2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Antennas and Propagation
Volume 48 Number 2, February 2000

Table of Contents for this issue

Complete paper in PDF format

Exact Surface Impedance/Admittance Boundary Conditions for Complex Geometries: Theory and Applications

Renato Cicchetti, Member, IEEE and Antonio Faraone Member, IEEE

Page 223.

Abstract:

A methodology useful to derive exact and higher order surface impedance/admittance boundary conditions (HOI/ABC's) for complex geometries is presented. It is shown that exact surface boundary conditions are always expressed through dyadic integral operators involving the tangential magnetic and electric fields all over the surface of the body. Quasi-local surface boundary conditions that include curvature effects are shown to be computable through an asymptotic approximation of the integral operators. Finally, an example of a surface admittance boundary condition useful to analyze a structure exhibiting discontinuities along its surface boundary is presented. Practical examples to demonstrate the feasibility of the proposed methodology, as well as the accuracy of the resulting surface boundary conditions are also presented.

References

  1. L. Halpern and L. Trefethen, "Wide-angle one-way equations", J. Acoust. Soc. Amer., vol. 84, no. 4, Oct.  1988.
  2. R. Graglia, P. L. E. Uslenghi, R. Vitello and U. D'Elia, "Electromagnetic scattering for oblique incidence on impedance bodies of revolution", IEEE Trans. Antennas Propagat., vol.  43, pp.  11-26, Jan.  1995.
  3. C. Monzon, "A loop antenna in front of a resistive sheet", IEEE Trans. Antennas Propagat., vol. 44, pp.  405-412, Mar.  1996.
  4. T. B. A. Senior and J. Volakis, "Generalized impedance boundary conditions in scattering", Proc. IEEE, vol. 79, pp.  1413 -1420, Oct.  1991.
  5. D. J. Hope and Y. Rahmat-Samii, "Scattering by superquadric dielectric-coated cylinder using higher order impedance boundary conditions", IEEE Trans. Antennas Propagat., vol. 40, pp.  1513-1523, Dec.  1992.
  6. D. J. Hope and Y. Rahmat-Samii, "Higher order impedance boundary conditions applied to scattering by coated bodies of revolution", IEEE Trans. Antennas Propagat., vol. 42, pp.  1600-1611, Dec.  1994.
  7. D. J. Hope and Y. Rahmat-Samii, "Higher order impedance boundary conditions revisited: Application to chiral coatings", J. Electromagn. Waves Applicat., vol. 8, pp.  1303-1329, 1994.
  8. D. J. Hope and Y. Rahmat-Samii, Impedance Boundary Conditions in Electromagnetics , Washington, DC: Taylor Francis, 1995.
  9. T. B. A. Senior and J. L. Volakis, "Approximate boundary conditions in electromagnetics,"in Inst. Elect. Eng. Electromagn. Wave Ser. 41, 1995.
  10. R. Cicchetti, "A class of exact and higher-order surface boundary conditions for layered structures", IEEE Trans. Antennas Propagat., vol. 44, pp.  249-259, Feb.  1996.
  11. T. B. Senior, "Approximated boundary conditions for homogeneous dielectric bodies", J. Electromagn. Waves Applicat., vol. 9, pp.  1227-1239,  1995.
  12. T. B. A. Senior, J. L. Volakis and S. R. Legault, "Higher order impedance and absorbing boundary conditions", IEEE Trans. Antennas Propagat., vol. 45, pp.  107-114,  Jan.  1997.
  13. A. D. Yaghjian, "Augmented electric-and magnetic-field integral equations", Radio Sci., vol. 16, pp.  987-1001, Nov./Dec.  1981.
  14. J. R. Mautz and R. F. Harrington, "A combined-source solution for radiation and scattering from perfectly conducting body", IEEE Trans. Antennas Propagat., vol.  AP-27, pp.  445-454, July  1979.
  15. R. E. Collin, Field Theory of Guided Waves, Piscataway, NJ: IEEE Press, 1991.
  16. W. C. Daywitt, "Exact principal mode field for a lossy coaxial line", IEEE Trans. Microwave Theory Tech., vol. 39, pp.  1313-1322, Aug.  1991.
  17. N. Marcuvitz, Waveguide Handbook, New York: McGraw-Hill, 1951.