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Some Convergence Considerations in Space-Domain
Moment-Method Analysis of a Class of Wide-Band
Microstrip Antennas

Deb ChatterjeeMember, IEEEand Richard G. PlumiSenior Member, IEEE

Abstract—The method of moments (MoM) analysis of techniques such as transmission line or cavity models [4]
probe-fed rectangular microstrip patches requires the inclusion can be used to compute the input impedance, it is desirable
of a probe-to-patch attachment mode-expansion function when to employ full wave analysis techniques [3] for optimizing

the substrate thicknessd > 0.02), where X is the free-space desi that initiated using th imat thods. Si
wavelength. The results for the input impedance showed increased esigns that are iniiated using the approximate methods. since

divergence with measurements when the attachment mode wasinput impedance calculation is central to modeling wide-band
omitted from the full-wave analysis. The attachment mode can antennas, full wave analysis plays a critical role in such
be expressed as an infinite eigenfunction series that increasesproblems.

the fill time of the impedance matrix in an MoM analysis. In an = }; hag recently been emphasized in [5] that full wave modeling
earlier investigation, the infinite eigenfunction series was reduced . . ..

to a residue series that required one or two terms compared to o_f broad-band antenr!as IS essgm'al for realizing many novel de-
about 55 terms for the eigenfunction series. In this paper, the Signs. However, as discussed in [4], such full wave models re-
convergence properties of the eigenfunction and residue series arequire prohibitive computational resources and, hence, efficient
investigated in view of rigorous MoM analysis. The relative errors - modeling techniques are sought that lead to reduced storage re-
resulting from replacing the eigenfunction by the residue series ,iraments and/or faster processing speeds. Either feature is an

for the attachment mode, are compared by numerically evaluating . tant ideration for full f vsis of
a class of two-dimensional (2-D) spatial integrals shown to be Important consideration for fufl wave performance analysis o

closely related to the elements of an MoM impedance matrix. Wide-band antennas [5]. The subject of this paper is to explore
Additionally, the computation times for the evaluation of these methods for developing efficient computer models for full wave
integrals for the two forms of the attachment mode-expansion characterization of probe-fed microstrip antennas.
function are also included. Based on the superior convergence  Thg jnvestigations reported here discuss enhancement of pro-
properties of the residue series for the attachment mode-expansion . . . .
function, it is mathematically justified that this form can readily cessing speedlof a moment-method solution [6] to.m|crostr|.p
be used for analytic reduction of the spatial, reaction integrals antennas. As discussed in [6], moment-method solutions require
from four to 2-D forms. This feature allows further reduction of ~computation of elements of the voltage and impedance matrices
the fill time of the MoM impedance matrix, suggesting the possi- and the bulk of the computation time is spent in filling these
bility of developing an efficient space-domain MoM technique for - atrices. Most of the efficient moment-method solutions there-
modeling of wide-band microstrip antennas. fore aim at reducing the fill time of these matrices by use of
Index Terms—Method of moments, microstrip antennas. special form of the appropriate Green's functions [5], [7]. For
microstrip antenna problems the appropriate Green's function
contains Sommerfeld integrals and some efficient methods for
) ] ] their computation have been addressed in [8], [9].
U SE of small microstrip antennas with probe feeds is For most moment-method solutions to probe-fed microstrip
becoming increasingly popular for handheld personghtch antennas, the entire-domain basis functions are used
communication systems (PCS) cellphones [1]. Broad-ba(% ch. 1]). The information gleaned from [10], [11] suggests
antennas are desired [2] and computer-aided design tools 44t the spectral-domain moment-method approach is the most
broad-band probe-fed patches are thus attracting attention Jmmon since the relevant Green's functions do not involve
[4]. The effect of the probe location (at the high-frequencihe traditional Sommerfeld integrals. However, the individual
end of the stipulated bandwidth) on the input impedance dfements of both voltage and impedance matrices in a spec-
thus critical. The input impedance variation with frequencya|-domain moment method will have a Sommerfeld-like
dictates the wide-band properties of such microstrip antenn@shavior [11, egs. (16)—(20)], necessitating careful attention
for PCS applications ([1, fig. 2]). While approximate modelingg their computation. The situation becomes very complicated
for the impedance matrix calculations because the source and
observer locations are coplanar, resulting in very poor con-
Manuscript received April 8, 1999; revised October 20, 1999. This work Wagergence of the spectral integrals. This naturally increases the
supported in part by Allied Signal Corporation, Kansas City, MO. fill time of the impedance matrix and sophisticated analytical
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space-domain method appears to be more promising becau: Y
evaluation of spectral integrals for increased lateral separatiol
between source and observer points becomes formidable du
to the rapid oscillation of the integrands. Comparison betweer
space and spectral domain methods for microstrip antennas ha # ."
been presented in [13] and the closed-form results in [14] werc¢ E x S
obtained in the space domain for impedance matrix elements. | y =@
line with these appropriate references, the primary purpose ¢ W Z |
this paper is to augment the space-domain method of momeni o , i X
as applied to modeling wide-band probe-fed microstrip patches 0 “F

Probe-fed microstrip patch antennas for wide-band PCS ap '
plications require modeling the probe feed with the complete
moment-method solution. This, following the detailed investi- .
gations in [15], was included using an additional attachment - Phe
mode-expansion function for the patch and feed [16]. The at- ; L 3 ralil

lossy substrate

tachment mode-expansion function, first introduced in [17] on ET S
the patch, is an infinite eigenfunction series and, for rectangula "~
patch geometries, its derivation can be found in [3, pp. 26-28 4] r B
from the corresponding cavity model. In [3] and [16], the spec-
tral-domain analysis proceeds by taking the Fourier transform o
the attachment mode; the spectral integrals were evaluated nu-

merlcally via standard technlques [18] [19] as shown in [1 ig. 1. Cross-sectional views of a rectangular microstrip antenna. The point
and [11]. ! ! is an arbitrary point on the patch aSds the probe-to-patch junction.

In [20], the infinite eigenfunction series was analytically re-. @y mn
sion functionsd};/(z,y) andW¥ x,y) are designated
duced to a residue series form for a rectangular patch. It w; aic (7,4) o ey yean (7 ) g

WaSvectors in (1) and their supportis (—L/2) < = < (+L/2
shown in [20] that only one or two terms of the residue series Rd d(—W/2) (<)U < (+W/2)prl):ormu$atiné ; m;jmerg:fmétr)lod
numerically adequate compared to about 55 terms of the e'ggafutmn (3], [6], [16], one obtains the matrix equation
function series. In view of the investigation in [20], some pre

liminary results for convergence properties were presented in V]=[2]- ] @)

[21], [22] using the residue series for the attachment mode. This '

paper examines the problem more comple_tely and dgtalled COffe main focus of this presentation is on the impedance matrix
parisons are presented here using the residue and eigenfunc k?rt"he immediate right side of (2).

series forms. However, due to the nature of the formulation o

the probe-to-patch attachment mode [3], [16], [20], all the di She attachment mode- _expansion functi éty) (z,y) can be

cussions are I|m|teq to rectangular microstrip patches on_ly obtained from [16] and [3, p. 28, egs. (1.155)(1.158)]. These
In Section Il the important aspects of the space-domain for-

. . . . read
mulation are summarized from [22]. In Section Il detailed nu-

ground plane

J
I

==~ coaxial (probe) feed

With a slight change of notation, the ;fenfunctlon series for

merical results for establishing the convergence properties of 0
the space-domain method are included. The main emphasis of ~ ®%f (z,4) = > Kg(m, )
this paper are these results, which makes this work distinct from m=0
[21] and [22]. This is followed by conclusions and references. % COS(% %) Fu(m,zpim)  (3)
Il. SUMMARY OF SPATIAL-DOMAIN FORMULATION and
The geometry of the problem is shown in Fig. 1. The total
current on the patch is written as vl (z.y) Z KY (m, )
m=0
Jpaten(z, ¥) = ﬂi’ttiﬁn(w, R ZAERT) X Sin( + mV;;U) Fo(z,2p;m) 4)
+x Z Y ean¥iean(z,y)

for the = andy components of the attachment modes, respec-
tively. In (3) and (4),z,, andy, indicate the probe location in
Ty Z bV e (7, 9). (1) Fig. 1. The coordinates of the Iocat!on of an arpitrary pdmt

are also shown there. The superscript or subséript (3) and

(4) designates that these are eigenfunction series. The quantities
In (1) Z5:¢ andZ)Y, o, ean @re the unknown complex (scalankz?(m, y,,) can be interpreted as modal amplitudes associated
amplitudes of the: andy components of the attachment and enwith each of the integers: and are taken as constants for the
tire-domain basis functions, respectively. The superscripts remainder of the paper. Their explicit forms can be found in [3]
stand for themth andnth entire-domain modes. The expanand [16] and are omitted here for brevity. Similar remarks apply

rn—l
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to the functions?. , (x, z,; m), which contain simple trigono-
metric functions.

The two-term residue series, designated by supersgrigan
be obtained from [20, eqgs. (39)-(47)]

o1z, y)

= K{™M(@p, yp, 1) COS(%) (:05(”177r — VIQ/M)

2
+1C§R(a:p,yp,1/2)sin<%x>
Ve varly|
vam 5
><COS< vl ) (5)

for thez component and from [20, eq. (54)]

QU (z,y) = K¥ (1) [sin(roan) F sin(vo[r — |az|])]
+ ICgR(Vl,xp) Sin(%)

is defined vigp = /(z — 2)2 + (y — ¢/)? in (8) and (9). From
[8, egs. (6), (10)] one finds

2

L |8+ 5| ao

Gozl(z — a5y —3) = Goulp) = Oz2

27 ko

and

Gyyz—25y—v) =G, (p) = I RRU + Gl . (12)
yy ? yy 271']%3 0 ayQ

In (10) and (11), thé/ and P are Sommerfeld integrals and are
functions ofp. The mathematically formidable nature of (8) and
(9) suggests that the fill time for the impedance matrix in (2) can
be a serious problem.

In a similar manner, one can evaluate the inner products for
the two-term residue series for the attachment mode. Use of (5)
gives

X [sin(riaq) F sin(iq 7 — |az|])] (6) _<ZH(<§:§)7 _’Z‘{EHA
+5% % L L
for the y component, respectively. The complex quantities :/ , / , / / dy dy dx dz’
KB (2 p, yp,11) and K¥5(xp,10,1) can be obtained from -5 Jr S5 o3
[2(5] and are treated as constants throughout this paper. These Gow(p)OZR (2, 9) 0% R (2" /). (12)

depend on the geometry of the patch and the frequency and are

omitted here for brevity. The quantities

m(y £ yp)

= ™

x12 =

in (6) and thet signs are chosen for subscripts 1 and 2, resp
tively, with «; > 0(—) andae < 0(+).

Next, we focus on the calculation of the inner products of t

Similarly, via direct substitution from (6), one can obtain an
expression similar to (12) for the inner product

<LH (I)Ztt 7 t}E
+ +%
ec- / / / / dy dy dx dz’
he o)L ). (13)

impedance matrix elements in (2). To illustrate the convergence

issues, it suffices to consider the self-terms of the impedanc
matrix due to ther andy components of the attachment modef

expansion function. The conclusions apply equally well to t
various mutual (or off-diagonal) terms.
To that end, the inner product

X Gl p)@Li (x, )@ (2 ) ®)

o (D)L (2, )@Yl (o)) 9)

for they component of the attachment mode can be obtained
use of (3) and (4), respectively. In (8) and (9), the primes in

®rhe foregoing analysis indicates that employing the eigen-
nction series in (3) and (4) for the attachment mode to (8) and
t@) results in a dual infinite series of fourfold integrals. Since
many such terms, which have been omitted here, shall actually
be present in the full expansion of (8) and (9), their computa-
tion is thus very costly. It follows from (5) and (6) that the full
expansion of the inner products in (12) and (13) will contain a
finite number of terms.

Regardless of the nature (exact [9] or asymptotic [8]) of the
Sommerfeld integrals, one can employ the integration-by-parts
procedure with the inner products in (8), (9), (12), and (13) to
transfer the second derivatives in (10) and (11) over to the ex-
pansion functions. It has been shown in [13] that such a pro-
cedure may be extended to expansion functions with finite dis-
continuities, but it is mathematically preferable to perform this
operation on expansion functions that are well behaved over the
entire support region.

To that end, examining the results in [20, figs. 4—6] and Fig. 2,
it follows that if the effects of the junction discontinuity are nu-
merically insignificant in the calculation of the inner products,
vieen an efficient method of calculating the impedance matrix el-

dements can be developed using (5) and (6) instead of (3) and (4).

cate operations with respect to source coordinates. The latedtitionally the fourfold integrals in (8), (9), (12), and (13), can
separation between the source and field points on the interfdgefurther reduced to double integrals following the mapping
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Region within which EIGENFUNCTION

L

Fig. 2. Regions of validity of residue and eigenfunction series.

technique in [12] and depicted pictorially in Fig. 3. Following
[12], [13], and [22] the integration-by-parts method is used 1
eliminate the second derivatives in (10) and (11) in the inn
products of (8) and (9). This procedure is somewhat complicat
to justify for the eigenfunction series for the probe-to-patch &
tachment mode that contains sharp discontinuities in the clc
vicinity of the probe-to-patch junction. For the residue serie
which is smoothly varying at the junction, the application of th
same procedure is mathematically straightforward.

.----2=7" series for attachment mode is used.

X

3

The preceding observations underscore the need for exe
ining the convergence issues. Summarizing, we note théitlthe
timefor the[Z] matrix in (2) can be reduced if two independen
constraints are satisfied simultaneously. This means that:

1) one- or two-term residue series can be used in evaluat
the impedance matrix inner products instead of the tru
cated infinite eigenfunction series, implying use of (12
and (13) instead of (8) and (9), respectively;

2) the analytic reduction of fourfold to twofold integrals
will be possible via the coordinate transformation methc
shown in Fig. 3; the residue series in (5) and (6) are matt
matically similar in form to the entire-domain basis func

tions [13] for a single rectangular patch and are easil_s,(gls.

amenable to such manipulations.

p=b

(a)

v

(-R,0)

(b}

(0,-R)

(a) Linear mappings from— p’ to v — v planes. (b)R,,» — Il..., is
a special case of (a) aidl,, = 4A, whereA is the area of the shaded triangle

Constraints 1) and 2) are satisfied by the residue series foimfp). Such mappings often reduce the dimensionality of reaction integrals in

for the attachment mode. However, prior to the analytical red

tion described in 2), it is necessary to show numerically that the

residue series form satisfies constraint 1).

u%)_ace-domain moment-method analysis of electrically large problems [12].

shapes the expansion functions are Bessel functions that cannot

The closed-form evaluation in Fig. 3 works only for rectbe readily integrated in closed form over the finite region of the

angular patches and apertures because the expansion functiinesilar area.

are a superposition of sines and cosines that can be integratetihe mapping technique in [13], when applied to reaction in-
in closed form over the finite size of the patch. For circulaegrals for rectangular radiating shapes, reduces the dimension
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R Uy

Fig. 4. Three-dimensional plot of the Sommerfeld integrand given in (15).

of the integral by two. Consequently, to establish the superildf. EVALUATION OF CANONICAL INTEGRAL IN (14) USING THE
convergence properties of the residue series, reduced forms for IMSL SOFTWARE [18]

the integrals in (8), (9), (12), and (13) are sought. The under-y, . 1oqiqe and eigenfunction series have been shown in [20]

lying hypothesis is that if the convergence properties can be 5 differ across a narrow strip known as the Stokes region, as

tablished at a lower o_rder, then the_ same_general properties_ &RBwn in Fig. 2. Consequently, it appears practical to evaluate

be expected tp be vall_d for higher dimension integrals |nv0IV|r@4) for eigenfunction (3) and (4) and residue (5) and (6) se-

th(?”s]amet redS|dutle senes.ﬁ_ ient q in techni ries, respectively. Th&(z, y) in (14) does not in any way lend
us, 1o develop an €eflicient space-domain technique, op ight to the convergence behavior of the two forms of the at-

needs.tol g)(tam|n|e the convergence properties of the tWOf(ﬂJ:\ hment mode-expansion function. Hence, it can be replaced
canonical integra in (14) by (15), shown at the bottom of the page, integrands,

2 which are much simpler to compute. The numerical differences
E,R : : E,R i i i i '
TER = / - / U(z,y)OE R (z,y) du dy (14) between the eigenfunction and residue series are then defined
At by
in detail. Such a numerical analysis would also reveal if the ef- R |ZE, — 72,

fect of the discontinuity is important for full wave analysis ap- % 100. (16)

plications. In (14)24(z,y) is a suitably chosen function that

exhibits exponentially decaying and oscillatory characteristicBo evaluate (14) numerically, the Institute of Mathematical and
The function@ft’tR(x, ) stands for each of the expansion funcStatistical Libraries (IMSL) software package [18] is used. All
tions in (3)—(6). The eigenfunction series given by (3) and (4he calculations were done in double-precision arithmetic. To
and generically designated 6§~ (x,y) has a peak disconti- that end, following [19], the two-dimensional (2-D) integra-
nuity atz = x,,. The corresponding residue series form given lyon routine double precision two-dimensional quadrature (DT-
(5) and (6) and generically designated®fj , (z, %) is smoothly WODQ) [18]was used to evaluate (14). This routine evaluates
varying at this junction location. The original inner productsjouble integrals and the IMSL package has its various versions.
when suitably reduced, would comprise a superposition of infEhese various versions of DTWODQ are to be used for various
grals of the generic form given by (14). classes of functions or if the function has different behavior over

|72

e*f"<“’+y>ww for Sommerfeld-like or

Ulz,y) = —akp 15
(.9) ¢ 2 for free-space Green's function (15)
p
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54

ELCA8Y)

Fig. 5. Three-dimensional plot of thecomponent of the attachment mode for 55 terms in (3).

104 N

YO ) g X/

Fig. 6. Three-dimensional plot of thecomponent of the attachment mode for the two-term expression in (5).

different regions in the range of integration. Recalling the diger the eigenfunction form. The smooth behavior of the residue
continuous nature ¢ (z,v) (eigenfunction series) from Fig. series allows one to write
2, it is possible to write

+% zp—A +% 4L
Iﬁt = / ” dy {/ . Uz 7y)@att( yy) dx Iﬁt = / w / . Uz, y)GaRtt(xv y) dx dy. (18)
2 2 xP+A 2 2
N O (x,y) da The width of the narrow strip can be approximate@hy, where
? P A = 2.0 x 107°2x was chosen from ([20, fig. 5(b)]. To use the

+ /+ “(x y) dx (17) DTWODQ routine in the IMSL package, the input parameters
2p+A B were set toERRABS = 1.0 x 10.071° (absolute error) and

r
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x 10

SEJE ()]

Fig. 8. Three-dimensional plot of thecomponent of the attachment mode for the two-term expression in (5).

ERRREL = 1.0 x 10.07° (relative error). Outside,, — A < every run the result for (16) and the corresponding approximate
z < z,+ A, there are no discontinuities in the attachment moapu times were obtained by varying the number of terms in the
and, hence, one can dRULE = 6 to define the oscillatory na- eigenfunction series. The results are discussed in the next sec-
ture of the integrand in (17). Within the narrow region (secortibn.
term in (17)),IRULE = 1 was set to specify that the func-
tion has a peak discontinuity. For (1IBRULE = 6 was used
throughout the entire range of integration. The program was run
in a time-sharing (batch) mode and an approximate estimate offhe results of this investigation are shown in Figs. 4-18.
the central processing unit (cpu) time was obtained. Thus, fbhese results refer to the single-patch geometry chosen from

IV. DISCUSSION OFRESULTS
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Fig. 9. Three-dimensional plot of thecomponent of the attachment mode for 55 terms in (4).

1°T~.

sl

()]

Yy
res

R[S

s

Fig. 10. Three-dimensional plot of thecomponent of the attachment mode for the two-term expression in(6).

[15, patch #6b]. Referring to Fig. Iy = 2.0, L = 1.25,

vergence properties are shown in Figs. 13-18. Since these re-
Xp = 0425, andYp = 0.0, all in centimeters and the mea-sults refer to the computation &.... in (16), additional results

sured resonant frequengy = 7.65 GHz. The substrate hasrelated to the integrands in (17) and (18) are included in Figs.
the relative permittivitye,, = 2.22(1 — 50.0001). In [15, fig. 4-12. These results show the nature of the integrands over the
8] the measured input impedance data are showrf fer 7.3  entire support regions defined By 1/2) < z < (+L/2) and

to 8.5 GHz for this specific patch geometry. This range of frec—W/2) < y < (+W/2). The data in Figs. 4-12 were gen-
guencies corresponds to an instantaneous bandwidth of apperated forl00 x 100 sample points over the entire patch area
imately 16%. The results for other patch geometries in [15] weamd at the frequency, = 8.5 GHz. Other necessary informa-
also obtained, but are omitted here due the repetitive naturetiof is included in the respective figures themselves and, hence,
these results. The important results that demonstrate the cismot repeated here. In Figs. 4-18; - -) andS(- - -) stand for
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Fig. 11. Three-dimensional plot of thecomponent of the attachment mode for 55 terms in (4).

x10™

Fig. 12. Three-dimensional plot of thecomponent of the attachment mode for the two-term expression in (6).

real andimaginaryparts of(- - -), respectively. In these figures,sion 7.2.1 operating system. These results are briefly discussed
Jé'g;f’)(az,y) stand for the corresponding eigenfunction expatpelow.

sion functions for thec- andy-components in (3) and (4), re- In Fig. 4, the nature of the Sommerfeld integrand, defined
spectively. SimiIarIy,JEngy) (z,y) stand for the correspondingvia (15), is shown. These data refer to a degree of oscillation
residue series expansion functions for th@ndy-components N = 10. Only the real part is shown, as the imaginary part is
in (5) and (6), respectively. The computations were carried outratlundant since all the other parametersifde, i) are real.

the University of Kansas Academic Computing Services, DEEIgs. 5—-8 compare the nature of thkecomponent of the at-
AlphaServer 1000A machine with an open VMS Alpha veitachment mode-expansion function given by (3) and (5). It is
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Fig. 13. Comparisons dR.,, for x component of the attachment modefat 8.5 GHz.
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Fig. 14. Computation cost for the component of the eigenfunction series for the attachment mofie=a8.5 GHz.

obvious that the composite integrand, which is a product o&ture of the agreement allows one to conclude that one may
U(z,y) and®E (x,y) (or @25 (z,v)), will be almost the same expect smaller relative errors defined by (16).
for ZE, andZZ, in (17) and (18). The differences arise near the It must be emphasized that such close agreement is only pos-
probe-to-patch junction as in Figs. 5 and 6, evidenced by thible for integration in the space domain. In the spectral domain,
presence of the discontinuity in Fig. 5. Similar remarks apply t@here the entries of the impedance matrix are improper integrals
the results for thgs component in Figs. 9-12. [10], [11], this agreement cannot be expected. The reason is that
The results indicate that while there may not be precige the spatial domain the iterated integrations in (17) and (18)
point-wise agreement between the eigenfunction and residiugn be interpreted as area intercepted under a curve. The discon-
series, satisfactory global agreement betwééff(z,y) and tinuity shown in Figs. 5 and 9, at the probe-to-patch junction, is
®z2(x, ) exists over the entire patch area. (The same is traezery small fraction of the total area of the entire support region.
for the y component of the attachment mode.) This globdihis feature, in the spatial domain integration, provides closer
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Fig. 15. Frequency dependencefdf,, for thex component of the attachment mode using two terms of the residue series in each case.
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Fig. 16. Comparisons dk.... for they component of the attachment modefat: 8.5 GHz.

numerical agreement between (17) and (18) for both comptifferent forms for the attachment mode. The results in Figs.
nents and forms of the attachment mode. 13-18 demonstrate the superior convergence properties of
In contrast, the spectral-domain method [3] consists of evahe residue serieg®*2(x,y) and &% (x,y)) forms for the
uating of Fourier transforms of the relevant expansion functioegpansion functions. These results are briefly discussed below.
over the finite area of the patch. The Fourier transforms of theln Fig. 13, theR.., is computed via (16)—(18) for thecom-
residue and eigenfunction series for the attachment mode arepmtent of the attachment mode and for its one- and two-term
the same because the transform of the function modeling tiesidue series representations. The results showRthastabi-
probe-to-patch discontinuity occupies the entire wavenumbees only whenM > 20. The approximate cpu times for the
spectrum and, hence, is a dominant part of the complete spedinal cases are shown in Fig. 14. The individual cpu times for
representation of the attachment mode. the one- and two-term evaluation of (18) are 1.13 and 1.68 s, re-
The global characteristics of the results in Figs. 5-12 hefpectively. One can conclude by examining these figures that the
explain the nature of the convergence properties of the thest representation of the attachment mode-expansion function
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Fig. 18. Frequency dependenceRf,. for they component of the attachment mode using two terms of the residue series in each case.

(for space-domain calculations) is obtained when (5) is used.The reason for this can be explained by examining results in
Fig. 15, theR.,, versusM is shown for the complete impedanceFigs. 5, 6 ¢-component), 9, and 1Q;{component). It is clear
bandwidth for this patch configuration. It is generally true thahat the real parts for the-component agree better compared to
over this 16% impedance bandwidth, a two-term residue sertbs y-component for the two-term residue series. The one-term
representation gives adequate numerical accuracy comparerefmesentation of the residue series forglmomponent showed
at least 20 terms of the corresponding eigenfunction series. far more disagreements with the eigenfunction series shown in
Figs. 16—18 exhibit the same nature for theomponent of Fig. 9. Despite such differences the two-term representation for
the attachment mode. The individual cpu times for the one- atitey-component gives satisfactory results foy,, for all cases
two-term evaluations of (18) are 1.77 and 2.30 s, respectivety.interest.
However, one observes by comparing results in Figs. 5 and 18n general, the numerical investigations showed that the at-
that a one-term representation for thecomponent is worse tachment mode-expansion function for both theandy-com-
compared to the single-term residue series forthemponent. ponents can be replaced by their two-term residue series de-
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rived earlier [20]. For space-domain calculations, it was fourfdl. Kershenbaum of the Information Telecommunications Tech-
that about 20 eigenfunction terms for each component werelogy Center and Academic Computing Services, respectively,
numerically adequate compared to their respective two-tetdmiversity of Kansas for their help in providing computing fa-
residue series. This feature further allows application of anlities during the initial phase of this work.

analytical technique to reduce the fourfold reaction integrals
to their appropriate twofold representations, thus significantly
reducing the[Z] matrix fill time and the overall MoM com-
putation time, respectively, by several orders of magnitude.
Similar conclusions were reached for other data in [15]. Addi- 1]
tionally, other forms fof(z,y) in (15) were examined. The
nature of these results and, hence, the inferences, were similar
to the ones included here. 2

(3]

V. CONCLUSION 4

Moment-method characterization of wide-band probe-fed[
rectangular microstrip arrays and elements requires the inclu-
sion of a probe-to-patch attachment mode-expansion functiong)
for accurate prediction of their impedance characteristics. It
has been shown in this paper that the infinite eigenfunction Y
series form for this expansion function yields impedance ma-
trix elements that contain terms that are dual infinite series(®]
of finite-range fourfold spatial integrals. Such a complicated
series form increases the fill time of the impedance matrix
and, hence, reduces the efficiency of an MoM analysis. Inf®
contrast, it has been shown that the residue series form for theo]
attachment mode contains a finite number of terms involving
finite-range fourfold spatial integrals that are far more suit-17)
able for computation. Numerical comparisons show that the
two-term residue series gives almost the same results that are
obtained using at least 15—-20 terms of the eigenfunction serieg2]
Additionally, results for the cpu time indicate that the cost of
computation increases substantially as the number of ternjsgs)
in the eigenfunction series is increased. The analysis showed
that a one- or two-term residue series for the attachment mode
exhibits superior convergence properties over the eigenfungt4]
tion series. Furthermore, the residue series can be used in a
relatively straightforward manner for analytic reduction of the;5)
reaction integrals in the elements of the impedance matrix,
from four-dimensional (4-D) to 2-D forms. The numerical
analysis of the convergence properties of the attachment mogss]
thus emphasize the development of an efficient space-domain
MoM technique for modeling microstrip elements and arrayg;7
for a wide variety of applications.

(18]
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