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Dual-Band Dual-Polarized Perforated Microstrip
Antennas for SAR Applications
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Abstract—For dual-band dual-polarized synthetic aperture controls. Dual polarization is also feasible and can be imple-
radar (SAR) applications a compact low-profile design is inves- mented using two separate waveguide arrays [7], [8]. Waveg-
tigated. The operating frequencies are at the L and C-bands, \;iqes are, however, bulky and difficult to manufacture, espe-

centered about 1.275 and 5.3 GHz, respectively. Since the C-band _. S . S -
frequency is larger by a factor of four, its array elements and cially with lightweight for space applications. Sharing the same

interelement separations are smaller by the same ratio. Thus, to @perture for two separate arrays, operating at two widely sep-
allow similar scan ranges for both bands, the L-band elements are arate frequencies is also not feasible without limiting the array

selected as perforated patches to enable the placement of C-bandscan capability. Microstrip antennas appear to be more suitable
elements within them. Stacked-patch configurations were used to for such applications, but the substrate technology and design

meet the bandwidth requirements, especially in the L-band. The L
C-band element was designed numerically, but the perforated or fabrication tolerances are not advanced to the level of wave-

L-band one required final experimental optimization. Also, in guide arrays.

the latter case of L-band, balanced transmission line feed was A dual linearly polarized microstrip SAR prototype antenna
used to minimize cross polarization. For the C-band elements, slot reported in [9] composed of an8 8 element array. Two sepa-
coupling was used and, to simplify the feed, symmetric parasitic 4iq “series” and “parallel” feeds were used for generation of the

slots were incorporated to minimize cross polarization. No vertical hori tal and tical polarizati For |
connections were utilized, and electromagnetic couplings resulted orizontal and vertical polarizations. or larger arrays, a com-

ina Compact |OW_pr0ﬁ|e design’ with an e|ectrica||y and therma”y bination must be used to reduce the bandwidth limitations and

symmetric geometry. the beam squint. Also, the exposed feed lines, especially bends
Index Terms—Dual-polarization, microstrip antennas, synthetic and discontinuities, will radiate increasingly with frequency and
aperture radar. contribute to cross polarization. They must be placed below

the ground plane to reduce the cross polarization. In [10], this
was used along with seven-element linear subarrays to reduce
both cross polarization and sidelobe levels {-band SAR an-
UAL-POLARIZED multiband synthetic aperture radartenna. The elements were probe-fed individually. A “pairwise”
(SAR) antennas offer several advantages for spaceboeargi-phase feed technique improved the array cross polarization
remote sensing satellite applications [1]. Dual-polarizatiogignificantly in the symmetric plane. In [11], different configu-
enhances the information content by providing two copolaations of the feed and subarray arrangements were studied to
and two cross polar scattering data. In addition, the cross- peduce also the sidelobe levels, in addition to the cross polariza-
larization SAR imagery is important at high-incidence angleson.
The multiband operation, on the other hand, can provide a fineMicrostrip patch antennas can be made dual polarized with
resolution scanning and better penetration and reflection déiev cross polarization. In array forms, they can be fed using
from various scatterers. Sharing the same antenna aperpun@bes or coupling apertures from feed lines below the ground
by arrays of all operating bands will also reduce the sig#ane. The former is simpler to design and more suitable for
and weight of the spacecraft. However, moving to highehick substrates, providing wider bandwidths. However, it is
frequencies while improving the imaging resolution can pumore difficult to implement in large arrays. The latter is more
stringent surface tolerance requirements on the array flathessnplex to design, but eliminates vertical connection, and sol-
This will be required to control the aperture phase errors adering, resulting in easier implementations in large arrays. The
scan resolution while maintaining stable array gains. lack of vertical connections also make the structure more sym-
Historically, SAR antennas have used slotted waveguide anetric, minimizing the mechanical or thermal stress. The per-
rays [2]-[6]. The technology is well established and slotted a@ermance of microstrip arrays, regardless of the feeding tech-
rays can be designed with excellent polarization and sidelobigue, is dependent on the substrate parameters, which, in gen-
eral, are not uniform. Also, while the design tools are improving
Manuscript received May 26, 1998; revised August 16, 1999. steadily, they still suffer from limitations in accuracy and com-
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TABLE | about thd_-band element, minimizes their interaction and keeps

DESIGN PARAMETERS FOR DUAL-BAND izati
DUAL -POLARIZED L. AND C-BAND ANTENNA the cross polarization to acceptable levels.

For thelL-band arrays, the feed lines were placed on thin
TMM3 substrates over the ground plane. This was sufficient to
e reduce their radiation to acceptable levels. A balanced feeding

_ 5.3GHz 1.275GHz with 1807 phase shifts was selected in lalband cases to main-
Bandwidth 100MHz 100MHz tain symmetry and minimize cross polarization. Forlthigand

Polarization duak-linear dual-linear element three candidates were investigated and optimized: 1) a
microstrip ring antenna; 2) a microstrip mesh antenna; and 3)
two stacked perforated square-patch antennas.

The first two configurations used probe-fed single-layer
2" -axis +/- 5° +/- 5° antennas, where the bandwidth was obtained by the substrate
< -25dB with +/- 25° | < -25dB with +/- 25° thickness. They were, consequently, thicker antennas. Their

of broadside of broadside configuration and performance were discussed previously in
[12] and [13]. The third configuration used stacked geometry
and electromagnetically coupled resonators. It therefore re-

to be+-25 and the cross polarization in this scan range had to Blted in a low-profile design. Vertical connections were also
less than-25 dB. These specifications are indicated in Table ¢liminated, simplifying the fabrication process and reducing
In the following sections, the design concepts are presented &gchanical stress. Its configuration for a unit cell consisting
discussed. The geometrical detail and array performances & Single perforated.-band element, and 16 interlaced and

provided for only one configuration. Others were discussed frroundingC-band patches is shown in Fig. 1.
previous publications. In the cross section of Fig. 1 three layers are shown. The

lower two layers are TMM3 substrates and the third upper
one is honeycomb. In the larger array implementation, this
II. DESIGN CONCEPTS honeycomb was replaced by a Rohacell substrate. The upper

The specifications of the antenna to be designed are showr MM3 substrate supports the perforated lowesand element,
Table I. It is dual-band dual-polarized with targeted bandwidtf& feed network, and the lower slot-coupl€eband elements.
of around 100 MHz in both andC-bands. The fractional band- While, the lower one supports ti@band feed. Their common
width is, therefore, largest in theband at about 8%. This is notground plane sandwiched in between is slotted for dual-polar-
alarge bandwidth for microstrip antennas, but must be metin ti#ed feeding of theC-band elements. Small 2 4 arrays of
presence of th€-band array, as well as the other array specifinit cells, i.e., a perforatet-band element with 1€&-band
cations. The scan range of2&quires an array element spacinglements, are shown in Fig. 2(a) and (b) and the ground plane
of about0.7, to avoid the grating lobes. In theandC-bands, slot configuration is shown in Fig. 2(c).
this requirement sets the element spacinggte= 16.5cmand  Fig. 2(b) also shows the balanced feeding network of the
d, = 3.96 cm, respectively. To make the array configuratioh-band element. For the horizontal polarization the interconnec-
manageable, these spacings were modifiedite= 16 cm and tion of the balanced feed was placed on the lower substrate. The
d, = 4 cm. This means that if the same aperture area is shafg&iformance of this design in various stages of development was
by both antennas, then ealctband element will be surroundeddiscussed earlier [14]-[17] and provided below in detail.
by 16 C-band elements. However, since thédvand element is
about four times larger to maintain the spacing)df), at the
C-band, its elements must be placed withinltHeand elements. IIl. L-BAND ANTENNA ELEMENT
That is, conventional square-patch antennas for dual polariza-
tion will not be acceptable for this design. After a preliminary As indicated above in Fig. 1, for enhanced bandwidth and low
investigation, three different designs of microstrip ring, mesprofile, a stacked configuration is used. The loweand an-
and perforated patch were selected for further investigation. Fenna is etched on its 15 m TMM3 feed substrate, is thus a trans-
the C-band array, square patches were selected. For this amaigsion-line-fed square patch. The upper patch is on a honey-
two issues became a source of difficulty, the feed-line radiati@omb substrate of about 8-mm thickness and is electromagnet-
and interaction with thé-band elements. The former could bécally coupled to the lower patch. Both these patches are perfo-
eliminated by placing the feed lines below the ground plane arated, symmetrically so that the induced currents are symmetric
feeding theC-band elements using slot coupling. However, tand cross polarization is kept to a minimum. Because the lower
minimize the cross polarization, while maintaining simple angatch is on a high-dielectric constant substrate, it is smaller in
coplanar feed networks for both polarizations, a new dual-skize and care must be taken in its perforation. Excessive perfora-
feed configuration had to be designed. The latter problem, i.8an reduces the bandwidth or increases the upper patch height.
interaction of theC-band elements with the-band elements, Also, to minimize the loss and radiation from the feed lines, an
could not be eliminated for ead@band element, but was doneattempt was made to optimize the configuration forbéatch
so for their subarray. An array unit cell was defined as a singde each patch edge. This would allow direct connection to the
L-band element and X6-band elements. It was found that mainfeed line without the necessity for tuning stubs or impedance
taining a symmetry for th€-band elements within this unit cell transformers.

Parameters

Frequency

Scan range
1st-axis +/- 25° +/- 256°

Cross-polarization
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Upper L-band Patch

Lower L-band Patch C-band Elements

C-band Feed (Transmission Line-Slot Coupled) Slotted Ground Plane

Fig. 1. Geometry of the stacked perforatethand patches with 16 stack€dband patches forming a unit cell.
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Fig. 2. Geometry of a X 4 unit-cell subarray. (a) Upper layer metallization showing passive patches. (b) Lower layer metallization shbamhfeed. (c)
Ground plane metallization showing feed slots.

Optimization of this antenna was a challenging task. Perfo- 06 Mas. PREF=0.000dB 5.000dB/DIV
rations cause rapid variations of the surface currents, in partic- ' T
]

i

feom-

ular, near the perforation corners. Thus, in using integral-equa- |+, |‘
tion-type solutions such as moment methods, one requires very '; v 3 :
fine rooftop basis functions to model these current variations \\ / R o
accurately. However, excessive meshing causes matrix ill con- 2/
ditioning, again causing further difficulty with solution accu- v
racy. For these reasons, the final optimization of the perforated
patches of Fig. 1 was accomplished experimentally. A sample '
of its measured return loss is shown in Fig. 3, providing the =
quired impedance bandwidth. Note that in this conf|gurat|on
attempt was made to minimize also the overall antenna heighthicker antenna a thicker honeycomb substrate meant a lower
keeping the honeycomb thickness to around 8 mm. Aside frasoupling for theC-band patches.

1.2100 GHz 1.3400

3. Measured return loss of the stackedand perforated antenna.
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Fig. 4. Measured copolar and cross-polar patterns of the stacked perforiated antenna.

The perforations generate higher order mode currents an Dummy Sots
make the pattern symmetry very difficult to achieve. Both sim-
ulations and experimental studies showed that for this configu:
ration the feed and geometrical symmetry must be maintaine:
at all times. Therefore, a balanced feeding with 21@80ase re-
lationship is essential for cross-polar minimization. The perfo-
ration of the lower and upper patches also had to be made syn
metric about the patch axes and with respect to each other. The: 15x15mm patch
symmetry requirements pushed some of the difficulties to the
design of theC-band patches, which also required total sym-
metry to meet the low cross-polarization level.

The copolar and cross-polar radiation patterns were also mez
sured and are shown in Fig. 4. The cross polarization is well
within the specifications and is mostly caused by the mounting
structure. For these measurements, a unit cell of the array, i.e
onel-band and 168C-band elements as shown in Fig. 1, was
fabricated and mounted on a 12-in ground plane. The size of th
ground plane and the mounting structure in the antenna chambe,
were found to influence the shape of the radiation patterns afgl 5. Geometry of a low cross-polarization dual-polarized slot coupled
cross-polarization level. But, they are still acceptable. C-band patch antenna.

IV. C-BAND ANTENNA DREF= 0.000 dB_ 5.m_f|gmv_‘

The required fractional bandwidth of theé-band array is
about 2% and can easily be met by slot-coupled patches - 4
their substrates. However, in designing thband patch, it was ) o
found that its bandwidth reduces by increasing the perforati N\ | L /
size. Also, to minimize the coupling between theandL-band ‘ \I|/ \ |/
patches, a spacing of about twice the substrate thickness rr T \ I/
be maintained. This placed a tight tolerance on the perforati \
size and theC-band patch became under resonance. Stacki f.oco000000 6z 5.500000000
the C-band patch, allowed a reduction of the low@thand
patch size and eased the design problem. Fig. 6. Measured return loss of the slot-coup@and patch antenna.

The next problem was the complexity of the dual-polarized
feed network. To enable their placement on a single substratmss polarization with a single-slot feeding, even with two cen-
the balance feeding approach was abandoned, which meant tiighy located orthogonal slots. The symmetric configuration of

Dual polarization feed lines
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Fig. 8. Implemented & 8 unit-cell array.

Fig. 9. Measured return loss of theband andC-band elements of the array.

(a) L-band. (b)C-band.
Fig. 5 was adopted, where only one slot of each polarization
was fed by the feed line. This allowed adequate control space
for the stub section of the feed line to be etched on the avail-
able space under tli&@band patch. The second slot was passive,
but helped in reducing the cross polarization to bele80-dB The unit-cell configuration of Fig. 1 was used to implement
range. The slot offset and dimensions, along with the feed-liits 8 x 8 array. It is shown in Fig. 8, where the honeycomb
stubs, were then optimized to meet the bandwidth requiremeptacer was replaced by a Rohacell Foam substrate of 0.375
at theC-band. A sample of the measuredl4-dB S;; band- inch thickness. For this array typical return-loss performances
width in excess of 300 MHz is shown in Fig. 6. of both L- andC-bands are shown in Figs. 9(a) and (b). They

The C-band element, aside from its dual-slot feed, is a coare still satisfactory. Next, the radiation characteristics were in-

ventional stacked patch antenna. Its simulated radiation patstigated. Since thie-band array is small, beam shaping was
terns, using HP-Momentum software, are shown in Fig. 7, whiclot attempted. A small X 4 subarray was excited uniformly.
indicates good pattern symmetry and low cross polarizatidts measured relative radiation patterns for copolar (solid) and
The measured pattern results, however, are not shown as dibss-polar (dashed) radiations are shown in Fig. 10. The peak
ferentC-band elements of the unit cell in Fig. 1 and are locateztoss polarization is below 32 dB, which is better than the re-
at different asymmetric locations with respect to the perforatedired —25-dB level.
L-band element. Their radiation pattern shape and cross polarFor theC-band case, a larger array of 32 elements in elevation
ization are, therefore, different. These measured results are gshtaped beam) by four elements in azimuth (uniform) was se-
vided for a subarray and discussed below. lected. The feed network for the latter four elements is shown in

V. ARRAY ANTENNA
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Fig. 10. Measured copolar and cross-polar patterns of the four-eldrgamd subarray.

Fig. 11(a). In the elevation, the elements were excited nonu
formly using appropriate power dividers and phase shifters,
generate typical SAR patterns. The configuration of the 32-wi

power divider is shown in Fig. 11(b). The measured copolar al F

cross-polar radiation patterns of a typical SAR beam are sho..

in Figs. 12(a) and (b), respectively. The peak cross polarizatio
is about—30 dB below the copolar peak—again, better than the

requirement of-25 dB.

VI. CONCLUSION E]
In this paper, the results of our investigations on imple-
menting a dual-band dual- polarizedandC-band arrays on a
single shared aperture were presented. The operating freque )
cies at the band centers were 1.275 and 5.3 GHz, respective —

resulting in a four to one frequency ratio. To obtain a similar

scan performance from both arrays, four of @band patches

had to be placed within the-band ones. This resulted in a - -

perforatedL-band element surrounded by @Bband patches,

forming a unit cell. To meet the bandwidth requirements wi - _1|1' Feed networks for the & 32 eleme_mc'band subarray. (a)
ur-element uniform excitation network. (b) 32-element unequal excitation

a low-profile lightweight design, a stacked configuration wasetwork.

utilized. The lower elements were placed on a thin 15-mil

TMM3 substrate, which also contained the feed network of An 8 x 8 array of the unit cell was developed for evalua-

the L-band array directly coupled to its elements. The uppéon. For thelL-band a four-element linear subarray was investi-

elements were placed on a honeycomb or foam substrate. Gaged that achieved the bandwidth and low cross polarization.

C-band elements were slot-coupled fed from a lower 15 nfior the C-band a subarray of 4« 32 elements was investi-

TMM3 substrate. Thus, the entire array in both bands usgdted. Four azimuth elements were excited uniformly, to allow

electromagnetic coupling eliminating vertical connections. a comparative study with thie-band. The elevation elements
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were excited using a 32-way nonuniform power divider. Apprc
priate phase shifters were used to generate selected SAR
terns. They showed excellent pattern shape and very low cr
polarization. |

In array implementation, the honeycomb spacer was replac
by Rohacell foam and both+ andC-band subarrays used etche
feed networks. In spite of the changes in the construction a
feed networks, the array measurements confirmed the de a
goals. In fact, the measured cross polarizations of the array Wi 1o link the universit
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