducting

quency, respectively. Furthermore, a LW is excited in this case.  ground plane. This limitation can be overcome by adding
The MoM result (dotted line) is compared with that from the to the PO field a fringe field contribution arising from
asymptotic PO (numerical evaluation of PO is not reported here,  the diffracted currents on the perfectly conducting plane.
because it gives a curve superimposed with the asymptotics). In - The formulation of this contribution is presently under

order to appreciate the nature of the SW diffracted field con-  investigation.

tribution, two other curves are depicted that correspond to the2) When the slab is electromagnetically dense and thick in
total field without the diffraction contribution #W, (dashed terms of a wavelength so that the SW reflected back at
line) and without bottbW; andSW, (dash-dotted line). The the truncation produce significant end-point radiation,

LW diffracted field is not depicted in this figure because it has the present PO formulation fails. On the basis of a
negligible effect on the pattern. Unlike previous results, the PO  wide set of examples it is deduced that this occurrence
curve slightly deviates from that from MoM in the broadside arises in practice when the first two guided modes are
region; this may again be attributed to the inability of PO in excited into the slab (i.e., for the preséhE, case for
describing the diffraction contribution from the SW'’s reflected h = (3/4)X0/Ver — 1). This can be considered as an
at the truncation. Comparisons with the other curves shows that approximate limit for the applicability of PO.

the diffraction contribution of the SW’s (especially thatd¥ ;)

dominates the total field starting fromh= 45°. APPENDIX A

VI. CONCLUDING REMARKS The expressions of the PO current in the spectral domain is

The effectiveness of the PO approximation has been demon-;,, k(e — 1) sin[hk(y + h)ry1] — ky16(y + 1)
strated in describing diffraction effects of the various wave"=z (K, y) = TE(ky, Fy1)
species excited by a line source in a truncated slab problem. (15)
To avoid the presence of multiple diffraction effects that couldhereé is the Dirac's delta function and
have confused the interpretation of the mechanisms arising
by a single truncation, a semi-infinite slab instead of a finite TE(k,,k,1) = k1 cos(hkky1) + jry, sin(hki,)  (16)
one has been chosen as a validation problem. An asymptotic
solution is given for the PO in the far-field region, which iswith k, = \/1 — k2, k,1 = /¢ — 2. The first and second
successfully validated against PO numerical integration also term corresponds to the polarization and the surface ground cur-
moderate values of the asymptotic paramdiewhich is the rents, respectively.
distance of the source from the upper edge. The PO results havesing (17), shown at the bottom of the page, a closed-form
been compared with those from a full-wave analysis, which éxpression for/ (., ¢ f b AL (K0, y) exp(jky sin ¢) dy
carried out by solving via a MoM scheme an |E expressing the obtained [see (18) at the bottom of the page]. Denote by
continuity of the tangential electric field on an infinite aperturg, (s, ¢) and.J; (s, ¢) the first and second term of (18). When
orthogonal to the slab. This approach, although rather uncog; = — cos ¢, x, = — sin ¢ (this corresponds in the-plane to
ventional, led to stable convergence properties and numeriga optical poles — = which is captured by the deformation con-
efficiency, reducing the required number of unknowns. Theur for ¢ < =), we have (19), shown at the bottom of the page,
latter is obtained by using EDBF’s that are shaped in suchwith ¢t = /¢, — cos? ¢. From (19), we obtain
way to reconstruct the asymptotic aperture field.

Comparisons with the MoM solution has shown the following _ 27 sin ¢ sin(hkt) 20
expected limitations of the PO formulation. p(¢) = tcos(hkt) + j sin ¢ sin(hkt) (20)
0 ) ) P Jkh sinz;STE ol .
k/ Sill[liyl(y—i- h)]@gk(y+h) sin ¢ dy = Ryl — C , : (2 sin ¢, l‘vyl) _ I("%‘v‘/)) (17)
h (Iiyl — sin d))
. 2 F 2
](Iia;, (/)) ( - 1)TE(_ sin ¢, Hyl) + K & —1- Fy1 +sin” ¢ —jkhsing (18)

(K2, —sin? ¢) TE(kiy, Kq1) vt (K2, — sin® ¢) TE(ky, ry1)

Jo(—cosp,p) = —TE(—sing,t)/TE(sin¢,t) and Ji(—cos¢p,$) =0 (29)
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win  —24/2]sin(khv/¢, — 1) exp(—jkhsin ¢) 1
B = cos?(1¢) cos?(khy/e, — 1) <I(1’ ¢) - € — 1) (22)
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