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Some Convergence Considerations in Space-Domain
Moment-Method Analysis of a Class of Wide-Band

Microstrip Antennas
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Abstract—The method of moments (MoM) analysis of
probe-fed rectangular microstrip patches requires the inclusion
of a probe-to-patch attachment mode-expansion function when
the substrate thickness 0 02 , where is the free-space
wavelength. The results for the input impedance showed increased
divergence with measurements when the attachment mode was
omitted from the full-wave analysis. The attachment mode can
be expressed as an infinite eigenfunction series that increases
the fill time of the impedance matrix in an MoM analysis. In an
earlier investigation, the infinite eigenfunction series was reduced
to a residue series that required one or two terms compared to
about 55 terms for the eigenfunction series. In this paper, the
convergence properties of the eigenfunction and residue series are
investigated in view of rigorous MoM analysis. The relative errors
resulting from replacing the eigenfunction by the residue series
for the attachment mode, are compared by numerically evaluating
a class of two-dimensional (2-D) spatial integrals shown to be
closely related to the elements of an MoM impedance matrix.
Additionally, the computation times for the evaluation of these
integrals for the two forms of the attachment mode-expansion
function are also included. Based on the superior convergence
properties of the residue series for the attachment mode-expansion
function, it is mathematically justified that this form can readily
be used for analytic reduction of the spatial, reaction integrals
from four to 2-D forms. This feature allows further reduction of
the fill time of the MoM impedance matrix, suggesting the possi-
bility of developing an efficient space-domain MoM technique for
modeling of wide-band microstrip antennas.

Index Terms—Method of moments, microstrip antennas.

I. INTRODUCTION

USE of small microstrip antennas with probe feeds is
becoming increasingly popular for handheld personal

communication systems (PCS) cellphones [1]. Broad-band
antennas are desired [2] and computer-aided design tools for
broad-band probe-fed patches are thus attracting attention [3],
[4]. The effect of the probe location (at the high-frequency
end of the stipulated bandwidth) on the input impedance is
thus critical. The input impedance variation with frequency
dictates the wide-band properties of such microstrip antennas
for PCS applications ([1, fig. 2]). While approximate modeling
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techniques such as transmission line or cavity models [4]
can be used to compute the input impedance, it is desirable
to employ full wave analysis techniques [3] for optimizing
designs that are initiated using the approximate methods. Since
input impedance calculation is central to modeling wide-band
antennas, full wave analysis plays a critical role in such
problems.

It has recently been emphasized in [5] that full wave modeling
of broad-band antennas is essential for realizing many novel de-
signs. However, as discussed in [4], such full wave models re-
quire prohibitive computational resources and, hence, efficient
modeling techniques are sought that lead to reduced storage re-
quirements and/or faster processing speeds. Either feature is an
important consideration for full wave performance analysis of
wide-band antennas [5]. The subject of this paper is to explore
methods for developing efficient computer models for full wave
characterization of probe-fed microstrip antennas.

The investigations reported here discuss enhancement of pro-
cessing speed of a moment-method solution [6] to microstrip
antennas. As discussed in [6], moment-method solutions require
computation of elements of the voltage and impedance matrices
and the bulk of the computation time is spent in filling these
matrices. Most of the efficient moment-method solutions there-
fore aim at reducing the fill time of these matrices by use of
special form of the appropriate Green's functions [5], [7]. For
microstrip antenna problems the appropriate Green's function
contains Sommerfeld integrals and some efficient methods for
their computation have been addressed in [8], [9].

For most moment-method solutions to probe-fed microstrip
patch antennas, the entire-domain basis functions are used
([3, ch. 1]). The information gleaned from [10], [11] suggests
that the spectral-domain moment-method approach is the most
common since the relevant Green's functions do not involve
the traditional Sommerfeld integrals. However, the individual
elements of both voltage and impedance matrices in a spec-
tral-domain moment method will have a Sommerfeld-like
behavior [11, eqs. (16)–(20)], necessitating careful attention
to their computation. The situation becomes very complicated
for the impedance matrix calculations because the source and
observer locations are coplanar, resulting in very poor con-
vergence of the spectral integrals. This naturally increases the
fill time of the impedance matrix and sophisticated analytical
techniques can often help salvage such problems [10].

In contrast with spectral methods, space-domain moment-
method techniques have also been used to address mutual cou-
pling problems [12]. Solving mutual coupling problems via the
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space-domain method appears to be more promising because
evaluation of spectral integrals for increased lateral separation
between source and observer points becomes formidable due
to the rapid oscillation of the integrands. Comparison between
space and spectral domain methods for microstrip antennas have
been presented in [13] and the closed-form results in [14] were
obtained in the space domain for impedance matrix elements. In
line with these appropriate references, the primary purpose of
this paper is to augment the space-domain method of moments
as applied to modeling wide-band probe-fed microstrip patches.

Probe-fed microstrip patch antennas for wide-band PCS ap-
plications require modeling the probe feed with the complete
moment-method solution. This, following the detailed investi-
gations in [15], was included using an additional attachment
mode-expansion function for the patch and feed [16]. The at-
tachment mode-expansion function, first introduced in [17] on
the patch, is an infinite eigenfunction series and, for rectangular
patch geometries, its derivation can be found in [3, pp. 26–28]
from the corresponding cavity model. In [3] and [16], the spec-
tral-domain analysis proceeds by taking the Fourier transform of
the attachment mode; the spectral integrals were evaluated nu-
merically via standard techniques [18], [19], as shown in [10]
and [11].

In [20], the infinite eigenfunction series was analytically re-
duced to a residue series form for a rectangular patch. It was
shown in [20] that only one or two terms of the residue series are
numerically adequate compared to about 55 terms of the eigen-
function series. In view of the investigation in [20], some pre-
liminary results for convergence properties were presented in
[21], [22] using the residue series for the attachment mode. This
paper examines the problem more completely and detailed com-
parisons are presented here using the residue and eigenfunction
series forms. However, due to the nature of the formulation of
the probe-to-patch attachment mode [3], [16], [20], all the dis-
cussions are limited to rectangular microstrip patches only.

In Section II the important aspects of the space-domain for-
mulation are summarized from [22]. In Section III detailed nu-
merical results for establishing the convergence properties of
the space-domain method are included. The main emphasis of
this paper are these results, which makes this work distinct from
[21] and [22]. This is followed by conclusions and references.

II. SUMMARY OF SPATIAL-DOMAIN FORMULATION

The geometry of the problem is shown in Fig. 1. The total
current on the patch is written as

(1)

In (1) and are the unknown complex (scalar)
amplitudes of the and components of the attachment and en-
tire-domain basis functions, respectively. The superscripts
stand for the th and th entire-domain modes. The expan-

Fig. 1. Cross-sectional views of a rectangular microstrip antenna. The point
P is an arbitrary point on the patch andS is the probe-to-patch junction.

sion functions and are designated
as vectors in (1) and their support is
and . Formulating a moment-method
solution [3], [6], [16], one obtains the matrix equation

(2)

The main focus of this presentation is on the impedance matrix
on the immediate right side of (2).

With a slight change of notation, the eigenfunction series for
the attachment mode-expansion functions can be
obtained from [16] and [3, p. 28, eqs. (1.155)–(1.158)]. These
read

(3)

and

(4)

for the and components of the attachment modes, respec-
tively. In (3) and (4), and indicate the probe location in
Fig. 1. The coordinates of the location of an arbitrary point
are also shown there. The superscript or subscriptin (3) and
(4) designates that these are eigenfunction series. The quantities

can be interpreted as modal amplitudes associated
with each of the integers and are taken as constants for the
remainder of the paper. Their explicit forms can be found in [3]
and [16] and are omitted here for brevity. Similar remarks apply
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to the functions , which contain simple trigono-
metric functions.

The two-term residue series, designated by superscript, can
be obtained from [20, eqs. (39)–(47)]

(5)

for the component and from [20, eq. (54)]

(6)

for the component, respectively. The complex quantities
and can be obtained from

[20] and are treated as constants throughout this paper. These
depend on the geometry of the patch and the frequency and are
omitted here for brevity. The quantities

(7)

in (6) and the signs are chosen for subscripts 1 and 2, respec-
tively, with and .

Next, we focus on the calculation of the inner products of the
impedance matrix elements in (2). To illustrate the convergence
issues, it suffices to consider the self-terms of the impedance
matrix due to the and components of the attachment mode-
expansion function. The conclusions apply equally well to the
various mutual (or off-diagonal) terms.

To that end, the inner product

(8)

for the component and

(9)

for the component of the attachment mode can be obtained via
use of (3) and (4), respectively. In (8) and (9), the primes indi-
cate operations with respect to source coordinates. The lateral
separation between the source and field points on the interface

is defined via in (8) and (9). From
[8, eqs. (6), (10)] one finds

(10)

and

(11)

In (10) and (11), the and are Sommerfeld integrals and are
functions of . The mathematically formidable nature of (8) and
(9) suggests that the fill time for the impedance matrix in (2) can
be a serious problem.

In a similar manner, one can evaluate the inner products for
the two-term residue series for the attachment mode. Use of (5)
gives

(12)

Similarly, via direct substitution from (6), one can obtain an
expression similar to (12) for the inner product

(13)

The foregoing analysis indicates that employing the eigen-
function series in (3) and (4) for the attachment mode to (8) and
(9) results in a dual infinite series of fourfold integrals. Since
many such terms, which have been omitted here, shall actually
be present in the full expansion of (8) and (9), their computa-
tion is thus very costly. It follows from (5) and (6) that the full
expansion of the inner products in (12) and (13) will contain a
finite number of terms.

Regardless of the nature (exact [9] or asymptotic [8]) of the
Sommerfeld integrals, one can employ the integration-by-parts
procedure with the inner products in (8), (9), (12), and (13) to
transfer the second derivatives in (10) and (11) over to the ex-
pansion functions. It has been shown in [13] that such a pro-
cedure may be extended to expansion functions with finite dis-
continuities, but it is mathematically preferable to perform this
operation on expansion functions that are well behaved over the
entire support region.

To that end, examining the results in [20, figs. 4–6] and Fig. 2,
it follows that if the effects of the junction discontinuity are nu-
merically insignificant in the calculation of the inner products,
then an efficient method of calculating the impedance matrix el-
ements can be developed using (5) and (6) instead of (3) and (4).
Additionally the fourfold integrals in (8), (9), (12), and (13), can
be further reduced to double integrals following the mapping
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Fig. 2. Regions of validity of residue and eigenfunction series.

technique in [12] and depicted pictorially in Fig. 3. Following
[12], [13], and [22] the integration-by-parts method is used to
eliminate the second derivatives in (10) and (11) in the inner
products of (8) and (9). This procedure is somewhat complicated
to justify for the eigenfunction series for the probe-to-patch at-
tachment mode that contains sharp discontinuities in the close
vicinity of the probe-to-patch junction. For the residue series,
which is smoothly varying at the junction, the application of the
same procedure is mathematically straightforward.

The preceding observations underscore the need for exam-
ining the convergence issues. Summarizing, we note that thefill
timefor the matrix in (2) can be reduced if two independent
constraints are satisfied simultaneously. This means that:

1) one- or two-term residue series can be used in evaluating
the impedance matrix inner products instead of the trun-
cated infinite eigenfunction series, implying use of (12)
and (13) instead of (8) and (9), respectively;

2) the analytic reduction of fourfold to twofold integrals
will be possible via the coordinate transformation method
shown in Fig. 3; the residue series in (5) and (6) are mathe-
matically similar in form to the entire-domain basis func-
tions [13] for a single rectangular patch and are easily
amenable to such manipulations.

Constraints 1) and 2) are satisfied by the residue series form
for the attachment mode. However, prior to the analytical reduc-
tion described in 2), it is necessary to show numerically that the
residue series form satisfies constraint 1).

The closed-form evaluation in Fig. 3 works only for rect-
angular patches and apertures because the expansion functions
are a superposition of sines and cosines that can be integrated
in closed form over the finite size of the patch. For circular

Fig. 3. (a) Linear mappings fromp�p tou� v planes. (b)R ! � is
a special case of (a) and� = 4�, where� is the area of the shaded triangle
in (b). Such mappings often reduce the dimensionality of reaction integrals in
space-domain moment-method analysis of electrically large problems [12].

shapes the expansion functions are Bessel functions that cannot
be readily integrated in closed form over the finite region of the
circular area.

The mapping technique in [13], when applied to reaction in-
tegrals for rectangular radiating shapes, reduces the dimension
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Fig. 4. Three-dimensional plot of the Sommerfeld integrand given in (15).

of the integral by two. Consequently, to establish the superior
convergence properties of the residue series, reduced forms for
the integrals in (8), (9), (12), and (13) are sought. The under-
lying hypothesis is that if the convergence properties can be es-
tablished at a lower order, then the same general properties can
be expected to be valid for higher dimension integrals involving
the same residue series.

Thus, to develop an efficient space-domain technique, one
needs to examine the convergence properties of the twofold
canonical integral

(14)

in detail. Such a numerical analysis would also reveal if the ef-
fect of the discontinuity is important for full wave analysis ap-
plications. In (14), is a suitably chosen function that
exhibits exponentially decaying and oscillatory characteristics.
The function stands for each of the expansion func-
tions in (3)—(6). The eigenfunction series given by (3) and (4)
and generically designated by has a peak disconti-
nuity at . The corresponding residue series form given by
(5) and (6) and generically designated by is smoothly
varying at this junction location. The original inner products,
when suitably reduced, would comprise a superposition of inte-
grals of the generic form given by (14).

III. EVALUATION OF CANONICAL INTEGRAL IN (14) USING THE

IMSL SOFTWARE [18]

The residue and eigenfunction series have been shown in [20]
to differ across a narrow strip known as the Stokes region, as
shown in Fig. 2. Consequently, it appears practical to evaluate
(14) for eigenfunction (3) and (4) and residue (5) and (6) se-
ries, respectively. The in (14) does not in any way lend
insight to the convergence behavior of the two forms of the at-
tachment mode-expansion function. Hence, it can be replaced
in (14) by (15), shown at the bottom of the page, integrands,
which are much simpler to compute. The numerical differences
between the eigenfunction and residue series are then defined
by

(16)

To evaluate (14) numerically, the Institute of Mathematical and
Statistical Libraries (IMSL) software package [18] is used. All
the calculations were done in double-precision arithmetic. To
that end, following [19], the two-dimensional (2-D) integra-
tion routine double precision two-dimensional quadrature (DT-
WODQ) [18]was used to evaluate (14). This routine evaluates
double integrals and the IMSL package has its various versions.
These various versions of DTWODQ are to be used for various
classes of functions or if the function has different behavior over

for Sommerfeld-like or

for free-space Green's function
(15)



152 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 48, NO. 2, FEBRUARY 2000

Fig. 5. Three-dimensional plot of thex component of the attachment mode for 55 terms in (3).

Fig. 6. Three-dimensional plot of thex component of the attachment mode for the two-term expression in (5).

different regions in the range of integration. Recalling the dis-
continuous nature of (eigenfunction series) from Fig.
2, it is possible to write

(17)

for the eigenfunction form. The smooth behavior of the residue
series allows one to write

(18)

The width of the narrow strip can be approximated by, where
was chosen from ([20, fig. 5(b)]. To use the

DTWODQ routine in the IMSL package, the input parameters
were set to (absolute error) and
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Fig. 7. Three-dimensional plot of thex component of the attachment mode for 55 terms in (3).

Fig. 8. Three-dimensional plot of thex component of the attachment mode for the two-term expression in (5).

(relative error). Outside
, there are no discontinuities in the attachment mode

and, hence, one can set to define the oscillatory na-
ture of the integrand in (17). Within the narrow region (second
term in (17)), was set to specify that the func-
tion has a peak discontinuity. For (18) was used
throughout the entire range of integration. The program was run
in a time-sharing (batch) mode and an approximate estimate of
the central processing unit (cpu) time was obtained. Thus, for

every run the result for (16) and the corresponding approximate
cpu times were obtained by varying the number of terms in the
eigenfunction series. The results are discussed in the next sec-
tion.

IV. DISCUSSION OFRESULTS

The results of this investigation are shown in Figs. 4–18.
These results refer to the single-patch geometry chosen from
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Fig. 9. Three-dimensional plot of they component of the attachment mode for 55 terms in (4).

Fig. 10. Three-dimensional plot of they component of the attachment mode for the two-term expression in(6).

[15, patch #6b]. Referring to Fig. 1, , ,
, and , all in centimeters and the mea-

sured resonant frequency GHz. The substrate has
the relative permittivity . In [15, fig.
8] the measured input impedance data are shown for
to GHz for this specific patch geometry. This range of fre-
quencies corresponds to an instantaneous bandwidth of approx-
imately 16%. The results for other patch geometries in [15] were
also obtained, but are omitted here due the repetitive nature of
these results. The important results that demonstrate the con-

vergence properties are shown in Figs. 13–18. Since these re-
sults refer to the computation of in (16), additional results
related to the integrands in (17) and (18) are included in Figs.
4–12. These results show the nature of the integrands over the
entire support regions defined by and

. The data in Figs. 4–12 were gen-
erated for sample points over the entire patch area
and at the frequency, GHz. Other necessary informa-
tion is included in the respective figures themselves and, hence,
is not repeated here. In Figs. 4–18, and stand for
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Fig. 11. Three-dimensional plot of they component of the attachment mode for 55 terms in (4).

Fig. 12. Three-dimensional plot of they component of the attachment mode for the two-term expression in (6).

real andimaginaryparts of , respectively. In these figures,
stand for the corresponding eigenfunction expan-

sion functions for the - and -components in (3) and (4), re-
spectively. Similarly, stand for the corresponding
residue series expansion functions for the- and -components
in (5) and (6), respectively. The computations were carried out at
the University of Kansas Academic Computing Services, DEC
AlphaServer 1000A machine with an open VMS Alpha ver-

sion 7.2.1 operating system. These results are briefly discussed
below.

In Fig. 4, the nature of the Sommerfeld integrand, defined
via (15), is shown. These data refer to a degree of oscillation

. Only the real part is shown, as the imaginary part is
redundant since all the other parameters for are real.
Figs. 5–8 compare the nature of thecomponent of the at-
tachment mode-expansion function given by (3) and (5). It is
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Fig. 13. Comparisons ofR for x component of the attachment mode atf = 8:5 GHz.

Fig. 14. Computation cost for thex component of the eigenfunction series for the attachment mode atf = 8:5 GHz.

obvious that the composite integrand, which is a product of
and (or ), will be almost the same

for and in (17) and (18). The differences arise near the
probe-to-patch junction as in Figs. 5 and 6, evidenced by the
presence of the discontinuity in Fig. 5. Similar remarks apply to
the results for the component in Figs. 9–12.

The results indicate that while there may not be precise
point-wise agreement between the eigenfunction and residue
series, satisfactory global agreement between and

exists over the entire patch area. (The same is true
for the component of the attachment mode.) This global

nature of the agreement allows one to conclude that one may
expect smaller relative errors defined by (16).

It must be emphasized that such close agreement is only pos-
sible for integration in the space domain. In the spectral domain,
where the entries of the impedance matrix are improper integrals
[10], [11], this agreement cannot be expected. The reason is that
in the spatial domain the iterated integrations in (17) and (18)
can be interpreted as area intercepted under a curve. The discon-
tinuity shown in Figs. 5 and 9, at the probe-to-patch junction, is
a very small fraction of the total area of the entire support region.
This feature, in the spatial domain integration, provides closer
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Fig. 15. Frequency dependence ofR for thex component of the attachment mode using two terms of the residue series in each case.

Fig. 16. Comparisons ofR for they component of the attachment mode atf = 8:5 GHz.

numerical agreement between (17) and (18) for both compo-
nents and forms of the attachment mode.

In contrast, the spectral-domain method [3] consists of eval-
uating of Fourier transforms of the relevant expansion functions
over the finite area of the patch. The Fourier transforms of the
residue and eigenfunction series for the attachment mode are not
the same because the transform of the function modeling the
probe-to-patch discontinuity occupies the entire wavenumber
spectrum and, hence, is a dominant part of the complete spectral
representation of the attachment mode.

The global characteristics of the results in Figs. 5–12 help
explain the nature of the convergence properties of the two

different forms for the attachment mode. The results in Figs.
13–18 demonstrate the superior convergence properties of
the residue series ( and ) forms for the
expansion functions. These results are briefly discussed below.

In Fig. 13, the is computed via (16)–(18) for thecom-
ponent of the attachment mode and for its one- and two-term
residue series representations. The results show thatstabi-
lizes only when . The approximate cpu times for the
two cases are shown in Fig. 14. The individual cpu times for
the one- and two-term evaluation of (18) are 1.13 and 1.68 s, re-
spectively. One can conclude by examining these figures that the
best representation of the attachment mode-expansion function
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Fig. 17. Computation cost for they component of the eigenfunction series for the attachment mode atf = 8:5 GHz.

Fig. 18. Frequency dependence ofR for they component of the attachment mode using two terms of the residue series in each case.

(for space-domain calculations) is obtained when (5) is used. In
Fig. 15, the versus is shown for the complete impedance
bandwidth for this patch configuration. It is generally true that
over this 16% impedance bandwidth, a two-term residue series
representation gives adequate numerical accuracy compared to
at least 20 terms of the corresponding eigenfunction series.

Figs. 16–18 exhibit the same nature for thecomponent of
the attachment mode. The individual cpu times for the one- and
two-term evaluations of (18) are 1.77 and 2.30 s, respectively.
However, one observes by comparing results in Figs. 5 and 16
that a one-term representation for thecomponent is worse
compared to the single-term residue series for thecomponent.

The reason for this can be explained by examining results in
Figs. 5, 6 ( -component), 9, and 10 (-component). It is clear
that the real parts for the-component agree better compared to
the -component for the two-term residue series. The one-term
representation of the residue series for the-component showed
far more disagreements with the eigenfunction series shown in
Fig. 9. Despite such differences the two-term representation for
the -component gives satisfactory results for for all cases
of interest.

In general, the numerical investigations showed that the at-
tachment mode-expansion function for both the- and -com-
ponents can be replaced by their two-term residue series de-
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rived earlier [20]. For space-domain calculations, it was found
that about 20 eigenfunction terms for each component were
numerically adequate compared to their respective two-term
residue series. This feature further allows application of an
analytical technique to reduce the fourfold reaction integrals
to their appropriate twofold representations, thus significantly
reducing the matrix fill time and the overall MoM com-
putation time, respectively, by several orders of magnitude.
Similar conclusions were reached for other data in [15]. Addi-
tionally, other forms for in (15) were examined. The
nature of these results and, hence, the inferences, were similar
to the ones included here.

V. CONCLUSION

Moment-method characterization of wide-band probe-fed
rectangular microstrip arrays and elements requires the inclu-
sion of a probe-to-patch attachment mode-expansion function
for accurate prediction of their impedance characteristics. It
has been shown in this paper that the infinite eigenfunction
series form for this expansion function yields impedance ma-
trix elements that contain terms that are dual infinite series
of finite-range fourfold spatial integrals. Such a complicated
series form increases the fill time of the impedance matrix
and, hence, reduces the efficiency of an MoM analysis. In
contrast, it has been shown that the residue series form for the
attachment mode contains a finite number of terms involving
finite-range fourfold spatial integrals that are far more suit-
able for computation. Numerical comparisons show that the
two-term residue series gives almost the same results that are
obtained using at least 15–20 terms of the eigenfunction series.
Additionally, results for the cpu time indicate that the cost of
computation increases substantially as the number of terms
in the eigenfunction series is increased. The analysis showed
that a one- or two-term residue series for the attachment mode
exhibits superior convergence properties over the eigenfunc-
tion series. Furthermore, the residue series can be used in a
relatively straightforward manner for analytic reduction of the
reaction integrals in the elements of the impedance matrix,
from four-dimensional (4-D) to 2-D forms. The numerical
analysis of the convergence properties of the attachment mode
thus emphasize the development of an efficient space-domain
MoM technique for modeling microstrip elements and arrays
for a wide variety of applications.
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