
IEEE TRANSACTIONS ON ANTENNAS AND PROAGATION, VOL. 48, NO. 1, JANUARY 2000 41

Theory of Miniaturized Shorting-Post Microstrip
Antennas

Rebekka Porath

Abstract—An analytical theory for the eigenfrequencies and
eigenmodes of shorting-post microstrip antennas (MPA’s) is
presented. These antennas are seen as promising candidates for
miniaturized mobile telecommunication handsets. In particular,
it is shown that the zero mode of the unloaded MPA plays a
central role for reducing the lowest operation frequency of the
loaded MPA. The theory allows a complete calculation of all
relevant antenna parameters and can easily be extended to the
case of multiple shorting posts. Applications to the examples of
rectangular and circular shorting post MPA’s are illustrated.

Index Terms—Microstrip antennas.

I. INTRODUCTION

DUE to the intrinsic low profile of microstrip antennas
(MPA’s), they are regarded as one of the promising

candidates for advanced integrated antennas in strongly minia-
turization-driven application fields such as mobile telecom.
One approach to further reduce the lateral dimensions of MPA’s
consists of loading the antenna with one or several shorting posts,
i.e., metallic vias connecting the patch to the ground plane. This
technique as a measure to reduce the resonance frequency has
first been proposed by Waterhouse [3] and has, in the meantime,
been demonstrated on a variety of different patch shapes [4]. It
has been shown that the resonance frequency depends critically
on the position and the dimensions of the shorting post. These
observations have largely been made on a phenomenological
basis, i.e., on experimental or simulation results.

Earlier approaches to theoretically analyze the effect of
loading-patch antennas with shorting posts have employed a
variety of methods ranging from transmission-line models [5]
to Green’s function approaches based on the cavity model [6].
These works, however, have concluded that a shorting post MPA
will display resonance frequencies above the lowest operation
frequency of the unloaded patch antenna. Basically, the shorting
post is modeled asan inductanceparallel to a resonant (R)LC-cir-
cuit describinga reference resonantmode of the unloaded patch.

This paper gives a fully analytical theory for calculating the
full spectrum of resonance frequencies of a shorting post MPA.
It is shown that the zero mode of the unloaded MPA is the key for
understanding and proving the existence of a resonance mode
below the lowest operation frequency of the unloaded patch. In
an equivalent circuit picture, this new resonance mode can be
viewed as resulting from an inductance (due to the shorting post)
in series with the static capacitance of the patch configuration.
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The presentation is subdivided into two sections. The first
section describes the basic theory for calculating critical fre-
quencies of an MPA embodying one shorting post. Considering
the case with external feed, it is shown that these frequencies
are equivalent to the poles of the input impedance of the driven
lossless antenna and, therefore, to its resonant frequencies. Fur-
thermore, it is indicated how the theory can be extended to the
case of multiple shorting posts.

Thesecondsection illustrates theapplicationof the theorywith
theexamplesofarectangularandacircularMPA.Explicitexpres-
sions for the associated resonant cavity field distributions are in-
cluded. These can be employed to calculate all radiation proper-
ties such as radiation patterns, quality factors, and efficiency.

II. THEORY

Consider an arbitrarily shaped MPA dimensioned such as to
satisfy the assumptions of the standard cavity model. For har-
monically time dependent fields, the wave equation in the cavity
region can be written as

(1)

where (the relative permeability of the substrate
being assumed equal to one) with electric- (top and bottom sur-
face) and magnetic-wall (side surfaces) boundary conditions on
the cavity surface. These boundary conditions uniquely deter-
mine the solution of (1) if does not coincide with an eigen-
value of the Laplace operator This unique solution can be
determined in terms of the Green’s function of the
problem

(2)

A shorting post at requires vanishing of the field
at this position and hence vanishing of the diagonal element

of Green’s function. The diagonal elements of
Green’s functions in two dimensions are logarithmically sin-
gular. A regularization procedure relying on very small but non-
vanishing shorting post diameter is, therefore, assumed. In terms
of the eigenfunctions, and eigenvalues
of the operator , can be written as

(3)

and the requirement of vanishing diagonal element
can be understood as an equation for the

determination of

(4)
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The zero mode has been explicitly separated. The existence
of this zero mode is generally sustained by the von Neumann
boundary conditions. Equation (4) allows us to infer the exis-
tence of a solution with

since the sum tends to at the lower/upper boarder of this in-
terval is supposed to be the smallest nonzero eigenvalue).
This leads to the important conclusion that there is a frequency

below the lowest eigenvalue of the Laplace op-
erator: the insertion of the shorting post will allow for a smaller
antenna at a given operation frequency.

To get the next solution , rewrite (4) as

(5)

Both sides of the equation are positive in the interval
, where is the smallest eigenvalue

contributing to the right-hand side. Again, each of the two sides
of (5) tends to at one of the interval boundaries and a solution

to (5) exists in the interval.
Equivalent circuits can be associated with the setup in the

vicinity of these solutions. is the voltage
across the shorting post where is the antenna thickness.
Describing the shorting post as a-distributed -directed
current, the impedance relating voltage and current over
the shorting post is given by . In the vicinity
of this can be written as

(6)

with

(7)

(8)

(9)

The effect of the shorting post can thus be understood as in-
troducing a series inductance to the -resonance circuit
describing the (1,0) resonance of the unloaded patch. The asso-
ciated resonance frequency is lifted to a higher value

. In the vicinity of the zero mode, the
impedance can be written as

(10)

with

(11)

(12)

Upon proper normalization of the , is just the static
capacitance of the patch configuration. The shorting post can
therefore be understood to raise the zero eigenvalue of the un-
loaded patch to a value . To summarize, the introduction
of the shorting post generates a spectrum the
elements of which systematically lie above the eigenvalues of
the Laplace operator including the zero eigenvalue. To identify
the obtained spectrum with physically observable resonances,
consider the generic case of a shorting post at and a
feed at . The input impedance of this setup is gained by
relating voltage and current across the feed and the shorting post
via

(13)

(14)

(15)

This leads to the physical interpretation of the spectrum
: the input impedance, purely reactive when damping is

not included, blows up when the driving frequency approaches
and the antenna displays a resonant behavior. The

real case, of course, leads to damping: radiation, ohmic, and
dielectric losses lead to an imaginary part of and the purely
reactive impedance acquires an ohmic resistance.

The procedure to be followed in the case of two or more
shorting posts is a straightforward extension: the electric field
is now required to vanish at each of the shorting post posi-
tions. This implies demanding the determinant of the impedance
matrix of the shorting-post system to vanish. Expressing the
impedance matrix elements in terms of Green’s function, this
can again be treated as an equation for the determination of.

III. A PPLICATION TORECTANGULAR AND CIRCULAR MPA’S

This section illustrates the above-described theory with two
concrete examples, rectangular and circular MPA’s. In partic-
ular, the dependence of the lowest order resonance frequencies
of rectangular and circular shorting post MPA’s on shorting-post
position and dimension will be discussed.

Consider first a rectangular shorting-post MPA with patch
side lengths , . For simplicity, the shorting post, located at

, shall be modeled to have a square cross section.
This means that the corresponding current distribution is for-
mulated as

for

for

otherwise

(16)
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The average voltage across the region of the shorting post can
now be expressed as

(17)

(18)

where the explicit analytic expression for the cavity model
Green’s function in terms of eigenfunctions and eigenvalues
has been introduced. denotes the
eigenfrequencies of the unloaded patch and

n = 0
otherwise.

(19)

The term

(20)

introduces a suppression factor into the infinite sum. This
suppression is due to the finite shorting-post extensionand
vanishes in case of an infinitely thin shorting post. Provided
is below the lowest order eigenfrequency of the unloaded patch,
the impedance relating the voltageto the current over the
shorting post in (18) is seen to split into the static capacitance
of the unloaded cavity and an inductance. The condition of
zero voltage over the shorting post thus amounts to setting the
impedance of a series circuit equal to zero

(21)

Clearly, the larger the inductive part will be, the smaller will
be the resulting resonance frequency, i.e., the larger will be the
degree of miniaturization achievable for a fixed operation fre-
quency. The inductance

(22)

uniformly decreases with increasing value ofin the suppres-
sion term . This means that the frequency reduction will be
the greater the smaller the shorting-post extension. In the limit
of vanishing shorting-post extension, the expression for
is logarithmically divergent. Appropriate renormalization tech-
niques are, therefore, required to address this limiting case.

Turning to the dependence of the resonance frequency (21)
on the position of the shorting post, is seen to attain
its maximum values at the corners of the patch (where all
terms in the series are equal to one).

In order to get a large degree of miniaturization for a rectan-
gular shorting post MPA, a shorting post of small diameter thus
has to be applied to one of the corners of the patch. In a next step,
a feed needs to be constructed as to achieve a good match
of the input impedance (15). This procedure enables a construc-
tive decoupling of the problem of designing shorting post and
feed positions and extensions for the antenna. Simulative or ex-
perimental design techniques face the problem of requiring si-
multaneous design of optimum relative postion of shorting post
and feed for a given feed construction.

Fig. 1(a) shows the lowest resonance frequency numerically
gained from (21) for a rectangular patch antenna of dimensions

mm, mm, mm on an sub-
strate as a function of relative position of the shorting
post. For symmetry reasons, only a quarter of the domain is de-
picted. Fig. 1(b)shows a cut of this surface for different values
of the feed extension . The lowest order eigenvalue of the un-
loaded patch amounts to 1.9 GHz.

The figures confirm the discussed expectations: the lowest
resonance frequency attains its minimum at the corners of the
patch and decreases with decreasing feed extension. The max-
imum with respect to shorting-post position is reached at the
center of the patch where each second contribution to the sum
in (22) vanishes leading to a particularly small inductance value.

Fig. 2(a) shows the lowest order resonance frequency of a
rectangular shorting-post MPA as a function of the patch surface
area where one side lengthis fixed to a value of 18.2 mm. The
shorting-post position is fixed to a corner of the rectangle. For
smaller than , the lowest order resonance frequency of the un-
loaded patch is (in the cavity model approximation) uniformly
equal to 2 GHz for the chosen dielectric constant of .
However, in the loaded antenna, the lowest resonance frequency
is seen to decrease with increasing patch area.

Fig. 2(b)shows the dependence of the lowest order resonance
frequency as a function of the asymmetry of the patch for a
fixed patch surface area. Again, the shorting post is positioned at
the corner of the rectangle. For comparison the corresponding
variation of the unloaded patch is also given in the figure. In
the loaded and the unloaded case, the resonance frequency uni-
formly decreases with increasing asymmetry (decreasing values
of . However, the largest degree of miniaturization for the
loaded patch as compared to the unloaded patch of equal length
ratio will be achieved at symmetric layout. Except for largely
asymmetric layouts, the variation of the resonance frequency
of the loaded patch is significantly weaker than for the loaded
patch.

Finally, Fig. 3 gives the distribution of the electric field under
the patch in the lowest order resonance as gained from a MAFIA
simulation. Unlike in the situation of the lowest order resonance
of the unloaded patch, the electric field is more or less constant
except for the immediate vicinity of the shorting post and the
cavity edges. This again clearly confirms the association of this
low-frequency resonance with the zero mode of the unloaded
patch.
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(a)

(b)

Fig. 1. (a) Lowest order resonance frequencyf of a rectangular shorting-post MPA as a function of relative shorting-post coordinatesx =a, y =b. Dimensions:
a = 18:2mm,b = 19:6mm,t = 2mm," = 17,�=

p
� = 0:1mm (shorting-post extension). (b) Lowest order resonance frequencyf of rectangular shorting

post MPA as a function of relative shorting-post coordinatex =a with fixed y =b = 0:01 and for different shorting-post extensions�=
p
� as indicated in the

figure. All other parameters as in Fig. 1(a).

A determination of all relevant antenna parameters for the
shorting-post MPA is straightforward once the resonance fre-
quencies have been determined. The associated resonant modes

can immediately be formulated as an expansion in terms of
the normalized resonant modes of the unloaded patch

(23)

where:

(24)

and

(25)

With (23) and the associated magnetic fields, the far-field ra-
diation potentials and with it all radiation performance
parameters can simply be determined from the corresponding
equivalent currents on the cavity walls. Due to the linearity of
all involved equations, these vector potentials are a superposi-
tion of the well-known cavity-model expressions for the
unloaded patch with mode coefficients .
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(a)

(b)

Fig. 2. (a) Lowest order resonance frequencyf of rectangular shorting post MPA as a function of relative patch surface areaA=a . a is kept equal to 18.2 mm,
b = A=a; different curves pertain to different shorting post extensions�=

p
� as indicated in the figure. The shorting post is positioned at a corner of the patch

(x ; y ) = 0:01�(a; b). All other parameters as in Fig. 1(a). (b) Lowest order resonance frequencyf of a shorting post rectangular MPA of fixed patch-surface
areaA = (18:2 mm) as a function of the asymmetryb=a. The shorting post is positioned at a corner of the patch(x ; y ) = 0:01� (a; b); �=

p
� = 0:1 mm.

All other parameters as in Fig. 1(a). For reference, the corresponding values for an unloaded patch are also given.

Consider, as a second example, a circular shorting post MPA
of patch radius . The Green’s function for the unloaded con-
figuration is given by

(26)

where the resonance frequencies are determined by

(27)

For the zeroth-order Bessel function, the first root is taken to
be the nonzero root.

To calculate the average voltage across the shorting post, the
latter is modeled as a cylindrical current distribution so that the
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Fig. 3. Distribution of electrical field in a generic rectangular shorting-post MPA as gained from a MAFIA-package simulation. The dot size corresponds to the
field strength.

Green’s function will be integrated over the domain

(28)

in both of its variable pairs. denotes the feed-center
position and its diameter. This procedure for accounting
for a small circular current distribution in a circular patch is, e.g.,
described in [7]. Finally, the impedance to be set equal to zero
for obtaining the resonance frequencies of the loaded patch is
given by

(29)

where the suppression term due to the finite-feed extension is
given by

(30)

Fig. 4 shows the variation of the lowest resonance frequency
of a loaded circular MPA as a function of the relative radial
shorting-post position for various shorting post radii. The
patch is dimensioned as to give a lowest order resonance at 2
GHz in the unloaded case. This means that the patch has the
same area as the rectangular patch considered in Fig. 1. As in

the case of the rectangular MPA, larger shorting post radii lead
to stronger supression of the inductive part of the shorting-post
impedance and, therefore, to higher resonance frequencies. The
lowest values for the resonance frequency are obtained when
positioning the shorting post at the edge of the patch. In gen-
eral, the resonance frequencies obtainable from a loaded circular
patch are larger than those of a rectangular patch of equal cross
section. Therefore, a stronger miniaturization is possible for a
loaded rectangular MPA. It is also seen that the sensitivity of
the resonance frequency against variations of the shorting-post
position of the circular MPA is stronger than in the rectangular
case.

As in the case of the rectangular MPA, calculation of the res-
onance modes and radiation properties is a straightforward task.

To conclude the discussion, an indication of the numerical ac-
curacy of the model shall be given. Table I compares the lowest
order resonance frequency for different shape shorting-post
MPA’s to corresponding measured and/or simulated minimum
return loss positions. A coaxial feed was employed in the
simulations and measurements. The HP HFSS package was
used to carry out the numerical simulations.

Frequency eigenvalues and minimum positions do, in
general, not exactly coincide; systematically higher values for
the latter must be expected. Taking this into account, the cursory
comparison indicates that even the quantitative predictive power
of the presented fully anlaytic model is remarkable.

IV. CONCLUSIONS

A Green’s function-based theory for analytically deriving the
eigenfrequency spectrum of shorting-post MPA’s has been de-
veloped. This theory allows for a comprehensive calculation of
all relevant performance parameters of such antennas. The cen-
tral role of the zero mode of the unloaded MPA for reducing the
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Fig. 4. Lowest order resonance frequencyf of a circular shorting-post MPA as a function of relative shorting post positionr =a for different shorting-post
diameters� as indicated in the figure. Dimensions:a = 10:7 mm, t = 2 mm," = 17.

TABLE I
QUANTITATIVE COMPARISON OF LOWEST

ORDERRESONANCEFREQUENCIES ASPREDICTED BY THEPRESENTEDTHEORY

TO SIMULATED (s) AND/OR MEASURED(m) MINIMUM jS j POSITION FOR

VARIOUS SHORTING-POST MPA CONFIGURATIONS

operation frequency of a shorting-post MPA has been revealed
and thoroughly discussed.

The practical application of this scheme has been demon-
strated on the examples of rectangular and circular shorting post
MPA’s.
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