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Abstract—The problem of diffraction at the edge of a semi-in-
finite grounded dielectric slab excited by a line source is investi-
gated. This canonical problem may be used as a reference solution
in the high-frequency regime for patch antennas radiating from a
finite grounded slab. Both physical optics (PO) and integral equa-
tion (IE) approaches are used and compared. The PO formulation
is cast in a convenient asymptotic form that neatly describes the
diffraction processes associated with the various wave species. The
IE, solved by the method of moments, is formulated by enforcing
the continuity of the electric field on an infinite aperture orthog-
onal to the slab. This allows a drastic reduction of unknowns, pro-
vided that appropriate entire domain basis functions are used that
are shaped to match the asymptotic behavior of the aperture field.
Comparison between the PO and IE solutions is presented to de-
termine the range of validity of PO.

Index Terms—Dielectric slabs, electromagnetic diffraction,
physical optics.

I. INTRODUCTION

T HE description of diffraction mechanisms at the edges of
a grounded dielectric slab is important in practical antenna

and scattering problems, in particular for the prediction of pat-
tern distortion for patch antennas on finite substrates [1]–[3].
The typical values of thicknesses and dielectric constants used
in these antennas suggest the effective use of a physical op-
tics (PO) approximation. For the present problem, PO means
that the dielectric polarization currents and the surface ground
plane currents pertinent to the truncated structure are estimated
like those produced in the infinite grounded slab by the actual
source. Although this approach of PO for grounded slab con-
figurations does not account for the guided wave reflection at
the open end and the fringe deformation of the currents close
to the edge, it contains the basic physical information for neatly
describing the various wave diffraction phenomena. For certain
aspects PO seems to be more adequate with respect to alternative
formulations, i.e., those based on the exact solutions of wedges
with impedance boundary conditions (IBC) [4], [5] or general-
ized impedance boundary conditions (GIBC) [6]. The solutions
derived from the GIBC, although more general and complete
than those from IBC, equally fail for increasing substrate thick-
nesses and decreasing dielectric constants (i.e., for the case of
patch antenna). In general, approximate BC’s cause errors in es-
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timating the propagation constant of surface waves (SW’s) and,
when included in the description, of leaky waves (LW’s). Fur-
thermore, for source placed in proximity of the surface or near
to the edges, the applicability of approximate BC’s is question-
able also for thin substrates, because they intrinsically assume
a local plane wave as incident field, thus leading to possible in-
accuracy in predicting the SW excitation coefficients. Although
PO is lacking in the fringe field description, it does not suffer
from the above limitations, being based on the exact Green's
function of the infinite dielectric slab.

The application of PO to grounded slab structures was first
introduced in [3] for patch antenna problems, where the calcu-
lation of both the PO current and its radiation integral was per-
formed numerically. In [7], a PO high-frequency formulation is
applied to the case of an electric dipole placed at the interface
of a truncated semi-infinite grounded dielectric slab. The same
formulation was applied in [8] to find the radiation pattern of
patch antennas on a finite ground plane. There, via comparison
with experimental data, the effectiveness of the PO approach
was verified for certain substrate thicknesses and dielectric con-
stants, but no investigation on the range of validity of PO was
presented. This investigation is the main purpose of this paper.

In order to isolate the diffraction phenomena relevant to only
one truncation, a canonical configuration has been chosen,
which consists of a semi-infinite grounded dielectric slab ex-
cited by a line source placed at the dielectric/air interface. This
problem is studied here first by an asymptotic PO formulation
and next, for comparison, by a full-wave integral equation
analysis. Note that the full-wave analysis for the present
problem cannot be easily carried out by the conventional sur-
face/volume formulations of the electric field integral equation
like that presented in [9] for the analysis of printed antennas
on finite substrate, owing to the large number of unknowns
imposed by the semi-infinite extension of the integration
domain. Consequently, a different and rather unconventional
full-wave method is suggested in this paper, which is based on
deriving the integral equation by enforcing the continuity of the
tangent electric field on an infinite aperture orthogonal to the
slab. Semi-infinite domain basis functions are used to expand
the unknown aperture field that are shaped according to the
asymptotic behavior of the field diffracted at the edge.

In order to show the kind of contributions that are not pre-
dicted by PO so as to simplify the interpretation of the compar-
ative results presented herein after, the next section is devoted
to a qualitative description of the rays involved in the excitation
and diffraction mechanisms.
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Fig. 1. Geometry of the truncated grounded dielectric slab illuminated by a
line source.

II. RAY DESCRIPTION

The geometry we are dealing with is shown in Fig. 1, and
consists of a semi-infinite grounded dielectric slab with dielec-
tric constant and thickness , which is fed by a line electric
source with unit current, located at the air-dielectric interface,
at a distance from the upper edge of the truncation. A rectan-
gular coordinate system and its relevant cylindrical one

are introduced, with their origin at the upper edge. The
axis is perpendicular to the interface, theaxis is along the in-
terface, and the axis is along the upper edge of the truncation.
Fig. 2 is a schematic presentation of the ray contributions in-
volved in the excitation and diffraction of various wave species.

A. Space Wave and Relevant Diffracted Rays

The GO rays are those excited by the slab-modulated source
field in absence of truncation [Fig. 2(a)]. For slab problems, the
summation of the GO ray contributions in the external region is
often referred to asspace waveto distinguish it from surface and
leaky waves. The GO rays include the incident ray and the rays
incoherently reflected between the dielectric interface and the
ground plane. These rays may be attributed to direct contribu-
tions from an infinite series of image sources vertically aligned
into a homogeneous dielectric half-space [10]. (Note that these
sources cannot be rigorously interpreted as line electric currents,
but the above interpretation help the physical understanding.)
The rays launched by the source and its images with an inci-
dence angle less than the critical angle
[Fig. 2(a)] penetrate into the free-space and contribute to the
space wave. The multiple reflected rays exactly incident at
[only one of them is depicted in Fig. 2(a)] propagate in the
free-space region at grazing aspect with the speed of light. The
total summation of these grazing rays provides a total grazing
field of asymptotic order , thus obtaining a field that is
not purely optical in its asymptotic regime. [Conditions may be
found for TM case [11] in which the decay of this space wave
grazing field is of type, for the three-dimensional
case]. The asymptotic -behavior at grazing aspect leads
to a rapid variation of the field in the direction normal to the in-
terface, thus producing a significant slope-diffraction effects at
the slab truncation. Fig. 2(a) depicts the diffracted rays excited
by the grazing space wave, longer arrows denoting stronger ray
amplitudes. The PO approach correctly describe this behavior
since it is based on the exact grounded slab Green's function.
In the far-field regime, the diffracted rays provide continuity to
the space-wave derivative when the observation point crosses
the plane and allow for the illumination of the region
below the ground plane. Additional diffracted rays, excited by

Fig. 2. Diffracted ray contributions. Ray description of excitation and
diffraction mechanisms for various wave species. Longer arrows denote
stronger ray amplitudes. (a) Space wave (GO rays) and relevant diffracted
rays. (b) Surface wave and relevant diffracted rays (parallel arrows inside
the dielectric denote a homogeneous plane wave propagating by successive
relections with incidence angle greater than the critical angle. (c) Leaky wave
and relevant diffracted rays (decreasing number of parallel arrows inside the
dielectric denote an inhomogeneous plane wave propagating by successive
reflections; the incidence angle of the real part of the vector wavenumber is
less than the critical angle).

the internal GO rays, arise from the lower edge of the trunca-
tion. An approximation of this latter contribution is provided by
the PO approach. Conversely, PO does not describe: a) multiple
diffraction mechanisms between the two edges and b) the GO
rays excited back into the slab.

B. Surface Waves and Relevant Diffracted Rays

The GO rays which impinge with may en-
counter—starting from a certain cutoff frequency—a condition
for which the various transmitted-evanescent grazing rays
superimpose coherently in the-direction. This creates in
the external region a total-evanescent wave which does not
attenuate along [surface wave (SW)]. Because the SW is
attenuated in , to satisfy the wave equation it travels along
with phase velocity lower than the free-space speed of light.
In the slab-region, the SW can be seen as a homogeneous
plane wave which undergoes successive subcritical
reflections (Fig. 2(b)). In the free-space region, the SW exists
below a shadow boundary (SB) that starts at the source (when
this latter is placedon the slab). In a uniform asymptotic
analysis, the space wave excited by the source must have there
an opposite discontinuity to compensate for that of the SW
at the SB. At the truncation, the SW produces diffracted rays
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at both the lower and the upper edge, which exhibit stronger
amplitude near the paraxial direction. In the near zone
of observation, the SW exhibits a second SB arising from the
upper edge, parallel to the previous one. The compensation
of the SW discontinuity at this second SB is provided by the
SW-induced diffracted-wave in a way similar at all to that
mentioned for the space wave.

Due to the evanescence of the SW, its discontinuity at both
SB’s asymptotically vanishes. Thus, both the space wave and
the SW-induced diffracted wave have to be discontinuous only
in transition regions of finite extension localized close to the
source and close to the edge, respectively. Therefore, in the
far zone both the space wave and the SW-induced diffracted
wave exhibit a regular behavior (i.e., they do not have either
discontinuity nor singularity). We note that the space-wave ex-
cited diffracted rays may have discontinuity versus frequency.
Indeed, the SW-excited diffracted rays appear in the far zone
only for frequencies higher than the cutoff frequency of the per-
tinent SW. In a frequency scan, this may produce an unphys-
ical discontinuity of the relevant diffracted ray contributions.
The desired uniform description of these rays is provided by the
space-wave excited diffracted rays [Fig. 2(a)], which exhibits an
appropriate frequency transition close to cutoff. This phenom-
enon is well described by the asymptotic PO solution presented
in Section III. Note that the diffracted rays can also excite re-
flected SW’s, which are not depicted in Fig. 2(b) and are not
described by PO.

C. Leaky Wave and Relevant Diffracted Rays

A coherence condition can also occur for ainhomogeneous
plane wave, which reflects inside the dielectric with .
In the external region, the continuity of the tangential field is
ensured by an inhomogeneous plane wave [leaky wave (LW)],
which grows up along positive [Fig. 2(c)]. The existance re-
gion of LW is restricted in the space below an SB, where it ex-
hibits attenuation mooving away from the source. The source-
excited space wave provides there the compensation of its field
discontinuity. The LW propagates alongwith a phase velocity
greater then the speed of light, while exhibiting an exponential

attenuation. The subsequent diffraction mechanism provides
then a weak field contribution compared with the one associated
to space wave or SW’s. An exception is when the dielectric sup-
port is properly stratified in order to enhance the LW propaga-
tion phenomenon [12]. The LW-induced diffraction mechanism
can be described in a PO framework and it will be included for
completeness in our asymptotic formulation, even though the
LW diffraction effect is often negligible in the case of a single
dielectric layer.

III. PO FORMULATION

By invoking the equivalence principle, the dielectric and the
ground plane are replaced by polarization (volumetric) currents
and conductive (surface) currents, respectively. By resorting to
the PO approximation, these currents may be esti-
mated from those of the corresponding infinite grounded dielec-
tric slab and may be expressed by the spectral Fourier represen-
tation (see Appendix A) where is

Fig. 3. (a) Complexk -plane. (b) Complex�-plane.

the free-space wavenumber and is the -normalized spec-
tral wavenumber (the time dependence has been as-
sumed and suppressed). The electric-field radiated
at large distance is provided by the radiation integral of on
the semi-infinite extent , i.e.,

(1)

where

(2)

Note that the second term in (1) represents the direct contribu-
tion from the unit source. Using the same method as in [7], the
integral in (2) may be rewritten as

(3)

where . The in-
tegral in (3) can be seen as a spectral convolution calculated at

between the Fourier transform of the PO cur-
rents (this latter preconditioned by the integration in) and the
Fourier transform of a unit spatial-step function that pro-
vides the PO windowing of the radiation integral. The integrand
in (3) exhibits a pole at (optical pole, OP) de-
toured clockwise by the integration path. Fig. 3(a) shows the
complex -plane. The branch-cut associated to is
chosen in such a way that on the top Rie-
mann sheet; the integration contour in (3) detours the branch
points−1 and +1 in counterclockwise and clockwise sense, re-
spectively. Similarly, surface-wave poles (SWP’s)

are located on the real axis, where is the -nor-
malized propagation constants of theth SW excited in the in-
finite dielectric slab. The integration poles are detoured in ei-
ther the counterclockwise or the clockwise sense, respectively
[Fig. 2(a)]; they are located on the intervals or

, which implies SW phase velocities between the speed
of light in free-space and in the dielectric. The complex so-
lutions of the dispersion equation [leaky-wave poles (LWP)]

are located on the improper Riemann sheet
.

A steepest descent path (SDP) deformation is applied next
(Section III-A) to obtain a ray representation of (3); the SDP
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integration is evaluated asymptotically for large values of
(Section III-B) to obtain a closed-form solution.

A. Space-Wave and Diffracted-Wave Contributions

It is convenient to introduce the change of variable
with so that (3) becomes

(4)

in which . The
complex plane is mapped into the complex-plane shown in

Fig. 3(b). The poles are mapped into the poles
. A couple of OP’s are located at (the pole

at corresponds to the OP on the top Rieman sheet of the
plane). The integration contours maps
axis of the -plane; it detours the imaginary poles in the
clockwise and counterclockwise sense for the portion
and , respectively. The OP located in is
always detoured in counterclockwise sense.

To evaluate asymptotically the integral in (4) for large,
the integration contour is deformed into the SDP through its
pertinent saddle point of the integrand at . This defor-
mation is allowed only for , because behaves like

for large positive value of the immaginary part
of . In this deformation, OP’s, SW poles, or LW poles may be
captured and their residue accounted for, thus leading to

(5)

where is defined as in (4), but with integration on the SDP;
and the other terms derive from the residue contributions (for
homogeneity of notation, the term associated
to the incident field is incorporated in the contribution , de-
noting the GO field)

(6)

(7)

and (8), shown at the bottom of the page, where is the
residue of at and is the residue of
at . Moreover, is the heavyside unit step
functions ( for and for ), and in (8),

.
By inspection of the phase terms, the various contributions

in (6)–(8) can be interpreted in terms of rays, which are those
schematized in Fig. 2.

In the upper half-space is the GO (space-wave)
contribution. It consists of the contribution from the source field
modulated by the presence of the infinite grounded slab as pre-
sented in Fig. 2(a). In Appendix A, it is demonstrated that

, so that (6) implies vanishes in the lower half-space
. This is expected since for the infinite slab the ra-

diation of the ground and volumetric currents must cancel the
contribution from the unit line source. A compact expression of
this contribution is

(9)

where is given in Appendix A, (21). Note that van-
ishes at the limit as anticipated in Section II-A; thus,
only a slope-type contribution of space-wave diffraction is ex-
pected.

The phase-exponential factor in (7) and (8) leads to interpret
and as the diffraction contribution of the SW’s and

LW’s excited into the slab [see Figs. 2(b) and (c), respectively].
The SW diffraction gives the most significant contribution, par-
ticularly at grazing aspects. As mentioned earlier, the LW-in-
duced diffraction is negligible in most cases. Note that the SW
and LW direct field contribution do not appear in the far zone
representation (5), being exponentially attenuated along.

The term can be interpreted as the diffraction contribution
of the space wave. As mentioned in Section II-A, this contribu-
tion is intended to provide the required uniform continuity to the
GO field when the observation point approaches and also
a uniform description of the SW and LW excitation phenomena
when a frequency variation occur around the cutoff. The asymp-
totic evaluation of is performed next.

Before proceeding further, we note that and the rel-
evant derived quantities can be decomposed in the two terms
associated to the first and second term of Appendix A, (18);
since the second term of such an equation exhibits a phase factor

, all the diffracted ray deriving from it can be
interpreted as coming from the the lower edge of the truncation
(see Fig. 2).

B. Asymptotic Evaluation of the Space Wave Diffracted Field

The asymptotic evaluation of the SDP integral which defines
the space-wave diffracted field is performed via the Van der
Waerden (VdW) method [7], [13]. The asymptotic evaluation
is dominated by the saddle-point contribution, but is sensitive to
whether the poles is near the SDP and/or are crossed by the SDP.
If the pole and the SDP are distinct, each can be evaluated sep-
arately from the other. When the SDP and pole are contiguous,
the asymptotics must be refined, i.e., made uniform, to account
simultaneously for both. Note that the L/SW poles and the OP
migrate in the complex plane depending on different parame-
ters, that is, on the observation angle and on the frequency (slab
thickness and permittivity being fixed), respectively. In partic-
ular, the OP approaches the saddle point when the observer ap-
proaches the grazing aspect , while the SW poles do
the same when the frequency is close to the relevant cutoff fre-
quency that defines the excitation condition of each SW. The

(8)
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VdW procedure for the present case is as follows. After substi-
tuting in the integral, the term in the in-
tegrand is transformed into ,
where , while the SDP contour trans-
forms in the real axis of the plane. Each pole of is indi-
vidually extracted from the spectral integrand

(10)

thereby isolating the pole contribution from the re-
sulting regularizing remainder . In (10),

where are both
LW and SW poles in the complex plane that possesses real
part between and [see Fig. 2(b)]. The regular
function is then approximated by the first two terms of its
Taylor expansions at the saddle point. Finally, a term-by-term
closed-form integration is carried out, thus leading to (11),
shown at the bottom of the page, where is the transition
function of the Uniform Theory of Diffraction (UTD), defined
with (see [8, eq. (41b)]);
and are the same as that introduced in (7), (8), and (9),
respectively. The summation in (11) includes the LW and SW
poles close to the saddle point and not necessarily
correspond to those captured in the SDP deformation. Each
term of the -indexed sum in (11) provide a uniform description
of the field when the frequency crosses the cutoff frequency of
the associate SW or LW (i.e., when a SW or a LW pole crosses
the SDP). Furthermore, and (the second derivative
of at ) are easily obtained from (10). By using their
explicit expressions, which can be easily obtained setting
in (10), (11) can be rearranged as (12), shown at the bottom
of the page, where is such that

for large. The explicit expression of
is given in Appendix A. Equation (12) highlights well the slope
nature of the space-wave diffracted ray. Indeed, for large
and far from transitions (i.e., far from and far from the
cutoff frequency of surface waves) the asymptotic dominant
term is that relevant to , which is of order
(since ). This agrees with the anticipated

spreading of the grazing space-wave (see Section II-A).

IV. I NTEGRAL EQUATION AND MoM SOLUTION

In order to provide a reference solution for the problem in
Fig. 1, an integral equation is formulated and then solved via
a method of moments (MoM). Due to the infinite extent of the

Fig. 4. (a) Application of the equivalence principle to the actual problem. On
the surfaceS, the profile of the basis functions used in the MoM are depicted.
(b) Equivalent problems for the regions 1, 2, and 3 obtained by applying the
image principle.

structure, the surface for defining equivalent unknown currents
must be infinite, thus requiring basis functions which extent to
infinity. For penetrable objects of finite extension, the continuity
of the tangential fields is usually applied to the external profile
of the object itself. For the present infinite configuration, this
conventional approach may cause difficulties. Indeed, when the
SW’s are excited, undamped unknown currents need to be dis-
tributed along the direction, thus implying truncation errors or,
when using entire domain basis functions, yielding poor conver-
gence of the reaction integrals. Although these latter difficulties
may be overcome by using the method described in [14], close
to the excitation condition of surface waves still remain open
problems. In order to avoid the above difficulties, we enforce
the tangential field continuity across the aperture surfaceco-
incident with the - plane; indeed, on this surface, the SW’s
are exponentially attenuated so that the asymptotic field is only
due to the GO and to the space-wave diffracted contributions
that exhibit a known asymptotic behavior. The surfaceis the
same as that used in [15] for estimating the surface wave PO
diffraction at the edge of an impedance half-plane.

The surface divides the space in three regions, denoted by
1) ; 2) ; and 3) ,
respectively [Fig. 4(a)]. By invoking the equivalence principle
at electric and magnetic equivalent unknown currents are dis-
tributed on the two sheets and , which are in-
finitely close to the surface . Next, an infinitesimally thin
perfectly magnetic conductor (PMC) is placed between these
sheets so that the magnetic currents do not radiate and can be
suppressed. As a consequence, the problem is purely TM with

(11)

(12)
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respect to and the electric current on the aperture are directed
along and denoted by for . The continuity of
the tangential magnetic field implies that these electric currents
have equal amplitudes and opposite signs on the two sides of
the surface [i.e., , Fig. 4(a)]. The continuity
of the tangential electric field is then enforced to obtain the in-
tegral equation

(13)

where is the -directed field of the impressed line source and
is the -directed field radiated by in the proper

region. By applying the image principle, the field in each region
can be calculated by using the equivalent problems depicted in
Fig. 4(b). Each one of them can be treated by using standard
Green's functions; in particular, in region 1, the problem reduces
to an infinite grounded slab illuminated by two line sources
placed at symmetric distances fromand from
implying the use of the Green's function of the infinite slab. In
regions 2 and 3, the problems reduce to sheets of currents radi-
ating in free-space.

The unknown equivalent electric current is expanded in
terms of basis functions weighted by un-
known coeficients to be determined via a MoM scheme.
In particular, for , symmetric piecewise sinu-
soidal (PWS) basis functions are used to cover the portion of

near [Fig. 4(a)]. The first PWS are those for
( corresponds to that with its maximum at

the origin). Moreover, two additional entire domain basis func-
tions (EDBF’s) are used for describing the far-out region of the
aperture. The appropriate asymptotic behavior of the EDBF’s
can be deduced by observing that in the far zone, the dominant
contribution of the magnetic field on the aperture must be di-
rected along . This means that the magnetic field component
along , which is responsible for the electric currents along,
possesses a asymptotic behavior. This occurs
for both the space-wave field and the diffracted rays excited by
all the slab-modulated incident waves. Then, the EDBF’s are
expressed via their spectral Fourier representation as

and , where

(14)

in which and the branch cut is defined so
as in the top Riemann sheet;
the integration contour detours the branch point in a
clockwise sense. It can be demonstrated that (14) exhibits the
expected asymptotic behavior. Moreover,
Jordan's lemma shows that vanishes for ; as a conse-
quence, and are dropped to zero and , respec-
tively. It is worth noting that the complex constant may be
chosen with a certain degree of freedom to regulate the distance
at which reaches the asymptotic regime. However, its value
has a little influence on the convergence rate of the MoM solu-
tion.

The MoM solution of the integral equation is obtained by
using PWS weighting functions. The reaction integrals, which

Fig. 5. Far field of a line source placed on a half-plane with� = 50� ; L =
0:1� andh = 0:5� . Exact solution (marks); MoM solutionN = 30 (dashed
line); MoM solutionN = 100 (continuous line).

Fig. 6. Normalized far field for thin grounded slab(h = 0:1:�)with � = 2:2
for two different positions of the source (L = 0:2� andL = 0:1�). MoM
solution (continuous line); PO numerical integration (marks); PO asymptotic
solution (dashed line). In the inset: comparison between the normalized field
from a line source illumination [two-dimensional (2-D), continuous line] and
from a dipole illumination (3-D), dotted line].

define the mutual impedance and the forcing term, are calcu-
lated in the spectral domain for all the three regions. Since re-
gions 2 and 3 involve ordinary free-space Green's function, their
calculation is straightforward. In region 1, which involves the
infinite slab Green's function, the strategy for the calculation of
the reaction integral is described in Appendix B.

V. NUMERICAL RESULTS

In this section, comparison between PO and MoM results will
be presented, with an objective to find the range of validity of
the PO approximation. The plots in Figs. 6–10 represent the
field in the far zone normalized with respect to the same far-
field component radiated by an electric line source in free-space;
for the PO formulation presented here, this corresponds to the
pattern in (1). For the MoM solution,
PWS with is used.

In order to validate the numerical procedure, a preliminary
example is presented for the case , which corresponds
to a line source above a perfectly electric conducting half-plane
(Fig. 5). For this case, the available exact solution has been com-
pared with the MoM results. In particular, the field at distance

for and is calculated by our
technique using two different number of PWS. The curve of the
exact solution almost superimposes to that from MoM for the
case . Using the above geometry for dif-
ferent values of and allowed us to calibrate the number of
PWS to be used; for and less than , no more than 100
are needed.

In Figs. 6–9, the PO results are obtained from (5) by calcu-
lating the space-wave diffracted field contribution both via
numerical integration on the SDP (marks) and via the asymp-
totic expression (11) (dashed line). The MoM results are always
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Fig. 7. Normalized far-field pattern for a source atL = 0:5� from the edge
for various thicknesses of a slab with� = 2:2; the cutoff frequency of theTE
mode occurs forh = 0:28� . MoM solution (continuous line); PO numerical
integration (marks); PO asymptotic solution (dashed line). (a)h = 0:22� ,
h = 0:25� . (b) h = 0:40� , h = 0:50� .

Fig. 8. Normalized far-field pattern for a source atL = 0:5� from the edge
for various permittivities and thicknesses of the slab. MoM solution (continuous
line); PO numerical integration (marks); PO asymptotic solution (dashed line).
(a)h = 0:2� , � = 2:2, � = 4. (b)h = 0:1� , � = 7, � = 10.

presented by a continuous line. In all the cases, the curves of
the numerical PO calculation and its relevant asymptotics are
almost superimposed, thus demonstrating the robustness of the
asymptotic solution also for moderate values of.

Fig. 6 shows the effectiveness of the PO approximation for a
small thickness of the substrate , for a low dielectric
constant , and for small distances between the source
and the edge and . In the inset of Fig. 6,
the same results are compared with those obtained by using the
formulation in [7], which is based on the same PO approach,
but using an elementary dipole as a source. This allows to eval-
uate how close this 2-D formulation is to the correspondent 3-D

Fig. 9. Normalized far-field pattern forL = 0:7� with h = 0:5�
and � = 4. Two SW’s are excited:SW (with lower cutoff frequency
f = c=(4h

p
� � 1)) and SW (with higher cutoff frequency

f = 3c=(4h
p
� � 1)). MoM solution (dotted line); PO asymptotic

solution (continuous line); PO withoutSW diffraction (dashed line); PO
withoutSW , andSW diffraction (dash-dotted line).

formulation (unless in theH-plane, where the diffraction con-
tribution of the dominant TM SW is weaker). We emphasize
again that the application of the 3-D formulation to patch an-
tenna problems on a finite rectangular substrate is presented in
[8].

The same dielectric constant as that in Fig. 6, with
a different source location is considered in Fig. 7
for increasing substrate thicknesses in terms of a wavelength.
In particular, Fig. 7(a) presents two slightly different situations:

and , which correspond to whether
or not the first SW is excited (the cutoff frequency occurs for

). This example is intended to check the validity
of the asymptotic PO solution inside the transition of the space
wave diffracted field, which must ensure continuity to the SW
diffraction contribution [this corresponds to a SW pole crossing
the saddle point, see Fig. 3(b)]. When the thickness further in-
creases [ , Fig. 7(b)], the SW diffraction con-
tribution gradually assumes relevance, observable by the pres-
ence of a second radiation lobe close to the paraxial direction

. The agreement between PO and MoM results is
excellent for the cases of Fig. 8(a) and satisfactory for those of
Fig. 7(b). In the latter cases, the curves corresponding to PO
and MoM start to deviate one from the other at 220; this may
be attributed to the inability of PO in recovering the boundary
conditions of the perfectly conducting ground plane (vanishing

-field for ).
The example in Fig. 8 shows the efficacy of PO in describing

cases with high values of dielectric constants. Two different
thicknesses are chosen ( , Fig. 8(a), and ,
Fig. 9(b)); for each of them two permittivities are considered
[ , Fig. 8(a); , Fig. 8(b)]. For
each pair, the lower and higher correspond to SW below or
above the cutoff, respectively. Note that the paraxial lobe due
to the SW diffraction is dominant in both the cases when the
SW’s are excited and more pronounced than that in Fig. 7(b)
due to the larger amplitude of the SW excitation coefficient. The
agreement is again satisfactory, but a discrepancy occurs in the
region from 45 to 90 . This may be attributed to a nonnegli-
gible diffraction contribution from the edge excited SW trav-
eling backward, which is neglected in the PO approach.
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Fig. 9 corresponds to and .
For this case, two SW’s are excited in the dielectric. We denote
by and , the one having lower (higher) cutoff fre-
quency, respectively. Furthermore, a LW is excited in this case.
The MoM result (dotted line) is compared with that from the
asymptotic PO (numerical evaluation of PO is not reported here,
because it gives a curve superimposed with the asymptotics). In
order to appreciate the nature of the SW diffracted field con-
tribution, two other curves are depicted that correspond to the
total field without the diffraction contribution of (dashed
line) and without both and (dash-dotted line). The
LW diffracted field is not depicted in this figure because it has
negligible effect on the pattern. Unlike previous results, the PO
curve slightly deviates from that from MoM in the broadside
region; this may again be attributed to the inability of PO in
describing the diffraction contribution from the SW’s reflected
at the truncation. Comparisons with the other curves shows that
the diffraction contribution of the SW’s (especially that of )
dominates the total field starting from .

VI. CONCLUDING REMARKS

The effectiveness of the PO approximation has been demon-
strated in describing diffraction effects of the various wave
species excited by a line source in a truncated slab problem.
To avoid the presence of multiple diffraction effects that could
have confused the interpretation of the mechanisms arising
by a single truncation, a semi-infinite slab instead of a finite
one has been chosen as a validation problem. An asymptotic
solution is given for the PO in the far-field region, which is
successfully validated against PO numerical integration also for
moderate values of the asymptotic parameter, which is the
distance of the source from the upper edge. The PO results have
been compared with those from a full-wave analysis, which is
carried out by solving via a MoM scheme an IE expressing the
continuity of the tangential electric field on an infinite aperture
orthogonal to the slab. This approach, although rather uncon-
ventional, led to stable convergence properties and numerical
efficiency, reducing the required number of unknowns. The
latter is obtained by using EDBF’s that are shaped in such a
way to reconstruct the asymptotic aperture field.

Comparisons with the MoM solution has shown the following
expected limitations of the PO formulation.

1) PO is not accurate in predicting the far-field pattern close
to . This is attributed to the failing to meet the
boundary condition of the perfectly electric conducting
ground plane. This limitation can be overcome by adding
to the PO field a fringe field contribution arising from
the diffracted currents on the perfectly conducting plane.
The formulation of this contribution is presently under
investigation.

2) When the slab is electromagnetically dense and thick in
terms of a wavelength so that the SW reflected back at
the truncation produce significant end-point radiation,
the present PO formulation fails. On the basis of a
wide set of examples it is deduced that this occurrence
arises in practice when the first two guided modes are
excited into the slab (i.e., for the present case for

). This can be considered as an
approximate limit for the applicability of PO.

APPENDIX A

The expressions of the PO current in the spectral domain is

(15)
where is the Dirac's delta function and

(16)

with . The first and second
term corresponds to the polarization and the surface ground cur-
rents, respectively.

Using (17), shown at the bottom of the page, a closed-form
expression for
is obtained [see (18), at the bottom of the page]. Denote by

and the first and second term of (18). When
(this corresponds in the-plane to

the optical pole which is captured by the deformation con-
tour for ), we have (19), shown at the bottom of the page,
with . From (19), we obtain

(20)

(17)

(18)

and (19)
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(22)

in (9). For , (this corresponds in the
-plane to the optical pole which is captured by the de-

formation contour for ) we obtain

(21)

This latter expression is also valid for the improper pole (i.e., the
one not captured) when . Thus, one can easily conclude
that . The explicit expression of in (12) is (22),
shown at the top of the page, where is defined in (17).

APPENDIX B

The spatial slab Green's function (GF) pertinent to a
line source placed at with observer at is
represented via thetransmission-line formalism ([15], chapter
5)

(23)

where the branch cuts are conveniently defined by
, being the prin-

cipal Riemann sheet. Two different cases are distinguished that
are relevant to nonoverlapped and overlapped PWS’s functions.

1) The reaction integrals involving nonoverlapped basis
functions are performed in the spectral domain directly
in the variable. Since the spacing in be-
tween the phase centersand of the PWS’s is greater
than their domain , the term
in the integrand is attenuating for large, thus ensuring
good convergence properties. To avoid the presence
of poles along the integration path, a deformation is
performed along the contour defined by the equation

being . No
poles are never captured in this contour deformation.

2) The reaction integrals involving overlapped basis func-
tions are performed in the spectral domain by using the
change of variable . To this end, the in-
tegral in (45) is rewritten in terms of the-transformed
spectral variable (with on the prin-
cipal Riemann sheet). The contour in theplane, which
corresponds to the real axis, runs along the branch-cut

. For the sake of convenience, it is
deformed along the real axis by including the pertinent
residues of SW and LW poles. This approach has been
preferred to the one described above since it does not re-
quire to break up the various exponential terms of the
PWS's spectra, which is necessary for ensuring conver-
gency of the direct integration for . This ap-
proach has also been used to evaluate the reaction inte-
grals involving EDBF’s.
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